
A New Self-stabilizing Minimum Spanning Tree
Construction with Loop-Free Property

Lélia Blin1, Maria Potop-Butucaru1, Stephane Rovedakis2, and Sébastien Tixeuil1

1 Univ. Pierre & Marie Curie - Paris 6,
LIP6-CNRS UMR 7606, France

{lelia.blin,maria.gradinariu,sebastien.tixeuil}@lip6.fr
2 Université d’Evry, IBISC, CNRS FRE 3190, France
stephane.rovedakis@ibisc.univ-evry.fr

Abstract. The minimum spanning tree (MST) construction is a classical prob-
lem in Distributed Computing for creating a globally minimized structure dis-
tributedly. Self-stabilization is versatile technique for forward recovery that
permits to handle any kind of transient faults in a unified manner. The loop-
free property provides interesting safety assurance in dynamic networks where
edge-cost changes during operation of the protocol.

We present a new self-stabilizing MST protocol that improves on previous
known approaches in several ways. First, it makes fewer system hypotheses as
the size of the network (or an upper bound on the size) need not be known to the
participants. Second, it is loop-free in the sense that it guarantees that a spanning
tree structure is always preserved while edge costs change dynamically and the
protocol adjusts to a new MST. Finally, time complexity matches the best known
results, while space complexity results show that this protocol is the most efficient
to date.

1 Introduction

Since its introduction in a centralized context [25,22], the minimum spanning tree (or
MST) construction problem gained a benchmark status in distributed computing thanks
to the influential seminal work of [13]. Given an edge-weighted graph G = (V, E, w),
where w denotes the edge-weight function, the MST problem consist in computing a
tree T spanning V , such that T has minimum weight among all spanning trees of G.

One of the most versatile techniques to ensure forward recovery of distributed sys-
tems is that of self-stabilization [6,7]. A distributed algorithm is self-stabilizing if after
faults and attacks hit the system and place it in some arbitrary global state, the sys-
tem recovers from this catastrophic situation without external (e.g. human) intervention
in finite time. A recent trend in self-stabilizing research is to complement the self-
stabilizing abilities of a distributed algorithm with some additional safety properties
that are guaranteed when the permanent and intermittent failures that hit the system
satisfy some conditions. In addition to being self-stabilizing, a protocol could thus also
tolerate a limited number of topology changes [9], crash faults [15,2], nap faults [10,23],
Byzantine faults [11,3], and sustained edge cost changes [4,20].

This last property is especially relevant when building spanning trees in dynamic
networks, since the cost of a particular edge is likely to evolve through time. If an MST

I. Keidar (Ed.): DISC 2009, LNCS 5805, pp. 407–422, 2009.
c⃝ Springer-Verlag Berlin Heidelberg 2009

408 L. Blin et al.

protocol is only self-stabilizing, it may adjust to the new costs in such a way that a previ-
ously constructed MST evolves into a disconnected or a looping structure (of course, in
the abscence of new edge cost changes, the self-stabilization property guarantees that
eventually a new MST is constructed). Of course, if edge costs change unexpectedly
and continuously, an MST cannot be maintained at all times. Now, a packet routing
algorithm is loop free [14,12] if at any point in time the routing tables are free of loops,
despite possible modification of the edge-weights in the graph (i.e., for any two nodes u
and v, the actual routing tables determines a simple path from u to v, at any time). The
loop-free property [4,20] in self-stabilization guarantees that, a spanning tree being con-
structed (not necessarily an MST), then the self-stabilizing convergence to a “minimal”
(for some metric) spanning tree maintains a spanning tree at all times (obviously, this
spanning tree is not “minimal” at all times). The consequence of this safety property in
addition to that of self-stabiization is that the spanning tree structure can still be used
(e.g. for routing) while the protocol is adjusting, and makes it suitable for networks that
undergo such very frequent dynamic changes.

Related works. Gupta and Srimani [18] have presented the first self-stabilizing algo-
rithm for the MST problem. It applies on graphs whose nodes have unique identifiers,
whose edges have integer edge weights, and a weight can appear at most once in the
whole network. To construct the (unique) MST, every node performs the same algo-
rithm. The MST construction is based on the computation of all the shortest paths (for
a certain cost function) between all the pairs of nodes. While executing the algorithm,
every node stores the cost of all paths from it to all the other nodes. To implement this
algorithm, the authors assume that every node knows the number n of nodes in the net-
work, and that the identifiers of the nodes are in {1, . . . , n}. Every node u stores the
weight of the edge eu,v placed in the MST for each node v ̸= u. Therefore the algo-
rithm requires Ω(

∑
v ̸=u log w(eu,v)) bits of memory at node u. Since all the weights

are distinct integers, the memory requirement at each node is Ω(n log n) bits.
Higham and Lyan [19] have proposed another self-stabilizing algorithm for the MST

problem. As in [18], their work applies to undirected connected graphs with unique
integer edge weights and unique node identifiers, where every node has an upper bound
on the number of nodes in the system. The algorithm performs roughly as follows:
every edge aims at deciding whether it eventually belongs to the MST or not. For this
purpose, every non tree-edge e floods the network to find a potential cycle, and when
e receives its own message back along a cycle, it uses information collected by this
message (i.e., the maximum edge weight of the traversed cycle) to decide whether e
could potentially be in the MST or not. If the edge e has not received its message back
after the time-out interval, it decides to become tree edge. The core memory of each
node holds only O(log n) bits, but the information exchanged between neighboring
nodes is of size O(n log n) bits, thus only slightly improving that of [18].

