Local Terminations and Distributed Computability in Anonymous Networks

Jérémie Chalopin Emmanuel Godard Yves Métivier

LIF, CNRS & Aix-Marseille Université

LaBRI, Université de Bordeaux

Session SHAMAN

Question

What can be **computed** by an arbitrary network, with **partial knowledge** about its topology?

Question

What can be computed by an arbitrary network, with partial knowledge about its topology?

For distributed networks, computability is known to be restricted by

▶ Is it a ring, a tree? ...

Question

What can be computed by an arbitrary network, with partial knowledge about its topology?

- Is it a ring, a tree? ...
- Are there loss of messages, or no? ...

Question

What can be computed by an arbitrary network, with partial knowledge about its topology?

- Is it a ring, a tree? ...
- Are there loss of messages, or no? ...
- Do nodes have unique identitier? ...

Question

What can be computed by an arbitrary network, with partial knowledge about its topology?

- Is it a ring, a tree? ...
- Are there loss of messages, or no? ...
- Do nodes have unique identitier? ...
- Is the size of the network known? ...

Question

What can be computed by an arbitrary network, with partial knowledge about its topology?

- Is it a ring, a tree? ...
- Are there loss of messages, or no? ...
- Do nodes have unique identitier? ...
- Is the size of the network known? ...

Question

What can be computed by an arbitrary network, with partial knowledge about its topology?

For distributed networks, computability is known to be restricted by

- Is it a ring, a tree? ...
- Are there loss of messages, or no? ...
- Do nodes have unique identitier? ...
- Is the size of the network known? ...

So the question is

Given a *specification* S, a family of networks \mathcal{F} , is there a distributed algorithm \mathcal{A} such that, any execution of \mathcal{A} on any network in \mathcal{F} ends with final state (labels) satisfying S.

Is the task (\mathcal{F}, S) computable by a distributed algorithm on \mathcal{F} ?

• \mathcal{F} is a family of graphs; it represents

- \mathcal{F} is a family of graphs; it represents
 - topology: trees, rings, meshes,

- ► *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:

- ► *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:
 - **structural information:** identities, sense of direction, ...

- *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:
 - structural information: identities, sense of direction, ...
 - structural knowledge: the size, bound on the diameter, the topology ...

- *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:
 - structural information: identities, sense of direction, ...
 - structural knowledge: the size, bound on the diameter, the topology ...
- the specification S is a graph relabelling relation

...

- *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:
 - structural information: identities, sense of direction, ...
 - structural knowledge: the size, bound on the diameter, the topology ...
- ► the specification S is a graph relabelling relation
 - ► (G, input) S (G, output): spanning tree, leader election,

Is the task (\mathcal{F}, S) computable by a distributed algorithm on \mathcal{F} ?

- *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:
 - structural information: identities, sense of direction, ...
 - structural knowledge: the size, bound on the diameter, the topology ...
- the specification S is a graph relabelling relation
 - ► (G, input) S (G, output): spanning tree, leader election,
- Is that enough to define the problem?

...

- *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:
 - structural information: identities, sense of direction, ...
 - structural knowledge: the size, bound on the diameter, the topology ...
- ► the specification S is a graph relabelling relation
 - ► (G, input) S (G, output): spanning tree, leader election, ...
- Is that enough to define the problem?
 - Different kinds of computability, depending on the kind of termination we are interested in.

- *F* is a family of labeled graphs; it represents
 - topology: trees, rings, meshes,
 - any information is encoded in the initial labeling:
 - structural information: identities, sense of direction, ...
 - structural knowledge: the size, bound on the diameter, the topology ...
- the specification S is a graph relabelling relation
 - ► (G, input) S (G, output): spanning tree, leader election, ...
- Is that enough to define the problem?
 - Different kinds of computability, depending on the kind of termination we are interested in.
 - Reliability?

A network is *anonymous* when the initial (node) labeling is uniform.

A network is *anonymous* when the initial (node) labeling is uniform.

Motivations:

Distributed computability in a general setting,

A network is *anonymous* when the initial (node) labeling is uniform.

- Distributed computability in a general setting,
- Transient Faults: components failure, attacks, ...

A network is *anonymous* when the initial (node) labeling is uniform.

- Distributed computability in a general setting,
- Transient Faults: components failure, attacks, ...
- Potentially Anonymous: arbitrary initial labeling : unique identities, or "partially unique" (pseudonymous) ...

A network is *anonymous* when the initial (node) labeling is uniform.

