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Distributed Computability

Question

What can be computed by an arbitrary network, with partial
knowledge about its topology?

For distributed networks, computability is known to be restricted
by

◮ Is it a ring, a tree? ...
◮ Are there loss of messages, or no? ...
◮ Do nodes have unique identitier? ...
◮ Is the size of the network known? ...

So the question is

Given a specification S, a family of networks F , is there a
distributed algorithm A such that, any execution of A on any
network in F ends with final state (labels) satisfying S.
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◮ F is a family of labeled graphs; it represents
◮ topology: trees, rings, meshes, ... . . .
◮ any information is encoded in the initial labeling:

◮ structural information: identities, sense of direction, ...
◮ structural knowledge: the size, bound on the diameter, the

topology ...

◮ the specification S is a graph relabelling relation
◮ (G,input) S (G,output): spanning tree, leader election,

...
◮ Is that enough to define the problem?

◮ Different kinds of computability, depending on the kind of
termination we are interested in.

◮ Reliability?
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Anonymous Networks and Reliability

A network is anonymous when the initial (node) labeling is
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Anonymous Networks and Reliability

A network is anonymous when the initial (node) labeling is
uniform.

◮ Motivations:
◮ Distributed computability in a general setting,
◮ Transient Faults: components failure, attacks, ...

◮ Potentially Anonymous: arbitrary initial labeling : unique
identities, or “partially unique” (pseudonymous) ...

◮ Communication is reliable

Computability in resource-constrained autonomous large
scale systems

◮ Evolution of the network,
◮ Impossibility results: properties of the network that have to

be “centrally” maintained.
◮ Possibility results: with efficient algorithms?
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Motivations for Local Termination

Different kinds of termination exist for distributed algorithms.

◮ Implicit termination: processes do not know that the
computation is over.

◮ [Boldi and Vigna ’02] Characterization of tasks computable
with implicit termination,

◮ based on fibrations and coverings,
◮ equivalence with self-stabilizing (terminating) tasks.
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computation is over.

◮ [Boldi and Vigna ’02] Characterization of tasks computable
with implicit termination,

◮ based on fibrations and coverings,
◮ equivalence with self-stabilizing (terminating) tasks.

◮ Local termination: at some point, each process knows that
it has computed its final value.

◮ Global termination detection: processes know that all
processes have computed their final value.

◮ [C., Godard, Métivier, Tel ’07] Characterization of tasks
computable with global termination detection

◮ based on coverings and quasi-coverings
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Local Terminations

◮ Local Termination:
◮ a process knows when it can stop executing the algorithm.
◮ [Boldi and Vigna ’99] Characterization of tasks computable

with local termination
◮ based on view construction
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Local Terminations

◮ Local Termination:
◮ a process knows when it can stop executing the algorithm.
◮ [Boldi and Vigna ’99] Characterization of tasks computable

with local termination
◮ based on view construction

◮ Weak Local Termination:
◮ a process knows when it has computed its final value, but

can still run the algorithm (processing and forwarding other
nodes messages).
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Applications

Two distributed algorithms are composed whenever the second
uses as inputs the outputs of the first algorithm.

◮ weak local termination: composition of distributed
algorithms,

◮ local termination: garbage collection.
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Applications

Two distributed algorithms are composed whenever the second
uses as inputs the outputs of the first algorithm.

◮ weak local termination: composition of distributed
algorithms,

◮ local termination: garbage collection.

A General Framework

Termination appears a key parameter to unify distributed
computability results in communication networks.
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Older Related Works

◮ Angluin (’80)
◮ Yamashita & Kameda (’95)
◮ Boldi & Vigna (’99,’01)
◮ Mazurkiewicz (’97)
◮ Metivier et al (90’s)
◮ ...
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Model: Reliable Message Passing Systems with
Transient Faults

A network is represented as a graph G with a port-numbering δ

where each process can
◮ modify its state,
◮ send a message via port p,
◮ receive a message via port q.
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Model: Reliable Message Passing Systems with
Transient Faults

A network is represented as a graph G with a port-numbering δ

where each process can
◮ modify its state,
◮ send a message via port p,
◮ receive a message via port q.