To our knowledge, none of the self-stabilizing MST construction protocols is loop-
free. Since the aforementioned two protocols also make use of the knowledge of the
global number of nodes in the system, and assume that no two edge costs can be equal,
these extra hypoteses make them suitable for static networks only.

Relatively few works investigate merging self-stabilization and loop free routing,
with the notable exception of [4,20]. While [4] still requires that a upper bound on the

A New Self-stabilizing Minimum Spanning Tree Construction 409

Table 1. Distributed Self-Stabilizing algorithms for the MST and loop-free SP problems

metric size known unique weights memory usage loop-free
[18] MST yes yes O(n log n) no
[19] MST upper bound yes O(n log n) no
[4] SP upper bound no Θ(log n) yes
[20] SP no no Θ(log n) yes
This paper MST no no O(log n) yes

network diameter is known to every participant, no such assumption is made in [20].
Also, both protocols use only a reasonable amount of memory (O(log n) bits per node).
However, the metrics that are considered in [4,20] are derivative of the shortest path
(a.k.a. SP) metric, that is considered a much easier task in the distributed setting than
that of the MST, since the associated metric is locally optimizable [17], allowing es-
sentially locally greedy approaches to perform well. By contrast, some sort of global
optimization is needed for MST, which often drives higher complexity costs and thus
less flexibility in dynamic networks.

Our contributions. We describe a new self-stabilizing algorithm for the MST prob-
lem. Contrary to previous self-stabilizing MST protocols, our algorithm does not make
any assumption about the network size (including upper bounds) or the unicity of the
edge weights. Moreover, our solution improves on the memory space usage since each
participant needs only O(log n) bits1, and node identifiers are not needed.

In addition to improving over system hypotheses and complexity, our algorithm pro-
vides additional safety properties to self-stabilization, as it is loop-free. Compared to
previous protocols that are both self-stabilizing and loop-free, our protocol is the first
to consider non-monotonous tree metrics.

The key techniques that are used in our scheme include fast construction of a span-
ning tree, that is continuously improved by means of a pre-order construction over the
nodes. The cycles that are considered over time are precisely those obtained by adding
one edge to the evolving spanning tree. Considering solely that type of cycles reduces
the memory requirement at each node compared to [18,19] because the latter consider
all possible paths connecting pairs of nodes. Moreover, constructing and using a pre-
order on the nodes allows our algorithm to proceed in a completely asynchronous man-
ner, and without any information about the size of the network, as opposed to [18,19].
The main characteristics of our solution are presented in Table 1, where a boldface
denotes the most useful (or efficient) feature for a particular criterium.

2 Model and Notations

We consider an undirected weighted connected network G = (V, E, w) where V is the
set of nodes, E is the set of edges and w : E → R+ is a positive cost function. Nodes

1 Note that one may use the techniques proposed in [1] in order to construct a self-stabilizing
MST starting from non-stabilizing solutions. This technique would increase the memory
complexity.

Lélia Blin

410 L. Blin et al.

represent processors and edges represent bidirectional communication links. Addition-
ally, we consider that G = (V, E, w) is a network in which the weight of the communi-
cation links may change value. We consider anonymous networks (i.e., the processors
have no IDs), with one distinguished node, called the root2. Throughout the paper, the
root is denoted r. We denote by deg(v) the number of v’s neighbors in G. The deg(v)
edges incident to any node v are labeled from 1 to deg(v), so that a processor can
distinguish the different edges incident to a node.

The processors asynchronously execute their programs consisting of a set of vari-
ables and a finite set of rules. The variables are part of the shared register which is used
to communicate with the neighbors. A processor can read and write its own registers
and can read the shared registers of its neighbors. Each processor executes a program
consisting of a sequence of guarded rules. Each rule contains a guard (boolean expres-
sion over the variables of a node and its neighborhood) and an action (update of the
node variables only). Any rule whose guard is true is said to be enabled. A node with
one or more enabled rules is said to be privileged and may make a move executing the
action corresponding to the chosen enabled rule.

A local state of a node is the value of the local variables of the node and the state of
its program counter. A configuration of the system G = (V, E) is the cross product of
the local states of all nodes in the system. The transition from a configuration to the next
one is produced by the execution of an action at a node. A computation of the system
is defined as a weakly fair, maximal sequence of configurations, e = (c0, c1, . . . ci, . . .),
where each configuration ci+1 follows from ci by the execution of a single action of at
least one node. During an execution step, one or more processors execute an action and
a processor may take at most one action. Weak fairness of the sequence means that if
any action in G is continuously enabled along the sequence, it is eventually chosen for
execution. Maximality means that the sequence is either infinite, or it is finite and no
action of G is enabled in the final global state.

In the sequel we consider the system can start in any configuration. That is, the local
state of a node can be corrupted. Note that we don’t make any assumption on the bound
of corrupted nodes. In the worst case all the nodes in the system may start in a corrupted
configuration. In order to tackle these faults we use self-stabilization techniques.

Definition 1 (self-stabilization). Let LA be a non-empty legitimacy predicate3 of an
algorithmA with respect to a specification predicate Spec such that every configuration
satisfying LA satisfies Spec. Algorithm A is self-stabilizing with respect to Spec iff the
following two conditions hold:

2 Observe that the two self-stabilizing MST algorithms mentioned in the Previous Work sec-
tion assume that the nodes have distinct IDs with no distinguished nodes. Nevertheless, if the
nodes have distinct IDs then it is possible to elect one node as a leader in a self-stabilizing
manner. Conversely, if there exists one distinguished node in an anonymous network, then it is
possible to assign distinct IDs to the nodes in a self-stabilizing manner [8]. Note that it is not
possible to compute deterministically an MST in a fully anonymous network (i.e., without any
distinguished node), as proved in [18].

