Playing With Population Protocols

Olivier Bournez ${ }^{1}$ Jérémie Chalopin ${ }^{2,5}$ Johanne Cohen ${ }^{3,5}$ Xavier Koegler ${ }^{4}$
${ }^{1}$ Ecole Polytechnique, France
${ }^{2}$ University of Marseille, France
${ }^{3}$ University of Versailles, France
${ }^{4}$ Paris VII University, France
${ }^{5}$ Centre National de la Recherche Scientifique

Réunion SHAMAN.

Tuesday January 27th 2009.

Plan

Population Protocols

Variants

Population Protocols and Games

Population protocols

■ Introduced by [Angluin,Aspnes,Diamadi,Fischer,Peralta 2004] in the context of distributed systems.

- A model of sensor networks, with absolutely minimal assumptions about
- sophistication of mobile units :
- finite state machines.
- infrastructure : none
- no topology,
- not even unique ids.
- synchrony :
- totally asynchronous.
- communications :
- communications are occasionally possible between pairs of agents.

Example 1 : starting with 3 blues, 2red

Example 1 : Final result

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3 red

Example 2 : starting with 2 blues, 3red

Example 2 : starting with 2 blues, 3red

Example 2 : Final result

What is computed?

Let's interpret

- - and by yes.
- - and by no.

■ Whatever the initial state is, ultimately, all agents will agree.

■ They agree on yes iff the initial population of \bullet is strictly greater than the initial population of \bullet.

Alternative statement

- A configuration can be seen as an element of \mathbb{N}^{4}.
- $\left(n_{b}, n_{r}, n_{g}, n_{b}\right)$ if there is $n_{b} \bullet, n_{r} \bullet, n_{g}$ and n_{b}
- $n_{b}+n_{r}+n_{g}+n_{b l}$ is preserved.
- An initial configuration is of type $\left(n_{b}, n_{r}, 0,0\right)$.
- This protocol computes predicates $n_{r}>n_{b}$, i.e. MAJORITY

General Case: Algorithm

An algorithm consists of

- a finite set of states $Q=\left\{q_{1}, q_{2}, \cdots, q_{k}\right\}$.

■ transition rules, mapping pairs of states to pairs of states

Executions are given by :

- instantaneous configuration : a multiset of states $=$ an element of \mathbb{N}^{k}.
- transitions between configuration : two agents are picked, and updated according to the rules of the algorithm.
- output interpretation : mapping states to $\{0,1\}$.
- a computation is over when all agents agree on 0 or 1 .

Remark : Algorithm are assumed independent of size of population!

Simplest example : Computing OR of input bits

States: •,॰

One transition rule

Output of an agent is its state.

If all inputs are •, all agents will remain in state \bullet If some agent is \bullet, eventually all will have state \bullet

A remark: Fairness

- One need to guarantee that all possible interactions happen eventually
- an execution is fair if for all configurations C that appear infinitely often in the execution, if $C \rightarrow C^{\prime}$ for some configuration C^{\prime}, then C^{\prime} appears infinitely often in the execution.
- can be seen as capturing the idea of probabilistic adversary : there is some (unknown) underlying probability distribution on interactions such that events are independent.
- True notion of computation : For any input I, for any fair sequence of executions starting from I agents ultimately agree on 0 or 1 .

Leader Election

Initially, all agents in same state \bullet

Eventually, exactly one agent is in a special leader state •

Threshold Predicate

- Suppose each agent starts with input • or •
- Determine whether at least five agents have input \bullet.

5\%

- Each agent is initially \bullet or \bullet
- Determine whether at least 5% of the inputs are \bullet

5%

- Each agent is initially \bullet or
- Determine whether at least 5% of the inputs are \bullet
- Similar to majority, except each • can cancel 19 •'s.

40\%

- Each agent is initially \bullet or \bullet
- Determine whether at least 5% of the inputs are -

40\%

- Each agent is initially \bullet or \bullet

■ Determine whether at least 5% of the inputs are •

- A bit trickier (exercice).