- Distributed computability in a general setting,
- Transient Faults: components failure, attacks, ...
- Potentially Anonymous: arbitrary initial labeling : unique identities, or "partially unique" (pseudonymous) ...
- Communication is reliable

A network is *anonymous* when the initial (node) labeling is uniform.

- Distributed computability in a general setting,
- Transient Faults: components failure, attacks, ...
- Potentially Anonymous: arbitrary initial labeling : unique identities, or "partially unique" (pseudonymous) ...
- Communication is reliable

A network is *anonymous* when the initial (node) labeling is uniform.

Motivations:

- Distributed computability in a general setting,
- Transient Faults: components failure, attacks, ...
- Potentially Anonymous: arbitrary initial labeling : unique identities, or "partially unique" (pseudonymous) ...
- Communication is reliable

Computability in resource-constrained autonomous large scale systems

- Evolution of the network,
- Impossibility results: properties of the network that have to be "centrally" maintained.
- Possibility results: with efficient algorithms?

Motivations for Local Termination

Different kinds of termination exist for distributed algorithms.

- Implicit termination: processes do not know that the computation is over.
 - [Boldi and Vigna '02] Characterization of tasks computable with implicit termination,
 - based on fibrations and coverings,
 - equivalence with self-stabilizing (terminating) tasks.

Motivations for Local Termination

Different kinds of termination exist for distributed algorithms.

- Implicit termination: processes do not know that the computation is over.
 - [Boldi and Vigna '02] Characterization of tasks computable with implicit termination,
 - based on fibrations and coverings,
 - equivalence with self-stabilizing (terminating) tasks.
- Local termination: at some point, each process knows that it has computed its final value.

Different kinds of termination exist for distributed algorithms.

- Implicit termination: processes do not know that the computation is over.
 - [Boldi and Vigna '02] Characterization of tasks computable with implicit termination,
 - based on fibrations and coverings,
 - equivalence with self-stabilizing (terminating) tasks.
- Local termination: at some point, each process knows that it has computed its final value.
- Global termination detection: processes know that all processes have computed their final value.
 - [C., Godard, Métivier, Tel '07] Characterization of tasks computable with global termination detection
 - based on coverings and quasi-coverings

Local Terminations

Local Termination:

- a process knows when it can stop executing the algorithm.
- [Boldi and Vigna '99] Characterization of tasks computable with local termination
- based on view construction

Local Terminations

Local Termination:

- a process knows when it can stop executing the algorithm.
- [Boldi and Vigna '99] Characterization of tasks computable with local termination
- based on view construction
- Weak Local Termination:
 - a process knows when it has computed its final value, but can still run the algorithm (processing and forwarding other nodes messages).

Two distributed algorithms are **composed** whenever the second uses as inputs the outputs of the first algorithm.

- weak local termination: composition of distributed algorithms,
- Iocal termination: garbage collection.

Two distributed algorithms are **composed** whenever the second uses as inputs the outputs of the first algorithm.

- weak local termination: composition of distributed algorithms,
- Iocal termination: garbage collection.

A General Framework

Termination appears a key parameter to unify distributed computability results in communication networks.

Older Related Works

- Angluin ('80)
- Yamashita & Kameda ('95)
- Boldi & Vigna ('99,'01)
- Mazurkiewicz ('97)
- Metivier et al (90's)

▶ ...

Model: Reliable Message Passing Systems with Transient Faults

A network is represented as a graph *G* with a port-numbering δ where each process can

- modify its state,
- send a message via port p,
- receive a message via port q.

Model: Reliable Message Passing Systems with Transient Faults

A network is represented as a graph *G* with a port-numbering δ where each process can

- modify its state,
- send a message via port p,
- receive a message via port q.

We consider

- reliable communications,
- anonymous systems.
- asynchronous systems.

Model: Reliable Message Passing Systems with Transient Faults

A network is represented as a graph *G* with a port-numbering δ where each process can

- modify its state,
- send a message via port p,
- receive a message via port q.

We consider

- reliable communications,
- (potentially) anonymous systems.
- asynchronous systems.

- ▶ $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N} \cup \{\infty\},\$
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.