3 A legitimacy predicate is defined over the configurations of a system and is an indicator of its
correct behavior.

Lélia Blin

Lélia Blin

Lélia Blin

Lélia Blin

A New Self-stabilizing Minimum Spanning Tree Construction 411

(i) Every computation of A starting from a configuration satisfying LA preserves LA
(closure).

(ii) Every computation of A starting from an arbitrary configuration contains a config-
uration that satisfies LA (convergence).

We define bellow a loop-free configuration of a system as a configuration which con-
tains paths with no cycle between any couple of nodes in the system. Given two nodes
u, v ∈ V , we note P (u, v) the path between u and v.

Definition 2 (Loop-Free Configuration). Let Cycle(u, v) be the following predicate
defined for two nodes u, v ∈ V on configuration C: Cycle(u, v) ≡ ∃P (u, v), P (v, u) :
P (u, v) ∩ P (v, u) = ∅.
A loop-free configuration is a configuration of the system which satisfies: ∀u, v ∈
V, Cycle(u, v) = false.

We use the definition of a loop-free configuration to define a loop-free stabilizing
system.

Definition 3 (Loop-Free Stabilization). A distributed system is called loop-free stabi-
lizing if and only if it is self-stabilizing and there exists a non-empty set of configurations
such that the following conditions hold: (i) Every computation starting from a loop-free
configuration reaches a loop-free configuration (closure). (ii) Every computation start-
ing from an arbitrary configuration contains a loop-free configuration (convergence).

In the sequel we study the loop-free self-stabilizing LoopFreeMSTproblem. The legit-
imacy predicate LA for the LoopFreeMSTproblem is the conjunction of the following
two predicates: (i) a tree T spanning the network is constructed. (ii) T is a minimum
spanning tree of G (i.e., ∀T ′, W (T) ≤ W (T ′), with T ′ be a spanning tree of G and
W (S) =

∑
e∈S w(e) be the cost of the subgraph S).

3 The Algorithm LoopFreeMST

In this section, we describe our self-stabilizing algorithm for the MST problem. We call
this algorithm LoopFreeMST. Let us begin by an informal description of
LoopFreeMST aiming at underlining its main features.

3.1 High Level Description

LoopFreeMST is based on the red rule. That is, for constructing an MST, the algorithm
successively deletes the edges of maximum weight within every cycle. For this purpose,
a spanning tree is maintained, together with a pre-order labeling of its nodes. Given the
current spanning tree T maintained by our algorithm, every edge e of the graph that is
not in the spanning tree creates an unique cycle in the graph when added to T . This
cycle is called fundamental cycle, and is denoted by Ce. (Formally, this cycle depends
on T ; Nevertheless no confusion should arise from omitting T in the notation of Ce). If
w(e) is not the maximum weight of all the edges in Ce, then, according to the red rule,
our algorithm swaps e with the edge f of Ce with maximum weight . This swapping

412 L. Blin et al.

procedure is called an improvement. A straightforward consequence of the red rule is
that if no improvements are possible then the current spanning tree is a minimum one.

Algorithm LoopFreeMST can be decomposed in three procedures: (i) Tree con-
struction, (ii) Token label circulation, (iii) Cycle improvement.

The latter procedure (Cycle improvement) is in fact the core of our contribution.
Indeed, the two first procedures are simple modifications of existing self-stabilizing
algorithms, one for building a spanning tree, and the other for labelling its nodes. We
will show how to compose the original procedure “Cycle improvement” with these
two existing procedures. Note that “Cycle improvement” differs from the previous self-
stabilizing implementation of the improvement swapping in [19] by the fact that it does
not require any a priori knowledge of the network, and it is loop-free.

LoopFreeMST starts by constructing a spanning tree of the graph, using the self-
stabilizing loop-free algorithm “Tree construction” described in [21]. The two other
procedures are performed concurrently. A token circulates along the edges of the cur-
rent spanning tree, in a self-stabilizing manner. This token circulation uses algorithms
proposed in [5,24] as follows. A non-tree-edge can belong to at most one fundamen-
tal cycle, but a tree-edge can belong to several fundamental cycles. Therefore, to avoid
simultaneous possibly conflicting improvements, our algorithm considers the cycles in
order. For this purpose, the token labels the nodes of the current tree in a DFS order
(pre-order). This labeling is then used to find the unique path between two nodes in the
spanning tree in a distributed manner, and enables computing the fundamental cycle
resulting from adding one edge to the current spanning tree.

We now sketch the description of the procedure “Cycle improvement” (see Figure 1).
When the token arrives at a node u in a state Done, it checks whether u has some inci-
dent edges not in the current spanning tree T connecting u with some other node v with
smaller label. If it is the case, then enters state Verify. Let e = {u, v}. Node u then
initiates a traversal of the fundamental cycle Ce for finding the edge f with maximum
weight in this cycle. If w(f) = w(e) then no improvement is performed. Else an im-
provement is possible, and u enters State Improve. Exchanging e and f in T results in
a new tree T ′. When the improvement is terminated u enters in State end. The key issue
here is to perform this exchange in a loop-free manner. Indeed, one cannot be sure that

ErrPropag

RI RERV

RV

Done Verify Improve End

RP

RP

RV

Fig. 1. Evolution of the node’s state in cycle improvement module. Rule RD is depicted in plain.
Rule RErr is depicted in bold.

