The Weakest Failure Detector for Message Passing Set-Agreement

Carole Delporte-Gallet¹, Hugues Fauconnier¹, Rachid Guerraoui², Andreas Tielmann¹

¹Laboratoire d'Informatique Algorithmique, Fondements et Applications (LIAFA), University Paris VII, France

> ²School of Computer and Communication Sciences, EPFL, Switzerland

Schedule:

- What is set-agreement?
- What is a failure detector?
- What is a weakest failure detector?
- What is the weakest failure detector for set-agreement?
- How does this failure detector relate to other failure detectors?

- *n* processes $\Pi = \{p_1, \ldots, p_n\}$
- Processes communicate by message passing
- Fully connected asynchronous network
- Reliable channels
- Processes may crash (processes that do not crash are called correct)
- The system is enhanced with failure detectors

- Introduced by Chaudhuri (1993)
- Also called (n-1)-set-agreement
- All processes try to agree (decide) on some set of proposed values:
 - Agreement: At most n 1 values are decided. Validity: Every value decided must have been proposed. Termination: Eventually, every correct process decides.
- Generalization of consensus (at most 1 value is decided)
- Trivially solvable, if less than n-1 processes may crash
- Not solvable, if any number of processes may crash (Saks/Zaharoglou, Borowsky/Gafni, Herlihy/Shavit) (even in shared memory)
- But: solvable with additional information about failures (⇒ failure detectors)

- Introduced by Chandra and Toueg (1996)
- Allow to circumvent some impossibility results (e.g. for Consensus)
- Modeled as distributed oracles
- Provide information about failures that occur in an execution
- Provide no otherwise information
 - Can be specified as a function of a failure pattern
 - Cannot provide any information about messages sent or the state of the processes

Ω

Outputs single processes

 Eventually, the same correct process is output at all correct processes

Σ (the quorum failure detector)

- Outputs lists of trusted processes
- Eventually, only correct processes are trusted
- For every process, for every time, every pair of output-lists intersects

anti- Ω

- Outputs single processes
- At least one id of a correct process is only finitely often output

- Notion was introduced by Chandra et al. (CHT result)
- Every problem has a weakest failure detector (Jayanti & Toueg, PODC'08)

Some weakest failure detector results:

- Consensus with a correct majority and message passing: Ω (Chandra, Hadzilacos and Toueg, 1992)
- Consensus in shared memory: Ω (Hadzilacos and Lo, 1994)
- Generalization for Consensus in message-passing: (Ω, Σ) and the emulation of registers in message-passing: Σ (Delporte, Fauconnier and Guerraoui, 2003)
- In shared-memory for set-agreement: anti- Ω (Zieliński, 2008)
- Σ (\equiv (anti- Ω , Σ)) is sufficient, but not necessary for set-agreement in message-passing (Delporte, Fauconnier and Guerraoui, 2008)
- In shared-memory for k-set-agreement: k-anti-Ω (Gafni/Kouznetsov, Fernandez-Anta/Rajsbaum/Travers, Delporte-Gallet/Fauconnier/Guerraoui/Tielmann, 2009)

o . . .

- Every message passing algorithm can also be executed in shared memory
- \Rightarrow anti- Ω is necessary in message passing
- But is anti-Ω also sufficient?
- No. (Intuition: anti-Ω may behave arbitrary for any finite amount of time)
- $\bullet \Rightarrow$ Our failure detector has to be strictly stronger than anti- Ω
- Zieliński conjectured that Σ (\equiv (anti- Ω , Σ)) is the weakest failure detector for message passing (TR 2007)
- Delporte et al. showed that Σ is sufficient, but not necessary (PODC 2008)

Our Result:

The weakest failure detector for message passing set-agreement is \mathcal{L} .

The Loneliness Detector \mathcal{L} :

- outputs "true" or "false"
- Prop. 1: At least one process never outputs "true"
- **Prop. 2:** If only one process is correct, then it eventually outputs "true" forever

Note that at some processes, the output may be unstable forever.

