
The Weakest Failure Detector for
Message Passing Set-Agreement

Carole Delporte-Gallet1, Hugues Fauconnier1,
Rachid Guerraoui2, Andreas Tielmann1

1Laboratoire d’Informatique Algorithmique, Fondements et Applications (LIAFA),
University Paris VII, France

2School of Computer and Communication Sciences,
EPFL, Switzerland

0/18



Overview

Schedule:

What is set-agreement?

What is a failure detector?

What is a weakest failure detector?

What is the weakest failure detector for set-agreement?

How does this failure detector relate to other failure detectors?

1/18



System Model

n processes Π = {p1, . . . , pn}
Processes communicate by message passing

Fully connected asynchronous network

Reliable channels

Processes may crash
(processes that do not crash are called correct)

The system is enhanced with failure detectors

2/18



Set-Agreement

Introduced by Chaudhuri (1993)

Also called (n−1)-set-agreement

All processes try to agree (decide) on some set of proposed
values:

Agreement: At most n − 1 values are decided.
Validity: Every value decided must have been proposed.

Termination: Eventually, every correct process decides.

Generalization of consensus (at most 1 value is decided)

Trivially solvable, if less than n − 1 processes may crash

Not solvable, if any number of processes may crash
(Saks/Zaharoglou, Borowsky/Gafni, Herlihy/Shavit)
(even in shared memory)

But: solvable with additional information about failures
(⇒ failure detectors)

3/18



Failure Detectors

Introduced by Chandra and Toueg (1996)

Allow to circumvent some impossibility results (e.g. for
Consensus)

Modeled as distributed oracles

Provide information about failures that occur in an execution

Provide no otherwise information

Can be specified as a function of a failure pattern
Cannot provide any information about messages sent or the
state of the processes

4/18



Examples of Failure Detectors

Ω

Outputs single processes

Eventually, the same correct process is output at all correct
processes

Σ (the quorum failure detector)

Outputs lists of trusted processes

Eventually, only correct processes are trusted

For every process, for every time, every pair of output-lists
intersects

anti-Ω

Outputs single processes

At least one id of a correct process is only finitely often output

5/18



What is a weakest Failure Detector?

A weakest failure detector D for a problem P has to be . . .

Sufficient: with D it is possible to solve P

Necessary: every other sufficient failure detector is stronger than
(≡ can emulate) D

Notion was introduced by Chandra et al. (CHT result)

Every problem has a weakest failure detector (Jayanti &
Toueg, PODC’08)

6/18



Previous Results

Some weakest failure detector results:

Consensus with a correct majority and message passing: Ω
(Chandra, Hadzilacos and Toueg, 1992)

Consensus in shared memory: Ω (Hadzilacos and Lo, 1994)

Generalization for Consensus in message-passing: (Ω,Σ)
and the emulation of registers in message-passing: Σ
(Delporte, Fauconnier and Guerraoui, 2003)

In shared-memory for set-agreement: anti-Ω (Zieliński, 2008)

Σ (≡ (anti-Ω,Σ)) is sufficient, but not necessary for
set-agreement in message-passing (Delporte, Fauconnier and
Guerraoui, 2008)

In shared-memory for k-set-agreement: k-anti-Ω
(Gafni/Kouznetsov, Fernandez-Anta/Rajsbaum/Travers,
Delporte-Gallet/Fauconnier/Guerraoui/Tielmann, 2009)

. . .

7/18



Can we derive a failure detector from the shared-memory proof?

Every message passing algorithm can also be executed in
shared memory

⇒ anti-Ω is necessary in message passing

But is anti-Ω also sufficient?

No. (Intuition: anti-Ω may behave arbitrary for any finite
amount of time)

⇒ Our failure detector has to be strictly stronger than anti-Ω

Zieliński conjectured that Σ (≡ (anti-Ω,Σ)) is the weakest
failure detector for message passing (TR 2007)

Delporte et al. showed that Σ is sufficient, but not necessary
(PODC 2008)

Our Result:

The weakest failure detector for message passing set-agreement is
L.