A New Self-stabilizing Minimum Spanning Tree Construction 413

two modifications of the current tree (i.e., removing f from T , and adding e to T) that are
applied at two distant nodes will occur simultaneously. And if they do not occur simulta-
neously, then there will a time interval during which the nodes will not be connected by a
spanning tree. Our solution for preserving loop-freedomless relies on a sequence of suc-
cessive local and atomic changes, involving a single variable. This variable is a pointer to
the current parent of a node in the current spanning tree. To get the flavor of our method,
let us consider the example depicted on Figure 2. In this example, our algorithm has to
exchange the edge e = {10, 12} of weight 9, with the edge f = {7, 8} of weight 10
(Figure 2(a)). Currently, the token is at node 12. The improvement is performed in two
steps, by a sequence of two local changes. First, node 10 switches its parent from 8 to
12 (Figure 2(b)). Next, node 8 switches its parent from 7 to 10 (Figure 2(c)). A spanning
tree is preserved at any time during the execution of these changes.

Note that any modification of the spanning tree makes the current labeling globally
inaccurate, i.e., it is not necessarily a pre-order anymore. However, the labeling remains
a pre-order in the portion of the tree involved in the exchange. For instance, consider
again the example depicted on Figure 2(c). When the token will eventually reach node
A, it will label it by some label ℓ > 12. The exchange of e = {10, 12} and f = {7, 8}
has not changed the pre-order for the fundamental cycle including edge {A, 12}. How-
ever, when the token will eventually reach node B and label it ℓ′ > ℓ, the exchange of
e = {10, 12} and f = {7, 8} has changed the pre-order for the fundamental cycle in-
cluding edge {B, 9}: the parent of node labeled 10 is labeled 12 whereas it should have
a label smaller than 10 in a pre-order. When the pre-order is modified by an exchange,
the inaccurately labeled node changes its state to Err, and stops the traversal of the
fundamental cycle. The token is then informed that it can discard this cycle, and carry
on the traversal of the tree.

3.2 Detailed Level Description

We now enter into the details of Algorithm LoopFreeMST. First, let us state all vari-
ables used by the algorithm. Later on, we will describe its predicates and its rules.

Variables. For any node v ∈ V (G), we denote by N(v) the set of all neighbors of v
in G. Algorithm LoopFreeMST maintains the set N(v) at every node v. We use the
following notations:

– parentv: the parent of v in the current spanning tree;
– labelv: the integer label assigned to v;
– dv: the distance (in hops) from v to the root in the current spanning tree;
– statev: the state of node v, with values in {Done,Verify,Improve,End,
Propag,Err}4;

– DefCyclev: Let Ce the current fundamental cycle with e = {x, y}, DefCyclev =
(x, y) .

– VarCyclev: a pair of variables: the first one is the maximum edge-weight in the cur-
rent fundamental cycle; the second one is a (boolean) variable in {Before, After};5

– sucv: the successor of v in the current fundamental cycle.
4 The state Propag is detailed in Consistency rules.
5 For details see paragraph 3.2 Cycle improvement rules.

Lélia Blin

Lélia Blin

414 L. Blin et al.

5

6

2 3

11

12 BA

7

8

109

10

1 9

3

(a)

2 3

5

6

11

12 BA

7

8

109

10

1 9

3

 (b)

5

6

2 3

BA

11

12

7

10

8

9

10

1 9

3

 (c)

Fig. 2. Example of a loop-free improvement of the current spanning tree. The direction of the
edges indicates the parent relation. Edges in the spanning tree are depicted as plain lines; Edges
not in the spanning tree are denoted by dotted lines.

Consistency rules. The first task executed by LoopFreeMST is to check the consis-
tency of the variables of each node see Figure 1. Done is the standard state of a node
when this node does not have the token, or is not currently visited by the traversal of
a fundamental cycle. When the variables of a node are detected to be not coherent, the
state of the node becomes Err thanks to rule RErr. There is one predicate in RErr for
each state, except for state Propag, to check whether the variables of the node are
consistent (see Figure 3). The rule RD allows the node to return to the standard state
Done. More precisely, rule RD resets the variables, and stops the participation of the
node to any improvement.

RErr: (Bad label)
If CoherentCycle(v) ∧ Error(v) ∧ DefCycle[0]v ̸= labelv ∧ EndPropag(v)
then statev := Err;

RD: (Improvement consistency)
If ¬CoherentCycle(v) ∧ EndPropag(v)
then statev := Done; DefCyclev := (labelv, done); VarCyclev := (0, Before);

sucv := ∅;

Tree construction. LoopFreeMST starts by constructing a spanning tree of the graph,
using the self-stabilizing loop-free algorithm “Tree construction” described in [21].

A New Self-stabilizing Minimum Spanning Tree Construction 415

CoherentCycle(v) ≡ Coherent Done(v)∨Coherent Verify(v)∨Coherent Improve(v)∨
Coherent End(v) ∨ Coherent Error(v)

Coherent Done(v) ≡ statev = Done ∧ sucv = ∅ ∧ DefCycle
v

= (labelv, done)∧
VarCycle

v
= (0, Before)

Coherent Verify(v) ≡ statev = Verify ∧ sucv = Succ(v) ∧ [(Init(v)∧
VarCycle

x
= (0, Before)) ∨ Nds Verify(v)]