- ▶ $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N} \cup \{\infty\},\$
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) = ∞: implicit termination is OK but weak local termination is impossible

Problem

- ▶ $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N} \cup \{\infty\},\$
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) = ∞: implicit termination is OK but weak local termination is impossible

- ▶ $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N} \cup \{\infty\},\$
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) = ∞: implicit termination is OK but weak local termination is impossible

- ▶ $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N} \cup \{\infty\},\$
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) = ∞: implicit termination is OK but weak local termination is impossible

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) ∈ N: weak local termination is OK but local termination is impossible

Problem

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) ∈ N: weak local termination is OK but local termination is impossible

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) ∈ N: weak local termination is OK but local termination is impossible

Problem

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) ∈ N: weak local termination is OK but local termination is impossible

J. Chalopin, E. Godard, Y. Métivier Local Terminations in Anonymous Networks

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If dist(v) ∈ N: weak local termination is OK but local termination is impossible

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- ► If for neighbors u, v, |dist(u) dist(v)| ≤ 1: local termination is OK but global termination is impossible

Problem

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- ► If for neighbors u, v, |dist(u) dist(v)| ≤ 1: local termination is OK but global termination is impossible

(2,end)

after r rounds

Problem

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If for neighbors u, v, |dist(u) − dist(v)| ≤ 1: local termination is OK but global termination is impossible

Problem

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If for neighbors u, v, |dist(u) − dist(v)| ≤ 1: local termination is OK but global termination is impossible

Problem

- $v \in V$ is labeled by $(val(v), dist(v)) \in \mathbb{N} \times \mathbb{N}$,
- v ∈ V should compute max{val(u) | u is at distance at most dist(v) of v}.
- If for neighbors u, v, |dist(u) − dist(v)| ≤ 1: local termination is OK but global termination is impossible

Our Contribution

- A characterization of tasks computable with weak local termination
 - based on coverings and quasi-coverings

Our Contribution

- A characterization of tasks computable with weak local termination
 - based on coverings and quasi-coverings
- A characterization of tasks computable with weak local termination by polynomial algorithms
 - algorithms exchanging a polynomial number of bits

- A characterization of tasks computable with weak local termination
 - based on coverings and quasi-coverings
- A characterization of tasks computable with weak local termination by polynomial algorithms
 - algorithms exchanging a polynomial number of bits
- A new characterization of tasks computable with local termination.
 - based on coverings and quasi-coverings

- A characterization of tasks computable with weak local termination
 - based on coverings and quasi-coverings
- A characterization of tasks computable with weak local termination by polynomial algorithms
 - algorithms exchanging a polynomial number of bits
- A characterization of tasks computable with local termination by polynomial algorithms.
 - based on coverings and quasi-coverings

We represent the network by a labeled digraph (G, δ , λ) where the state of each process is encoded by its label.

Coverings

Definition

D is a covering of *D'* via φ if φ is a locally bijective homomorphism.

Coverings

Definition

D is a covering of *D'* via φ if φ is a locally bijective homomorphism.

Lifting Lemma

If **D** is a covering of **D**' via φ , in the synchronous execution of any algorithm \mathcal{A} , v and $\varphi(v)$ behave in the same way.

Definition: G is a quasi-covering of **D** of radius *R* of center *v*.

Definition: G is a quasi-covering of **D** of radius *R* of center *v*.

Quasi-Lifting Lemma

In the synchronous execution of any algorithm A, v and w behave in the same way during the first R rounds.

Suppose there exists an algorithm \mathcal{A} that computes (\mathcal{F}, S) .

Given any digraph ${\bf G},$ consider the synchronous execution of ${\cal A}$ over ${\bf G}.$

For any $v \in V(G)$, let *i* be the first round (if it exists) where $term_i(v) = TERM$, then we define:

- result(G, v) = output_i(v),
- time(\mathbf{G}, \mathbf{v}) = *i*.

Otherwise, we let $result(\mathbf{G}, \mathbf{v}) = \bot$ and $time(\mathbf{G}, \mathbf{v}) = \infty$.

During the first R rounds of the execution, v and w remain in the same state.

- During the first R rounds of the execution, v and w remain in the same state.
- ▶ If $R \ge \text{time}(\mathbf{D}, w)$ or $R \ge \text{time}(\mathbf{G}, w)$), result $(\mathbf{D}, w) = \text{result}(\mathbf{G}, v)$ and time $(\mathbf{D}, w) = \text{time}(\mathbf{G}, v)$.