We consider
◮ reliable communications,
◮ (potentially) anonymous systems.
◮ asynchronous systems.
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Examples of Tasks with Different Terminations

Problem

◮ v ∈ V is labeled by (val(v), dist(v)) ∈ N × N ∪ {∞},
◮ v ∈ V should compute

max{val(u) | u is at distance at most dist(v) of v}.
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Our Contribution

◮ A characterization of tasks computable with weak local
termination

◮ based on coverings and quasi-coverings
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◮ A characterization of tasks computable with weak local
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◮ A characterization of tasks computable with weak local
termination by polynomial algorithms

◮ algorithms exchanging a polynomial number of bits

◮ A new characterization of tasks computable with local
termination .

◮ based on coverings and quasi-coverings
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Our Contribution

◮ A characterization of tasks computable with weak local
termination

◮ based on coverings and quasi-coverings

◮ A characterization of tasks computable with weak local
termination by polynomial algorithms

◮ algorithms exchanging a polynomial number of bits

◮ A characterization of tasks computable with local
termination by polynomial algorithms.

◮ based on coverings and quasi-coverings
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From graphs to digraphs

We represent the network by a labeled digraph (G, δ, λ) where
the state of each process is encoded by its label.

1 1 2 1

(1,1)

(1,1)

(2,1)

(1,2)
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Coverings

Definition

D is a covering of D′ via ϕ if ϕ is a locally bijective
homomorphism.

D D′
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Coverings

Definition

D is a covering of D′ via ϕ if ϕ is a locally bijective
homomorphism.

D D′

Lifting Lemma

If D is a covering of D′ via ϕ, in the synchronous execution of
any algorithm A, v and ϕ(v) behave in the same way.
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Quasi-coverings

vR

G

v ′ K

D

covering

isomorphism

w

Definition: G is a quasi-covering of D of radius R of center v .
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Quasi-coverings

vR

G

v ′ K

D

covering

isomorphism

w

Definition: G is a quasi-covering of D of radius R of center v .

Quasi-Lifting Lemma

In the synchronous execution of any algorithm A, v and w
behave in the same way during the first R rounds.
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Necessary Condition

Suppose there exists an algorithm A that computes (F , S).

Given any digraph G, consider the synchronous execution of A
over G.

For any v ∈ V (G), let i be the first round (if it exists) where
termi(v) = TERM, then we define:

◮ result(G, v) = outputi(v),
◮ time(G, v) = i .

Otherwise, we let result(G, v) = ⊥ and time(G, v) = ∞.
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Necessary Condition

vR

G

v ′ K

covering

isomorphism

D w

◮ During the first R rounds of the execution, v and w remain
in the same state.
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Necessary Condition

vR

G

v ′ K

covering

isomorphism

D wTERM result(D, w)
time(D, w)

◮ During the first R rounds of the execution, v and w remain
in the same state.

◮ If R ≥ time(D, w) or R ≥ time(G, w)),
result(D, w) = result(G, v) and time(D, w) = time(G, v).
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Necessary Condition

vR

G

v ′ K

covering

isomorphism

D wTERM result(D, w)
time(D, w)

Key Property

Two functions time and result have property (P) if for any G, D,
◮ if G is a quasi-covering of D of radius R
◮ if R ≥ min{time(G, v), time(D, w)}

then time(G, v) = time(D, v) and result(G, v) = result(D, v)
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Weak Local Termination

Theorem

A task (F , S) can be computed on F with weak local
termination

⇐⇒

there exists some functions time and result computable on F
such that

◮ G S result(G)

◮ time and result have Property (P)
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Weak Local Termination

Theorem

A task (F , S) can be computed on F with weak local
termination by a polynomial algorithm

⇐⇒

there exists some functions time and result computable on F
such that

◮ G S result(G)

◮ time and result have Property (P)

◮ there exists a polynomial p such that
◮ ∀G ∈ F , max{time(G, v) | v ∈ V (G)} ≤ p(|G|)
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An Algorithm for the Sufficient Condition