Coherent Improve(v) ≡ statev = Improve ∧ sucv = Succ(v)∧
DefCycle

v
= DefCycleparent

v

∧ VarCycle
v

= VarCycleparent
v

Coherent End(v) ≡ statev = End ∧ DefCycle
v

= DefCycleparent
v

∧ (NdDel(v)∨

Ask EI(v))
Coherent Error(v) ≡ statev = Err ∧ (sucv = Succ(v) = ∅ ∨ Ask E(v))∧

DefCycle
v

= DefCyclePred(v)

CoherentTree(v) a ≡ (v = r∧dv = 0∧stv = N)∨(v ̸= r∧dv = dparent
v

+1∧stv = N

∧rwv = dv) ∨ stateparent
v

= Improve∨ stateparent
v

= Propag

Ask V(v) ≡ statePred(v)
= Verify

Ask I(v)≡ (statePred(v)
= Improve ∧ VarCycle[1]Pred(v)

= Before)∨

(statesucv
= Improve ∧ VarCycle[1]sucv

= After)
Ask EI(v) ≡ (∃u ∈ N(v), parent

u
= v ∧ stateu = End ∧ DefCycle

u
= DefCycle

v
)

Ask E(v) ≡ sucv ̸= ∅ ∧ statesucv
= Err ∧ DefCycle

v
= DefCyclesucv

Tree Edge(v, u) ≡ parent
v

= u ∨ parent
u

= v

C Ancestor(v) ≡ parent
v
̸= sucv ∧ parent

v
̸= Pred(v)

Init(v) ≡ DFS F(v) ∧ DefCycle[0]v = labelv
Nds Verify(v) ≡ [(Ask V(v) ∧ VarCycle

v
= (Max C(v), Way C(v))) ∨ Ask I(v)]∧

DefCycle
v

= DefCyclePred(v)

NdDel(v) ≡ stateparent
v

̸= Done ∧ stateparent
v

̸= Propag ∧ ¬Improve(v)

a In [21], variable stv indicates if v propagates a new distance (state P) or not (state N), and
rwv is used to propagate the new distance in the tree.

Fig. 3. Corrections predicates used by the algorithm

This algorithm constructs a BFS, and uses two variables parent and distance. Dur-
ing the execution of our algorithm, these two variables are subject to the same rules as
in [21]. After each modification of the spanning tree, the new distance to the parent is
propagated in sub-trees by Rules RP and R̄P.

RP: (Distance propagation)
If Coherent Done(v) ∧ ¬Ask V(v) ∧ sucv ̸= parent

v
∧ Pred(v) ̸= parent

v
∧

dv ̸= dparent
v

+ 1 ∧ (stateparent
v

= Improve ∨ stateparent
v

= Propag)

then statev := Propag; dv := dparent
v

+ 1;

R̄P: (End distance propagation)
If statev = Propag ∧ EndPropag(v)
then statev := Done; DefCycle

v
:= (labelv, done); VarCycle

v
:= (0, Before);

sucv := ∅;

416 L. Blin et al.

Token circulation and pre-order labeling. LoopFreeMST uses the algorithm described
in [5] to provide each node v with a label labelv . Each label is unique in the net-
work traversed by the token. This labeling is used to find the unique path between two
nodes in the spanning tree, in a distributed manner. For this purpose, we use the snap-
stabilizing algorithm described in [24] for the circulation of a token in the spanning tree
(a snap-stabilizing algorithm stabilizes in 0 steps thus algorithm in [24] allows to al-
ways have a correct token circulation). We have slightly modified this algorithm because
LoopFreeMST stops the token circulation at a node during the “Cycle improvement”
procedure. A node v knows if it has the token by applying predicate Init(v) (Predicate
DFS F(v) is true at node v if the token was forwarded by its parent). Rule RDFS guides
the circulation of the token. The token carries on its tree traversal if one of the following
three conditions is satisfied: (i) there is no improvement which could be initiated by the
node which holds the token, (ii) an improvement was performed in the current cycle, or
(iii) inconsistent node labels were detected in the current cycle. The latter is under the
control of Predicate ContinueDFS(v).

RDFS: (Continue DFS token circulation)
If CoherentCycle(v) ∧ Init(v) ∧ ContinueDFS(v)
then statev := Done; DefCycle[1]v = done;

Cycle improvement rules. The procedure “Cycle improvement” is the core of
LoopFreeMST. Its role is to avoid disconnection of the current spanning tree, while
successively improving the tree until reaching an MST. The procedure can be decom-
posed in four tasks: (1) to check whether the fundamental cycle of the non-tree edge has
an improvement or not, (2) perform the improvement if any, (3) update the distances,
and (4) resume the token circulation.

Let us start by describing the first task. A node u in state Done changes its state to
Verify if its variables are in consistent state, it has a token, and it has identified a can-
didate (i.e., an incident non-tree edge e = {u, v} whose other extremity v has a smaller
label than the one of u). The latter is under the control of Predicate InitVerify(v), and
the variable VarCyclev contains the label of u and v. If the three conditions are sat-
isfied, then the verification of the fundamental cycle Ce is initiated from node u, by
applying rule RV. The goal of this verification is twofold: first, to verify whether Ce

exists or not, and, second, to save information about the maximum edge weight and
the location of the edge of maximum weight in Ce. These information are stored in the
variable Way C(v). In order to respect the orientation in the current spanning tree, the
node u or v that initiates the improvement depends on the localization of the maximum
weight edge f in Ce. More precisely, let r be the least common ancestor of nodes u
and v in the current tree. If f occurs before r in T in the traversal of Ce from u start-
ing by edge (u, v), then the improvement starts from u, otherwise the improvement
starts from v. To get the flavor of our method, let us consider the example depicted on
Figure 2. In this example, f occurs after the least common ancestor (node 6). There-
fore node 10 atomically swaps its parent to respect the orientation. However, if one
replaces in the same example the weight of edge {11, 6} by 11 instead of 3, then f
would occur before r, and thus node 12 would have to atomically swaps its parent.
The relative places of f and r in the cycle is indicated by Predicate Way C(v) that