How to Compute $\sum_{i=1}^{k} c_{i} x_{i} \geq a$

Input convention : each agent with ith input symbol starts in state c_{i}.
Each agent has a leader bit governed by $\bullet \bullet \bullet \bullet$.
Let $m=\max \left(|a|+1,\left|c_{1}\right|, \ldots,\left|c_{k}\right|\right)$.
Each agent also stores a value from $-m,-m+1, \ldots, m-1, m$.
If a leader meets a non-leader, their values change as follows :

$$
\begin{array}{ll}
x, y \rightarrow x+y, 0 & \text { if } 0 \leq x+y \leq m \\
x, y \rightarrow m, x+y-m & \text { if } x+y>m \\
x, y \rightarrow-m, x+y+m & \text { if } x+y<-m
\end{array}
$$

(In each case first agent on right hand side is the leader.)
Each agent also remembers output of last leader it met.
(c) Eric Ruppert

Correctness

Sum of agents' values is invariant.

Sum is eventually gathered into the unique leader (up to maximum absolute value of m) :

If sum $>m$, leader has value $m \Rightarrow$ Output Yes.
If sum $<-m$, leader has value $-\mathrm{m} \Rightarrow$ Output No.
If $-m \leq$ sum $\leq m$, leader's value is the actual sum \Rightarrow Output depends on sum.

In each case, leader knows output and tells everyone else.
(c) Eric Ruppert

Computable Predicates

Theorem (Angluin et al. 2006)
A predicate is computable iff it is on the following list.

- $\sum_{i=1}^{k} c_{i} x_{i} \geq a$, where a, c_{i} 's are integer constants
- $\sum_{i=1}^{k} c_{i} x_{i} \equiv a(\bmod b)$ where a, b and c_{i} 's are constants
- Boolean combinations of the above predicates

Alternate Characterization : Presburger Arithmetic

A predicate is computable iff it can be expressed in first-order logic using the symbols $+, 0,1, \vee, \wedge, \neg, \forall, \exists,=,<,($,$) and variables.$
(This system is known as Presburger Arithmetic [1929].)

Note : no multiplication.

```
Examples:
majority: x0 < x1
divisible by 3: \existsy:y+y+y=\mp@subsup{x}{1}{}
at least 40% :x0 + x0<x1+x1+x1
```

(c)Eric Ruppert

Alternate Characterization : Semilinear Sets

A predicate is computable iff it the set of inputs with output yes is semilinear.

A set of vectors $\vec{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{N}^{k}$ is linear if it is of the form $\left\{\overrightarrow{v_{0}}+c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+c_{m} \overrightarrow{v_{m}}: c_{1}, \ldots, c_{m} \in \mathbb{N}\right\}$

A set of vectors is semilinear if it is a finite union of linear sets.
(C)Eric Ruppert

Variants of the model

The basic classical model is now already understood pretty well.

Variants considered in literature :

- Limited interaction graph
- One-way communication
- Failures

Dana Angluin, James Aspnes, Melody Chan, Carole Delporte-Gallet, Zoë Diamadi, David Eisenstat, Michael J. Fischer, Hugues Fauconnier, Rachid Guerraoui, Hong Jiang, René Peralta, Eric Ruppert

Population Protocols

Variants

Population Protocols and Games

One-way communication

- Classical model assumes an interaction can update the state of both agents simultaneously.
- One-way interactions :
- Information can flow from sender to receiver, but not vice-versa.

Variants

- Is sender aware that it has sent a message?
- Does the information flow instantaneously?
- Immediate transmission : message delivered instantly
- Immediate observation : receiver sees sender's current state
- Delayed transmission : unpredictable delay in delivery
- Delayed observation : receiver sees an old state of sender
- Can incoming message be queued?

Overview

Exact characerizations exist :

- Delayed observation : can count up to 2.

■ Immediate observation : can count up to any constant.

- Immediate and delayed transmission : characterization exists
- strictly stronger than observation (can compute mods)
- strictly weaker than two-way (cannot compute majority)
- Queued transmission is equivalent to two-way interactions.
(C)Eric Ruppert

Plan

Population Protocols

Variants

Population Protocols and Games

Our question

- Can one say that all protocols are games?

■ What is the power of protocols that correspond to games?

Basic of Game theory

- Two players games : I and II, with a finite set of pure strategies, $\operatorname{Strat}(I)$ and $\operatorname{Strat}(I I)$.
- Denote by $A_{i, j}$ (respectively: $B_{i, j}$) the score for player I (resp. II) when I uses strategy $i \in \operatorname{Strat}(I)$ and II uses strategy $j \in \operatorname{Strat}(I I)$.
- The game is termed symmetric if A is the transpose of B.
- Famous prisonner's dilemma :

Opponent

Player

with $T>R>P>S$ and $2 R>T+S$, where $\operatorname{Strat}(I)=\operatorname{Strat}(I I)=\{\bullet, \bullet\}$.