8/18



The Loneliness (Failure-) Detector L

The Loneliness Detector L:

outputs “true” or “false”

Prop. 1: At least one process never outputs “true”

Prop. 2: If only one process is correct, then it eventually
outputs “true” forever

Note that at some processes, the output may be unstable forever.

9/18



L is sufficient for Set-Agreement

Algorithm for process pi :

1 to propose(v):

2 initially:
3 send 〈v〉 to all pj with j > i ;

4 on receive 〈v ′〉 do:
5 send 〈v ′〉 to all;
6 decide v ′; halt; (∗ decision D1 ∗)

7 on L = “true” do:
8 send 〈v〉 to all;
9 decide v ; halt; (∗ decision D2 ∗)

Properties of L:

Prop. 1: At least one process never outputs
“true”

Prop. 2: If only one process is correct, then
it eventually outputs “true” forever

Proof:

Validity: !
Termination: !
Agreement: !

10/18



L is necessary for Set-Agreement

To show: every other sufficient failure detector is stronger
than L
Assume some failure detector D is sufficient for set-agreement

Let A be an algorithm s.t. A using D implements
set-agreement

Algorithm for process pi :

1 output := “false”;
2 execute A with value i and detector D, but omit sending

messages to others;
3 if pi has decided in A, then output := “true”;

Proof:

At least one process never outputs “true” !
If only one process is correct, then it eventually outputs
“true” !

11/18



Comparison with other Failure Detector Classes

Thus, L is the weakest failure detector for message passing
set-agreement.

How does L compare to anti-Ω and Σ ?

12/18



Implementation of anti-Ω using L

Recall anti-Ω:

Outputs single processes

At least one id of a correct process is only finitely often output

Algorithm for process pi :

1 initially:
2 lonely := ∅; (∗ processes where L = “true” ∗)
3 output := {1}; (∗ anti-Ω-output ∗)

4 on L = “true” do:
5 lonely := lonely ∪ {i};
6 send 〈lonely〉 to all;
7 output := min({1, . . . , n} \ lonely);

8 on receive 〈lonely′〉 do:
9 if lonely )= lonely′ then send 〈lonely ∪ lonely′〉 to all;
10 lonely := lonely ∪ lonely′;
11 output := min({1, . . . , n} \ lonely);

13/18



Anti-Ω is not stronger than L

Proof idea:

For all i : if correct = {pi}, then eventually L-output = “true”
at pi (say at time ti ).

Anti-Ω can behave arbitrarily for any finite amount of time.

For all i : let the output at pi up to time ti be the same as if
correct = {pi}.
Let all messages to all pi be delayed after time ti .

⇒ Eventually, L-output = “true” at all pi .

⇒ A violation of the specification of L.

14/18



Implementation of L using Σ

Recall the properties of Σ:

Outputs lists of trusted processes

Completeness: Eventually, only correct processes are trusted

Intersection: For every process, for every time, every pair of
output-lists intersects.

Implementation of L using Σ at process pi :

1 output := “false”;
2 If Σ-output = {pi}, then output := “true”;

15/18



Σ is not stronger than L, if n > 2:

Proof idea (Π = {p1, p2, p3}):
If correct = {p1} or {p1, p2}, then L can output “true” at p1

and p2.

⇒ The failure patterns are indistinguishable for p1 (for any
finite amount of time).

If correct = {p1}, then Σ has to output {p1}.
⇒ If correct = {p1, p2}, then Σ outputs also {p1} (and
equivalently for p2).

⇒ Contradiction to intersection.

16/18



Relations between the Failure Detector Classes

L

set-agreement

in message-passing

anti-Ω

set-agreement

in shared-memory

is strictly stronger
Σ

emulating registers
in message-passing

is strictly stronger
(n > 2)

17/18



Summary

Conclusions:

L is the weakest failure detector for message passing
set-agreement.

The proof is surprisingly simple (especially compared to the
shared memory proof).

Sometimes results in message passing are easier to prove than
in shared-memory.

Outlook:

Can this approach be extended to k-set-agreement?

Is there some distinct type of a weak register that “belongs”
to (k-)set-agreement?

18/18