A New Self-stabilizing Minimum Spanning Tree Construction 417

Pred(v) ≡ arg min{labelu : u ∈ N(v)∧stateu ̸= Done∧stateu ̸= Propag∧sucu = v}
if u exists, ∅ otherwise

MaxLab(v, x) ≡ arg max{labels : s ∈ N(v) ∧ labels < x}

Succ(v) ≡

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

VarCycle[0]v if DefCycle[1]v = labelv
parent

v
if (labelv > DefCycle[1]v ∧ statev = Verify)∨
(labelv < DefCycle[1]v∧
(statev = Improve∨ statev = End))

MaxLab(v, DefCycle[1]v) if (labelv < DefCycle[1]v ∧ statev = Verify)
MaxLab(v, labelv) if (labelv > DefCycle[1]v∧

(statev = Improve∨ statev = End))
Max C(v) ≡ max{VarCycle[0]Pred(v)

, w(v, Pred(v))}

Way C(v) ≡

(

After if VarCycle[0]v ̸= VarCycle[0]Pred(v)
∧ labelv > labelPred(v)

VarCycle[1]Pred(v)
otherwise

LabCand(v)≡ min{labelu : u ∈ N(v) ∧ labelu < labelv ∧ ¬Tree Edge(v, u)∧
labelu ≻ DefCycle[1]v}a if u exists, end otherwise

a ≻ order on neighbor labels for which ’end’ is the biggest element and ’done’ is the smallest
one.

Fig. 4. Predicates used by the algorithm

returns two different values: Before or After. During the improvement of the tree, the
fundamental cycle is modified. It is crucial to save information about this cycle during
this modification. In particular, the successor of a node w in a cycle, stored in the vari-
able sucw, must be preserved. Its value is computed by Predicate Succ(v) which uses
node labels to identify the current examined fundamental cycle. Each node is able to
compute its predecessor in the fundamental cycle by applying Predicate Pred(v). The
state of a node is compared with the ones of its successor and predecessor to detect
potential inconsistent values. At the end of this task, the node u learns the maximum
weight of the cycle Ce and can decide whether it is possible to make an improvement or
not. If not, but there is another non-tree edge e′ that is candidate for potential replace-
ment, then u verifies Ce′ . Otherwise the token carries on its traversal, and rule R̄P is
applied.

RV: (Verify rule)
If CoherentCycle(v) ∧ ¬Error(v) ∧ (InitVerify(v) ∨ [¬Init(v) ∧ (Coherent Done(v) ∨
statev = Propag) ∧ Ask V(v)])
then statev := Verify;

If DFS F(v) then DefCycle[1]v := LabCand(v);
Else DefCycle

v
:= DefCyclePred(v)

; VarCycle
v

:= (Max C(v), Way C(v));

sucv := Succ(v);

If Ce can yield an improvement, then rule RI is executed. By this rule, a node enters
in state Improve, and changes its parent to its predecessor if VarCycle[1]v = Before
(respectively to its successor if VarCycle[1]v = After). For this purpose, it uses the
variable sucv and the predicate Pred(v) .

418 L. Blin et al.

RI: (Improve rule)
If CoherentCycle(v) ∧ ¬Error(v) ∧ Coherent Verify(v) ∧ Improve(v)∧

¬C Ancestor(v) ∧ [(DFS F(v) ∧ Ask V(v)) ∨ Ask I(v)]
then statev := Improve;
If DFS F(v)∨ statePred(v)

= Improve then VarCyclev := VarCyclePred(v)

If (DFS F(v)∧VarCycle[1]v = Before)∨¬DFS F(v) then parentv := Pred(v);
If statesucv

= Improve then VarCyclev := VarCyclesucv

; parentv := sucv;
If w(v, sucv) ≥ VarCycle[0]v then sucv = Succ(v)
dv := dparent

v

+ 1;

At the end of an improvement, it is necessary to inform the node holding the token that
it has to carry on its traversal. This is the role of rule RE. It is also necessary to inform
all nodes impacted by the modification that they have to update their distances to the
root (see Section 3.2).

RE: (End of improvement rule)
If CoherentCycle(v) ∧ ¬Error(v) ∧ End Improve(v) ∧ EndPropag(v)
then statev := End;

Module composition. All the different modules presented, except the tree construction
parts of the correction module, need the presence of a spanning tree in G. Thus, we
must execute the tree construction rules first if an incoherency in the spanning tree is
detected. To this end, these rules are composed using the level composition defined
in [16], i.e., if Predicate CoherentTree(v) (see Fig. 3) is not verified then the tree
construction rules are executed, otherwise the other modules can be executed. The to-
ken circulation algorithm and the naming algorithm are composed together using the
conditional composition described in [5], i.e., the naming algorithm is executed when
a logical expression (based on guards of token circulation algorithm) is true. Finally,
we compose the token circulation algorithm and the cycle improvement module with a
conditional composition using Predicate ContinueDFS(v) (see Fig. 5). This allows to
execute the token circulation algorithm only if the cycle improvement module does not
need the token on a node. Figure 6 shows how the modules are composed together.