Best response

- A strategy $x \in \operatorname{Strat}(I)$ is said to be a best response to strategy $y \in \operatorname{Strat}(I I)$, denoted by $x \in B R(y)$ if

$$
\begin{equation*}
A_{z, y} \leq A_{x, y} \tag{1}
\end{equation*}
$$

for all strategies $z \in \operatorname{Strat}(I)$.

- In the prisonner's dilemma,

$$
B R(\bullet)=B R(\bullet)=\bullet,
$$

hend \bullet is the best rational choice, but \bullet would be the better social choice.

- We write $\mathbf{x} \in B R_{\neq \mathbf{x}^{\prime}}(\mathbf{y})$ for

$$
\begin{equation*}
A_{z, y} \leq A_{x, y} \tag{2}
\end{equation*}
$$

for all strategy $\mathbf{z} \in \operatorname{Strat}(I), \mathbf{z} \neq \mathbf{x}^{\prime}$.

Turing a Game into a Dynamic : Pavlovian's behavior

Assume a symmetric two-player game is given. Let Δ be some threshold.

- The protocol associated to the game is a population protocol whose set of states is $Q=\operatorname{Strat}(I)=\operatorname{Strat}(I I)$ and whose transition rules δ are given as follows:

$$
q_{1}, q_{2} \rightarrow q_{1}^{\prime}, q_{2}^{\prime}
$$

where

- $q_{1}^{\prime}=q_{1}$ when $A_{q_{1}, q_{2}} \geq \Delta$
- $q_{1}^{\prime} \in B R_{\neq q_{1}}\left(q_{2}\right)$ when $A_{q_{1}, q_{2}}<\Delta$
and symmetrically.
- A population protocol is Pavlovian if it can be obtained from a game as above.

Example: The Prisonner's Dilemma

$T>R>\Delta>P>S$

- Several studies of this dynamic over various graphs: see e.g. [Dyer et al. 02], [Fribourg et al. 04].
- Somehow, our question is: can any dynamic be termed "a game", or "pavlovian".

First observation : Pavlovian $=>$ Symmetric

- We say that a population protocol is symmetric if, whenever $q_{1}, q_{2} \rightarrow q_{1}^{\prime}, q_{2}^{\prime}$ in the program, one has also $q_{2}, q_{1} \rightarrow q_{2}^{\prime}, q_{1}^{\prime}$.
- Pavlovian implies symmetric.

Theorem
Any symmetric deterministic 2-states population protocol is Pavlovian.

Symmetric \neq Pavlovian

- Write any rule of the protocol

$$
q_{1} q_{2} \rightarrow \delta_{1}\left(q_{1}, q_{2}\right) \delta_{1}\left(q_{2}, q_{1}\right)
$$

- Consider a 3-states population protocol with set of states $Q=\{\bullet, \bullet, \bullet\}$ and a joint transition function δ such that $\delta_{1}(\bullet, \bullet)=\bullet, \delta_{1}(\bullet, \bullet)=\bullet, \delta_{1}(\bullet, \bullet)=\bullet$.
- One can not find a matrix of a game that would lead to this dynamic.
- Corollary : Not all protocols are Pavlovian.

Basic Pavlovian Protocols

- OR is computed by 2-state protocol :

- AND is computed by 2-state protocol :

■ Remark: XOR is not computed by 2-state protocol :

Electing a Leader

- Classical solution : $\bullet \rightarrow \bullet$ is not symmetric.
- Proposition: The following Pavlovian protocol solves the leader election problem, as soon as the population is of size ≥ 3.

- Indeed, ultimately there will be exactly one leader, that is one agent in state - or

- Taking $\Delta=4$, this corresponds to matrix

Majority

- The majority problem (given some population of \bullet and \bullet, determine whether there are more \bullet than \bullet) can be solved by a Pavlovian population protocol.
- Proof :

This corresponds to the following matrix.

Dicussions and conclusions

- We are still far from understanding the power of Pavlovian population protocols.
- Simple protocols become rather complicated (and hard to explain).
- We don't even know how to compute mod 2.

■ We don't even know how to compute $\geq k$, for a fixed k.

- Nor have a proof that this is not possible.

Some Side Effects of this Study

■ Conclusion 1 : Not all distributed algorithms are games!!!

- A contribution? :

Proposition

Any population protocol can be simulated by a symmetric population protocol, as soon as the population is of size ≥ 3.

Corollary
A predicate is computable by a symmetric population protocol if and only if it is semilinear.