Algorithm for process p_i :

```
1 to propose(v):
```

```
2 initially:
```

```
send \langle v \rangle to all p_j with j > i;
```

```
4 on receive \langle v' \rangle do:
```

- s send $\langle v' \rangle$ to all;
- 6 decide v'; halt;
- 7 on $\mathcal{L} =$ "true" do:
- send $\langle v \rangle$ to all;
- 9 decide v; halt;

(* decision D1 *)

(* decision D2 *)

Properties of \mathcal{L} :

- Prop. 1: At least one process never outputs "true"
- Prop. 2: If only one process is correct, then it eventually outputs "true" forever

- \bullet To show: every other sufficient failure detector is stronger than ${\cal L}$
- Assume some failure detector \mathcal{D} is sufficient for set-agreement
- Let A be an algorithm s.t. A using D implements set-agreement

Algorithm for process p_i :

- 1 output := "false";
- 2 execute A with value i and detector D, but omit sending messages to others;
- ³ if p_i has decided in A, then *output* := "true";

Proof:

- At least one process never outputs "true" ✓
- If only one process is correct, then it eventually outputs "true" √

Thus, \mathcal{L} is the weakest failure detector for message passing set-agreement.

How does \mathcal{L} compare to anti- Ω and Σ ?

Recall anti- Ω :

- Outputs single processes
- At least one id of a correct process is only finitely often output

(* processes where $\mathcal{L} = "true" *$)

(* anti- Ω -output *)

Algorithm for process p_i :

- 1 initially:
- ² *lonely* := \emptyset ;
- 3 output := $\{1\}$;
- 4 on $\mathcal{L} =$ "true" do:
- $5 \quad lonely := lonely \cup \{i\};$
- $_{6}$ send $\langle \textit{lonely} \rangle$ to all;
- 7 $output := min(\{1, \ldots, n\} \setminus lonely);$
- $_{\rm 8}~$ on receive $\langle \textit{lonely'}\rangle$ do:
- if $lonely \neq lonely'$ then send $\langle lonely \cup lonely' \rangle$ to all;
- 10 *lonely* := *lonely* \cup *lonely*';
- 11 $output := min(\{1, \ldots, n\} \setminus lonely);$

Proof idea:

- For all i: if correct = {p_i}, then eventually L-output = "true" at p_i (say at time t_i).
- Anti- Ω can behave arbitrarily for any finite amount of time.
- For all *i*: let the output at *p_i* up to time *t_i* be the same as if correct = {*p_i*}.
- Let all messages to all p_i be delayed after time t_i .
- \Rightarrow Eventually, \mathcal{L} -output = "true" at all p_i .
- $\bullet \ \Rightarrow \ A \ violation \ of \ the \ specification \ of \ \mathcal{L}.$

Recall the properties of Σ :

- Outputs lists of trusted processes
- Completeness: Eventually, only correct processes are trusted
- Intersection: For every process, for every time, every pair of output-lists intersects.

Implementation of \mathcal{L} using Σ at process p_i :

- 1 output :="false";
- ² If Σ -output = { p_i }, then *output* := "true";

Proof idea ($\Pi = \{p_1, p_2, p_3\}$):

- If correct = $\{p_1\}$ or $\{p_1, p_2\}$, then \mathcal{L} can output "true" at p_1 and p_2 .
- \Rightarrow The failure patterns are indistinguishable for p_1 (for any finite amount of time).
- If correct = $\{p_1\}$, then Σ has to output $\{p_1\}$.
- \Rightarrow If correct = { p_1, p_2 }, then Σ outputs also { p_1 } (and equivalently for p_2).
- \Rightarrow Contradiction to intersection.

Conclusions:

- \mathcal{L} is the weakest failure detector for message passing set-agreement.
- The proof is surprisingly simple (especially compared to the shared memory proof).
- Sometimes results in message passing are easier to prove than in shared-memory.

Outlook:

- Can this approach be extended to *k*-set-agreement?
- Is there some distinct type of a weak register that "belongs" to (k-)set-agreement?