Candidate(v) ≡ LabCand(v) ̸= end
InitVerify(v) ≡ Init(v) ∧ Candidate(v) ∧ (Coherent Done(v) ∨ [Coherent Verify(v)∧

¬Improve(v) ∧ ¬C Ancestor(v) ∧ Ask V(v)])
ImproveF(v, x) ≡ ¬Tree Edge(v, x)) ∧ max(VarCycle[0]v , VarCycle[0]x) > w(v, x)
Improve(v) ≡ ImproveF(v, Pred(v)) ∨ ImproveF(v, sucv)
End Improve(v) ≡ Coherent Improve(v) ∧ (NdDel(v) ∨ Ask EI(v))
ContinueDFS(v) ≡ (Init(v) ∧ [([Coherent Done(v) ∨ (Coherent Verify(v)∧

¬ImproveF(v, Pred(v)) ∧ Ask V(v))] ∧ ¬Candidate(v))∨
Coherent End(v) ∨ Error(v)]) ∨ ¬DFS F(v)

Error(v) ≡ statev ̸= Done ∧ statev ̸= Err ∧ (sucv = Succ(v) = ∅ ∨ Ask E(v))
EndPropag(v) ≡ (∀u ∈ N(v), parent

u
= v ∧ stateu = Done ∧ du = dv + 1)

Fig. 5. Predicates used by the algorithm

A New Self-stabilizing Minimum Spanning Tree Construction 419

Labeling

Tree construction

Token circulation

Cycle improvement
Level composition

Conditional composition

Fig. 6. Composition of the presented modules

3.3 Complexity

Definition 4 (Red Rule). If C is a cycle in G = (V, E) with no red edges then color in
red the maximum edge weight in C.

Theorem 1 (Tarjan et al. [26]). Let G be a connected graph. If it is not possible to
apply Red Rule then the set of not colored edges forms a minimum spanning tree of G.

Lemma 1. Starting from a configuration where an arbitrary spanning tree is con-
structed, in at most O(mn) rounds the cycle improvement module produces a minimum
spanning tree of G, with respectively m and n the number of edges and nodes of the
network G.

Proof. In a given network G = (V, E), if a spanning tree of G is constructed then there
are exactly m − (n − 1) fundamental cycles in G since there are n − 1 edges in any
spanning tree of G. Thus, a tree edge can be contained in at most m−n+1 fundamental
cycles. Consider a configuration where a spanning tree T of G is constructed and a tree
edge e0 is contained in m − n + 1 fundamental cycles and all tree edges have a weight
equal to 1, except e0 of weight w(e0) > 1. Suppose that T is not a minimum spanning
tree of G such that ∀ei ∈ E, i = 1, . . . , m − n + 1, w(ei−1) > w(ei) with e0 ∈ T and
∀i = 1, . . . , m − n + 1, ei ̸∈ T and w(ei) > 1 (see the graph of Figure 7(a)). Consider
the following sequence of improvements: ∀i, i = 1, . . . , m − n + 1, exchange the tree
edge ei−1 by the not tree edge ei (see a sequence of improvements in Figure 7). In this
sequence, we have exactly m−n+1 improvements and this is the maximum number of
improvements to obtain a minimum spanning tree since there are m−n+1 fundamental

(b) (c) (d)(a)

e0 e0e0e0e1 e1e1e1e2 e2e2e2e3 e3e3e3

Fig. 7. (a) a spanning tree with plain lines in a graph with m − n + 1 improvements, (b) the
spanning tree obtained after the first improvement, (c) the spanning tree obtained after the second
improvement, (d) the minimum spanning tree of the graph obtained after the third improvement

420 L. Blin et al.

cycles and for each one we apply the Red rule (see Definition 4 and Theorem 1). An
improvement can be initiated in the cycle improvement module by a node with the
DFS token. The DFS token performs a tree traversal in O(n) rounds. Moreover, each
improvement needs to cross a cycle a constant number of times and each cross requires
O(n) rounds. Since at most m− n + 1 improvements are needed to obtain a minimum
spanning tree, at most O(mn) rounds are needed to construct a minimum spanning
tree.

Lemma 2. Starting from a legitimate configuration, after a weight edge modification
the system reaches a legitimate configuration in at most O(mn) rounds.

Proof. After a weight edge change the system is no more in a legitimate configura-
tion in the following cases: (1) the weight of a not tree edge is less than the weight
of the heaviest tree edge in its fundamental cycle, or (2) the weight of a tree edge is
greater than the weight of a not tree edge in one of the fundamental cycles including
the tree edges. In each case above, the algorithm must verify if improvements must be
performed to reach again a legitimate configuration, otherwise the system is still in a
legitimate configuration. Thus, in case (1) it is only sufficient to verify if an improve-
ment must be performed in the fundamental cycle associated to the not tree edge (i.e.
to apply the Red rule a single time). To this end, its fundamental cycle must be crossed
at most three times: the first time to verify if an improvement is possible, a second time
to perform the improvement and a last time to end the improvement, each one needs at
most O(n) rounds. Case (2) is more complicated, indeed the weight of a tree edge can
change which leads to a configuration where at most m− n + 1 improvements must be
performed to reach a legitimate configuration, since a tree edge can be contained in at
most m− n + 1 fundamental cycles as described in proof of Lemma 1. Since each im-
provement phase needs O(n) rounds (see case (1)) at most O(mn) rounds are needed
to reach a legitimate configuration. The complexity of case (2) dominates the complex-
ity of the first case. Therefore, after a weight edge change at most O(mn) rounds are
needed to reach a legitimate configuration.

Note that the presented algorithm uses only a constant number of variables of size
O(log n). Therefore, O(log n) bits of memory are needed at each node to execute the
algorithm. Moreover, due to space constraints correctness proof are given in [27].