A Mazurkiewicz-like Algorithm M

When executed on a graph G,

+ it reconstructs D such that G is a covering of D

+ it is a polynomial algorithm

J. Chalopin, E. Godard, Y. Métivier Local Terminations in Anonymous Networks 18/27



An Algorithm for the Sufficient Condition

A Mazurkiewicz-like Algorithm M

When executed on a graph G,

+ it reconstructs D such that G is a covering of D

+ it is a polynomial algorithm

– it terminates only implicitly

J. Chalopin, E. Godard, Y. Métivier Local Terminations in Anonymous Networks 18/27



An Algorithm for the Sufficient Condition

A Mazurkiewicz-like Algorithm M

When executed on a graph G,

+ it reconstructs D such that G is a covering of D

+ it is a polynomial algorithm

– it terminates only implicitly

+ at any step i , it enables each process v to reconstruct
Di(v) such that G is a quasi-covering of Di(v) of center v
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An Algorithm for the Sufficient Condition

A Mazurkiewicz-like Algorithm M

When executed on a graph G,

+ it reconstructs D such that G is a covering of D

+ it is a polynomial algorithm

– it terminates only implicitly

+ at any step i , it enables each process v to reconstruct
Di(v) such that G is a quasi-covering of Di(v) of center v

– v does not not know the radius of the quasi-covering
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An Algorithm for the Sufficient Condition

Szymanski, Shy and Prywes Algorithm

Combined with our algorithm,

+ enables each v to compute a lower bound lb(v) on the
radius of the quasi-covering

+ once M has implicitly terminated, this lower bound tends
to ∞
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An Algorithm for the Sufficient Condition

Szymanski, Shy and Prywes Algorithm

Combined with our algorithm,

+ enables each v to compute a lower bound lb(v) on the
radius of the quasi-covering

+ once M has implicitly terminated, this lower bound tends
to ∞

– we have to be careful to avoid infinite computations
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Computing the output

At each time step i , each v knows
◮ a graph D(v) such that G is a quasi-covering of D(v) of

center v
◮ a vertex w(v): the image of v in D(v)

◮ a lower bound lb(v) on the radius of the quasi-covering
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Computing the output

At each time step i , each v knows
◮ a graph D(v) such that G is a quasi-covering of D(v) of

center v
◮ a vertex w(v): the image of v in D(v)

◮ a lower bound lb(v) on the radius of the quasi-covering

If lb(v) ≥ time(G, v), then by Property (P)

◮ time(G, v) = time(D(v), w(v))

◮ result(G, v) = result(D(v), w(v))
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Computing the output

At each time step i , each v knows
◮ a graph D(v) such that G is a quasi-covering of D(v) of

center v
◮ a vertex w(v): the image of v in D(v)

◮ a lower bound lb(v) on the radius of the quasi-covering

If lb(v) ≥ time(G, v), then by Property (P)

◮ time(G, v) = time(D(v), w(v))

◮ result(G, v) = result(D(v), w(v))

Problem

If lb(v) < time(G, v), result(D(v), w(v)) may be undefined if
D(v) is not in F
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Computing the output

At each time step i , each v knows
◮ a graph D(v) such that G is a quasi-covering of D(v) of

center v
◮ a vertex w(v): the image of v in D(v)

◮ a lower bound lb(v) on the radius of the quasi-covering

Solution
◮ v enumerates the graphs of F until it finds a graph H that is

a quasi-covering of D(v) of radius lb(v) of center u via γ

such that γ(u) = w(v)
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Computing the output

At each time step i , each v knows
◮ a graph D(v) such that G is a quasi-covering of D(v) of

center v
◮ a vertex w(v): the image of v in D(v)

◮ a lower bound lb(v) on the radius of the quasi-covering

Solution
◮ v enumerates the graphs of F until it finds a graph H that is

a quasi-covering of D(v) of radius lb(v) of center u via γ

such that γ(u) = w(v)

◮ If time(H, u) ≤ lb(v),
◮ output(v) := result(H, u)
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Computing the output

v
lb(v)