Key Property

Two functions time and result have property (P) if for any **G**, **D**,

- if G is a quasi-covering of D of radius R
- if $R \ge \min\{\text{time}(\mathbf{G}, v), time(\mathbf{D}, w)\}$

then time(\mathbf{G}, ν) = time(\mathbf{D}, ν) and result(\mathbf{G}, ν) = result(\mathbf{D}, ν)

Weak Local Termination

Theorem

A task (\mathcal{F}, S) can be computed on \mathcal{F} with weak local termination

\Leftrightarrow

there exists some functions time and result computable on ${\mathcal F}$ such that

- ► G S result(G)
- time and result have Property (P)

Weak Local Termination

Theorem

A task (\mathcal{F}, S) can be computed on \mathcal{F} with weak local termination by a polynomial algorithm

\Leftrightarrow

there exists some functions time and result computable on ${\mathcal F}$ such that

- ► G S result(G)
- time and result have Property (P)
- there exists a polynomial p such that
 - ▶ \forall **G** \in \mathcal{F} , max{*time*(**G**, v) | $v \in V(G)$ } $\leq p(|$ **G**|)

A Mazurkiewicz-like Algorithm $\ensuremath{\mathcal{M}}$

- + it reconstructs **D** such that **G** is a covering of **D**
- + it is a polynomial algorithm

A Mazurkiewicz-like Algorithm $\ensuremath{\mathcal{M}}$

- + it reconstructs **D** such that **G** is a covering of **D**
- + it is a polynomial algorithm
- it terminates only implicitly

A Mazurkiewicz-like Algorithm $\ensuremath{\mathcal{M}}$

- + it reconstructs **D** such that **G** is a covering of **D**
- + it is a polynomial algorithm
- it terminates only implicitly
- + at any step *i*, it enables each process *v* to reconstruct
 D_i(v) such that G is a quasi-covering of D_i(v) of center v

A Mazurkiewicz-like Algorithm $\ensuremath{\mathcal{M}}$

- + it reconstructs **D** such that **G** is a covering of **D**
- + it is a polynomial algorithm
- it terminates only implicitly
- + at any step *i*, it enables each process *v* to reconstruct
 D_i(v) such that G is a quasi-covering of D_i(v) of center v
- v does not not know the radius of the quasi-covering

Szymanski, Shy and Prywes Algorithm

Combined with our algorithm,

- + enables each v to compute a lower bound lb(v) on the radius of the quasi-covering
- + once ${\cal M}$ has implicitly terminated, this lower bound tends to ∞

Szymanski, Shy and Prywes Algorithm

Combined with our algorithm,

- + enables each v to compute a lower bound lb(v) on the radius of the quasi-covering
- + once ${\cal M}$ has implicitly terminated, this lower bound tends to ∞
- we have to be careful to avoid infinite computations
At each time step *i*, each *v* knows

- ► a graph D(v) such that G is a quasi-covering of D(v) of center v
- a vertex w(v): the image of v in $\mathbf{D}(v)$
- ▶ a lower bound lb(v) on the radius of the quasi-covering

At each time step *i*, each *v* knows

- a graph D(v) such that G is a quasi-covering of D(v) of center v
- a vertex w(v): the image of v in $\mathbf{D}(v)$
- ▶ a lower bound lb(v) on the radius of the quasi-covering

If $lb(v) \ge time(\mathbf{G}, v)$, then by Property (P)

• time(
$$\mathbf{G}, v$$
) = time($\mathbf{D}(v), w(v)$)

• result(
$$\mathbf{G}, v$$
) = result($\mathbf{D}(v), w(v)$)

At each time step *i*, each *v* knows

- a graph D(v) such that G is a quasi-covering of D(v) of center v
- a vertex w(v): the image of v in $\mathbf{D}(v)$
- ► a lower bound lb(v) on the radius of the quasi-covering

If $lb(v) \ge time(\mathbf{G}, v)$, then by Property (P)

• time(
$$\mathbf{G}, v$$
) = time($\mathbf{D}(v), w(v)$)

• result(
$$\mathbf{G}, v$$
) = result($\mathbf{D}(v), w(v)$)

Problem

If $lb(v) < time(\mathbf{G}, v)$, result $(\mathbf{D}(v), w(v))$ may be undefined if $\mathbf{D}(v)$ is not in \mathcal{F}

At each time step *i*, each *v* knows

- a graph D(v) such that G is a quasi-covering of D(v) of center v
- a vertex w(v): the image of v in $\mathbf{D}(v)$
- a lower bound lb(v) on the radius of the quasi-covering

Solution

v enumerates the graphs of *F* until it finds a graph H that is a quasi-covering of D(v) of radius lb(v) of center u via γ such that γ(u) = w(v)