4 Concluding Remarks

We presented a new solution to the distributed MST construction that is both self-
stabilizing and loop-free. It improves on memory usage from O(n log n) to O(log n),
yet doesn’t make strong system assumptions such as knowledge of network size or unic-
ity of edge weights, making it particularly suited to dynamic networks. Two important
open questions are raised:

1. For depth first search tree construction, self-stabilizing solutions that use only con-
stant memory space do exist. It is unclear how the obvious constant space lower
bound can be raised with respect to metrics that minimize a global criterium (such
as MST).

A New Self-stabilizing Minimum Spanning Tree Construction 421

2. Our protocol pionneers the design of self-stabilizing loop-free protocols for non
locally optimizable tree metrics. We expect the techniques used in this paper to be
useful to add loop-free property for other metrics that are only globally optimizable,
yet designing a generic such approach is a difficult task.

References

1. Katz, S., Perry, K.J.: Self-stabilizing extensions for message-passing systems. Distributed
Computing 7, 17–26 (1993)

2. Anagnostou, E., Hadzilacos, V.: Tolerating transient and permanent failures (extended
abstract). In: Schiper, A. (ed.) WDAG 1993. LNCS, vol. 725, pp. 174–188. Springer,
Heidelberg (1993)

3. Ben-Or, M., Dolev, D., Hoch, E.N.: Fast self-stabilizing byzantine tolerant digital clock syn-
chronization. In: Bazzi, R.A., Patt-Shamir, B. (eds.) PODC, pp. 385–394. ACM Press, New
York (2008)

4. Cobb, J.A., Gouda, M.G.: Stabilization of general loop-free routing. J. Parallel Distrib. Com-
put. 62(5), 922–944 (2002)

5. Datta, A.K., Gurumurthy, S., Petit, F., Villain, V.: Self-stabilizing network orientation algo-
rithms in arbitrary rooted networks. Stud. Inform. Univ. 1(1), 1–22 (2001)

6. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974)

7. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
8. Dolev, S.: Self-Stabilization. MIT Press, Cambridge (2000)
9. Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems. Chicago

J. Theor. Comput. Sci. (1997)
10. Dolev, S., Welch, J.L.: Wait-free clock synchronization. Algorithmica 18(4), 486–511 (1997)
11. Dolev, S., Welch, J.L.: Self-stabilizing clock synchronization in the presence of byzantine

faults. J. ACM 51(5), 780–799 (2004)
12. Gafni, E.M., Bertsekas, P.: Distributed algorithms for generating loop-free routes in networks

with frequently changing topology. IEEE Transactions on Communications 29, 11–18 (1981)
13. Gallager, R.G., Humblet, P.A., Spira, P.M.: A distributed algorithm for minimum-weight

spanning trees. ACM Trans. Program. Lang. Syst. 5(1), 66–77 (1983)
14. Garcia-Luna-Aceves, J.J.: Loop-free routing using diffusing computations. IEEE/ACM

Trans. Netw. 1(1), 130–141 (1993)
15. Gopal, A.S., Perry, K.J.: Unifying self-stabilization and fault-tolerance (preliminary version).

In: PODC, pp. 195–206 (1993)
16. Gouda, M.G., Herman, T.: Adaptive programming. IEEE Trans. Software Eng. 17(9), 911–

921 (1991)
17. Gouda, M.G., Schneider, M.: Stabilization of maximal metric trees. In: Arora, A. (ed.) WSS,

pp. 10–17. IEEE Computer Society Press, Los Alamitos (1999)
18. Gupta, S.K.S., Srimani, P.K.: Self-stabilizing multicast protocols for ad hoc networks. J.

Parallel Distrib. Comput. 63(1), 87–96 (2003)
19. Higham, L., Liang, Z.: Self-stabilizing minimum spanning tree construction on message-

passing networks. In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, pp. 194–208. Springer,
Heidelberg (2001)

20. Johnen, C., Tixeuil, S.: Route Preserving Stabilization. In: Huang, S.-T., Herman, T. (eds.)
SSS 2003. LNCS, vol. 2704, pp. 184–198. Springer, Heidelberg (2003)

21. Johnen, C., Tixeuil, S.: Route preserving stabilization. In: Self-Stabilizing Systems, pp. 184–
198 (2003)

422 L. Blin et al.

22. Kruskal, J.B.: On the shortest spanning subtree of a graph and the travelling salesman prob-
lem. Proc. Amer. Math. Soc. 7, 48–50 (1956)

23. Papatriantafilou, M., Tsigas, P.: On self-stabilizing wait-free clock synchronization. Parallel
Processing Letters 7(3), 321–328 (1997)

24. Petit, F., Villain, V.: Optimal snap-stabilizing depth-first token circulation in tree networks.
J. Parallel Distrib. Comput. 67(1), 1–12 (2007)

25. Prim, R.C.: Shortest connection networks and some generalizations. Bell System Tech. J.,
1389–1401 (1957)

26. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3),
362–391 (1983)

27. Blin, L., Potop-Butucaru, M.G., Rovedakis, S., Tixeuil, S.: A new self-stabilizing minimum
spanning tree construction with loop-free property. Research Report, inria-00384041, INRIA
(2009)

	A New Self-stabilizing Minimum Spanning Tree Construction with Loop-Free Property
	Introduction
	Model and Notations
	The Algorithm {\sf LoopFreeMST}
	High Level Description
	Detailed Level Description
	Complexity

	Concluding Remarks