G

u
lb(v)

H

D quasi-coveringquasi-covering

w
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Computing the output

v
lb(v)

G

u
lb(v)

H

time(u)

result(u)

D quasi-coveringquasi-covering

w
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Computing the output

v
lb(v)

G

u
lb(v)

H

time(u)

result(u)

D

time(w) = time(u)

result(w) = result(u)

quasi-coveringquasi-covering

w

Since time(u) ≤ lb(v), by Property (P)

◮ time(w) = time(u) and result(w) = result(v)

J. Chalopin, E. Godard, Y. Métivier Local Terminations in Anonymous Networks 21/27



Computing the output

v
lb(v)

G

u
lb(v)

H

time(u)

result(u)

D

time(w) = time(u)

result(w) = result(u)

quasi-coveringquasi-covering

w

time(v)

result(v)

time(w) = time(v)

result(w) = result(v)

Since time(u) ≤ lb(v), by Property (P)

◮ time(w) = time(u) and result(w) = result(v)

◮ time(v) = time(u) and result(v) = result(u)
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Complexity

Let T (G) = max{time(G, v) | v ∈ V (G)}.

Proposition

Complexity of our Algorithm:
◮ O(Dn + T (G)) rounds
◮ O(m2n + mT (G)) messages
◮ O(∆ log n + log T (G)) bits per message
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Complexity

Let T (G) = max{time(G, v) | v ∈ V (G)}.

Proposition

Complexity of our Algorithm:
◮ O(Dn + T (G)) rounds
◮ O(m2n + mT (G)) messages
◮ O(∆ log n + log T (G)) bits per message

Corollary

If there exists an algorithm A that computes a task (S,F) in a
polynomial number of rounds (even with big messages), there
exists a polynomial algorithm A′ that computes (S,F)
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Necessary Condition for Local Termination

G

u

v

We define an operator split such that
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Necessary Condition for Local Termination

G

u

vv

H = split(G, u, k)

We define an operator split such that
◮ the blue vertices in split(G, u, k) behave like u in G during

k steps
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Necessary Condition for Local Termination

G

u

vv

H = split(G, u, k)

Property

Two functions time and result have property (P ′) if for any G
◮ if k = time(G, u)

◮ then, for any v 6= u, result(G, v) = result(H, v) and
time(G, v) = time(H, v)
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Local Termination

Theorem

A task (F , S) can be computed on F with local termination

⇐⇒

there exists some functions time and result computable on F
such that

◮ G S result(G)

◮ time and result have Property (P) and (P ′)

J. Chalopin, E. Godard, Y. Métivier Local Terminations in Anonymous Networks 24/27



Local Termination

Theorem

A task (F , S) can be computed on F with local termination by a
polynomial algorithm

⇐⇒

there exists some functions time and result computable on F
such that

◮ G S result(G)

◮ time and result have Property (P) and (P ′)

◮ there exists a polynomial p such that
◮ ∀G ∈ F , max{time(G, v) | v ∈ V (G)} ≤ p(|G|)
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Conclusion

◮ Modeling arbitrary networks with reliable communications
and “transient” faults.
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Conclusion

◮ Modeling arbitrary networks with reliable communications
and “transient” faults.

◮ Unifying questions: via termination detection,
◮ Unifying results of characterizations:

◮ coverings, quasi-coverings,
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Conclusion

◮ Modeling arbitrary networks with reliable communications
and “transient” faults.

◮ Unifying questions: via termination detection,
◮ Unifying results of characterizations:

◮ coverings, quasi-coverings,
◮ polynomial algorithms.

J. Chalopin, E. Godard, Y. Métivier Local Terminations in Anonymous Networks 25/27



Perspectives

◮ Exploiting characterization results,
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Perspectives

◮ Exploiting characterization results,
◮ Extensions to self-stabilizing systems (and other self-∗),
◮ Others constraints:

◮ Communications,
◮ Interactions/scheduling,
◮ Faults, dynamic networks,
◮ ...
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Thank you
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