At each time step *i*, each *v* knows

- a graph D(v) such that G is a quasi-covering of D(v) of center v
- a vertex w(v): the image of v in $\mathbf{D}(v)$
- a lower bound lb(v) on the radius of the quasi-covering

Solution

v enumerates the graphs of *F* until it finds a graph H that is a quasi-covering of D(v) of radius lb(v) of center u via γ such that γ(u) = w(v)

• If time(
$$\mathbf{H}, u$$
) \leq lb(v),

output(v) := result(H, u)

Since time(u) $\leq lb(v)$, by Property (P)

• time(w) = time(u) and result(w) = result(v)

Since time(u) $\leq lb(v)$, by Property (P)

- time(w) = time(u) and result(w) = result(v)
- time(v) = time(u) and result(v) = result(u)

Complexity

```
Let T(\mathbf{G}) = \max\{\text{time}(\mathbf{G}, v) \mid v \in V(G)\}.
```

Proposition

Complexity of our Algorithm:

- $O(Dn + T(\mathbf{G}))$ rounds
- O(m²n + mT(G)) messages
- $O(\Delta \log n + \log T(\mathbf{G}))$ bits per message

Complexity

```
Let T(\mathbf{G}) = \max\{\text{time}(\mathbf{G}, v) \mid v \in V(G)\}.
```

Proposition

Complexity of our Algorithm:

- $O(Dn + T(\mathbf{G}))$ rounds
- $O(m^2n + mT(\mathbf{G}))$ messages
- $O(\Delta \log n + \log T(\mathbf{G}))$ bits per message

Corollary

If there exists an algorithm A that computes a task (S, \mathcal{F}) in a polynomial number of rounds (even with big messages), there exists a polynomial algorithm A' that computes (S, \mathcal{F})

Necessary Condition for Local Termination

We define an operator split such that

Necessary Condition for Local Termination

We define an operator split such that

the blue vertices in split(G, u, k) behave like u in G during k steps

Necessary Condition for Local Termination

Property

Two functions time and result have property (P') if for any **G**

- ▶ if k = time(G, u)
- ► then, for any v ≠ u, result(G, v) = result(H, v) and time(G, v) = time(H, v)

Local Termination

Theorem

A task (\mathcal{F}, S) can be computed on \mathcal{F} with local termination

\iff

there exists some functions time and result computable on ${\mathcal F}$ such that

- G S result(G)
- time and result have Property (P) and (P')

Local Termination

Theorem

A task (\mathcal{F}, S) can be computed on \mathcal{F} with local termination by a polynomial algorithm

 \Leftrightarrow

there exists some functions time and result computable on ${\mathcal F}$ such that

- ► G S result(G)
- time and result have Property (P) and (P')
- there exists a polynomial p such that
 - ▶ \forall **G** \in \mathcal{F} , max{*time*(**G**, v) | $v \in V(G)$ } $\leq p(|$ **G**|)

 Modeling arbitrary networks with reliable communications and "transient" faults.

- Modeling arbitrary networks with reliable communications and "transient" faults.
- Unifying questions: via termination detection,

- Modeling arbitrary networks with reliable communications and "transient" faults.
- Unifying questions: via termination detection,
- Unifying results of characterizations:

- Modeling arbitrary networks with reliable communications and "transient" faults.
- Unifying questions: via termination detection,
- Unifying results of characterizations:
 - coverings, quasi-coverings,

- Modeling arbitrary networks with reliable communications and "transient" faults.
- Unifying questions: via termination detection,
- Unifying results of characterizations:
 - coverings, quasi-coverings,
 - polynomial algorithms.

Exploiting characterization results,

- Exploiting characterization results,
- Extensions to self-stabilizing systems (and other self-*),

- Exploiting characterization results,
- Extensions to self-stabilizing systems (and other self-*),
- Others constraints:

- Exploiting characterization results,
- Extensions to self-stabilizing systems (and other self-*),
- Others constraints:
 - Communications,

- Exploiting characterization results,
- Extensions to self-stabilizing systems (and other self-*),
- Others constraints:
 - Communications,
 - Interactions/scheduling,

- Exploiting characterization results,
- Extensions to self-stabilizing systems (and other self-*),
- Others constraints:
 - Communications,
 - Interactions/scheduling,
 - Faults, dynamic networks,

- Exploiting characterization results,
- Extensions to self-stabilizing systems (and other self-*),
- Others constraints:
 - Communications,
 - Interactions/scheduling,
 - Faults, dynamic networks,

► ...

Thank you