

A churn-resilient replication strategy for peer-to-peer distributed hash-tables

ANR - SHAMAN - Kickoff - 27 January, 2009

Sergey Legchenko, Sébastien Monnet, Pierre Sens

Outline

• Background and definition

• Replication protocol in presence of churn

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Background

Peer-to-peer systems

- distribution
- symmetry (a node = a **peer** client and server)
- decentralized control
- dynamicity
- self-organization

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Distributed Hash Tables

LP .

DHTs

 $\textbf{logical address space}^{\texttt{North America}}$

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Insertion of blocks in DHT

Insertion of blocks in DHT

Leafset-based replication

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Impact of Churn

Churn = « the continuous process of node arrival and departure »

- Join
- Leave
- Crash

Metrics of Churn

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

centre de recherche PARIS - ROCQUENCOURT

11

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A churn resistant protocol

- Main idea : relax the DHT constraints
 - Allow uncontinuous replica-set in the replica set
 - Avoiding useless data movement

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

An enhanced replication protocol

- Root only stores meta-information of blocks is responsible (replica set)
- Insertion of new block : randomly choses r block in the middle of its leafset (1/3 in the middle)

Maintenance protocol

- For each data-block for which the peer p is root :
 - Check if the **r** copies of the replica set are still in the leaf-set.
 - If some copies are missing randomly chose new ones in the middle (1/3) of the leaf-set
- For each data-block for which the peer p is hosting a copy:
 - Check if the known current root is still the current root. if not, notice the new root
 - The new root update its state

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Replication protocol with churn

• Arrival of new node **65**

• No data is moving

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Replication protocol with churn

• Departure of node 85

 Replication degree is maintain, no useless data movement (only one message B1)

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Comparison with Past replication protocol

- Insertion of 65 : B1 and B2 move
- Leave of 85 : B1 and B2 move

Leaf set

4 blocks moving (Past) vs. 1 block (Enhanced Past)

Performance evaluation

- PeerSim simulation
- Fine grain simulation
- Implementation of Pastry KBR / Past DHT / Enhanced Past (Pasta)
- Comparison of 2 strategies
 - Contiguous placement of data block = Past
 - « Free » random placement (mobile position) = Pasta
- Preliminary results

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

Simulation parameters

- Network :
 - 100-peer network (N)
 - ADSL : 1 mbits/s for upload and 10 mbits/s for download
 - Latency between 80 and 120 ms

- DHT :
 - leaf-set size = 24
 - inter-maintenance time of 10 minutes at the DHT level (replica set)
 - inter-maintenance time of 1 minute at the KBR level (leaf set)
 - 10 000 data-blocks (files) of 10 000 KB
 - Replication degre = $3 (\mathbf{r})$

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

Performance evaluation : Churn pattern

• Periodically insert join and leave

- 2 patterns :
 - One hour churn
 - Continuous churn (snapshot of the system after 5 hours of churn)
- 3 metrics :
 - Number data-blocks exchanged (bandwidth of the maintenance protocol)
 - Number of data-blocks lost
 - Stabilization time

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

One hour of churn: number of data-block exchanged

• number of exchanged blocks 2 times lower than in the standard solution

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

One hour of churn: number of block lost

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

One hour of churn : Recovery times

centre de recherche

ROCQUENCOURT

DARIS

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE T EN AUTOMATIQUE

Continuous churn : block lost

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Recovery of a single failure

• Past : 4606 seconds to recover from a single failure

• Pasta : 1889 seconds to recover from a single failure

INSTITUT NATIONAI DE RECHERCHI EN INFORMATIQUE T EN AUTOMATIQUE

Maintenance protocol cost

Conclusions

- Current P2P DHT replication strategies does not support high churn levels
- Observations :
 - Many transfers goal is just to maintain location constraints
 - The network is quickly saturated (depends on the network, the amount of stored data and the churn rate)
- Our proposition relaxes location constraints
- Main benefits
 - Node contents are de-correlated => data transfer are more parallelized
 - A single failure recovery is much faster
 - Fewer (almost none) useless data transfer
 - Less network congestion

Better churn support : less lost data-blocks

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE I EN AUTOMATIQUE

Future works

- Placement strategy inside the leafset
 - Monitoring the stability of nodes (modification of leafset maintenance protocol), placement on the most **stable** node
- Study the impact of leafset size
 - Large leaf set (100 nodes)
- Real experimentation
 - Modification of FreePastry
 - Deployment o a distributed architecture

NSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE EN AUTOMATIQUE

