The Weakest Failure Detector for

Message Passing Set-Agreement

Carole Delporte-Gallet!, Hugues Fauconnier?,

Rachid Guerraoui?, Andreas Tielmann!

'Laboratoire d'Informatique Algorithmique, Fondements et Applications (LIAFA),
University Paris VII, France

2School of Computer and Communication Sciences,
EPFL, Switzerland

0/18

Overview

Schedule:

o What is set-agreement?
@ What is a failure detector?
@ What is a weakest failure detector?

@ What is the weakest failure detector for set-agreement?

@ How does this failure detector relate to other failure detectors?

1/18

System Model

n processes M= {p1,...,pn}
Processes communicate by message passing
Fully connected asynchronous network

Reliable channels

Processes may crash
(processes that do not crash are called correct)

The system is enhanced with failure detectors

2/18

Set-Agreement

o Introduced by Chaudhuri (1993)
o Also called (n—1)-set-agreement

o All processes try to agree (decide) on some set of proposed
values:

Agreement: At most n — 1 values are decided.
Validity: Every value decided must have been proposed.
Termination: Eventually, every correct process decides.

o Generalization of consensus (at most 1 value is decided)
@ Trivially solvable, if less than n — 1 processes may crash

e Not solvable, if any number of processes may crash
(Saks/Zaharoglou, Borowsky/Gafni, Herlihy/Shavit)
(even in shared memory)

@ But: solvable with additional information about failures
(= failure detectors)

3/18

Failure Detectors

Introduced by Chandra and Toueg (1996)

@ Allow to circumvent some impossibility results (e.g. for
Consensus)

Modeled as distributed oracles

Provide information about failures that occur in an execution

Provide no otherwise information

o Can be specified as a function of a failure pattern
o Cannot provide any information about messages sent or the
state of the processes

4/18

Examples of Failure Detectors

o Outputs single processes

o Eventually, the same correct process is output at all correct
processes

Y (the quorum failure detector)

@ Outputs lists of trusted processes
o Eventually, only correct processes are trusted

o For every process, for every time, every pair of output-lists
intersects

@ Outputs single processes

@ At least one id of a correct process is only finitely often output

5/18

What is a weakest Failure Detector?

A weakest failure detector D for a problem P has to be ...

Sufficient: with D it is possible to solve P

Necessary: every other sufficient failure detector is stronger than
(= can emulate) D

@ Notion was introduced by Chandra et al. (CHT result)

@ Every problem has a weakest failure detector (Jayanti &
Toueg, PODC'08)

6/18

Previous Results
Some weakest failure detector results:

@ Consensus with a correct majority and message passing: €2
(Chandra, Hadzilacos and Toueg, 1992)

o Consensus in shared memory:) (Hadzilacos and Lo, 1994)

@ Generalization for Consensus in message-passing: (€2,)
and the emulation of registers in message-passing: >
(Delporte, Fauconnier and Guerraoui, 2003)

@ In shared-memory for set-agreement: anti-(2 (Zielinski, 2008)

@ ¥ (= (anti-, X)) is sufficient, but not necessary for
set-agreement in message-passing (Delporte, Fauconnier and
Guerraoui, 2008)

@ In shared-memory for k-set-agreement: k-anti-(2
(Gafni/Kouznetsov, Fernandez-Anta/Rajsbaum/Travers,
Delporte-Gallet/Fauconnier/Guerraoui/Tielmann, 2009)

7/18

Can we derive a failure detector from the shared-memory proof?

@ Every message passing algorithm can also be executed in
shared memory

= anti-{2 is necessary in message passing

But is anti-Q also sufficient?

No. (Intuition: anti-Q2 may behave arbitrary for any finite
amount of time)

= Our failure detector has to be strictly stronger than anti-Q2

Zielinski conjectured that > (= (anti-Q, X)) is the weakest
failure detector for message passing (TR 2007)

Delporte et al. showed that X is sufficient, but not necessary
(PODC 2008)

Our Result:

The weakest failure detector for message passing set-agreement is
L.

8/18

The Loneliness (Failure-) Detector £

The Loneliness Detector L:

@ outputs “true” or “false”
@ Prop. 1: At least one process never outputs “true”

@ Prop. 2: If only one process is correct, then it eventually
outputs “true” forever

Note that at some processes, the output may be unstable forever.

9/18

L is sufficient for Set-Agreement
Algorithm for process p;:

1 to propose(v):

> initially:

3 send (v) to all p; with j > /;
4+ on receive (V') do:

send (v') to all;

o

6 decide v'; halt; (* decision D1 x)
7 on L = “true” do:

8 send (v) to all;

9 decide v; halt; (* decision D2 %)

Properties of L:

Prop. 1: At least one process never outputs Validity: v

“trye”

Termination: v
Prop. 2: If only one process is correct, then
it eventually outputs “true” forever

Agreement:

10/18

L is necessary for Set-Agreement

@ To show: every other sufficient failure detector is stronger
than £
@ Assume some failure detector D is sufficient for set-agreement

o Let A be an algorithm s.t. A using D implements
set-agreement

Algorithm for process p;:

1 output := “false”;

> execute A with value i and detector D, but omit sending
messages to others;

3 if p; has decided in A, then output := “true”;

@ At least one process never outputs “true” v

@ If only one process is correct, then it eventually outputs
“true” v

11/18

Comparison with other Failure Detector Classes

Thus, L is the weakest failure detector for message passing
set-agreement.

How does £ compare to anti-€2 and X 7

12/18

Implementation of anti-2 using £

Recall anti-£2:
@ Outputs single processes

@ At least one id of a correct process is only finitely often output

Algorithm for process p;:

1 initially:
> lonely := () (* processes where £ = “true” x)
s output = {1}; (* anti-Q-output *)

+ on L = "true” do:

s lonely := lonely U {i};

s send (lonely) to all;

7 output:=min({1,...,n}\ lonely);

s on receive (lonely) do:

o if lonely # lonely then send (lonely U lonely) to all;
10 lonely := lonely U lonely;

u output:=min({1,...,n}\ lonely);

" 13/18

Anti- is not stronger than £

@ For all i: if correct = {p;}, then eventually L-output = “true”
at p; (say at time t;).

Anti-Q can behave arbitrarily for any finite amount of time.

For all j: let the output at p; up to time t; be the same as if
correct = {p;}.

Let all messages to all p; be delayed after time t;.

(]

= Eventually, L-output = “true” at all p;.

@ = A violation of the specification of L.

14/18

Implementation of £ using X

Recall the properties of ¥ :

@ Outputs lists of trusted processes
o Completeness: Eventually, only correct processes are trusted

o Intersection: For every process, for every time, every pair of
output-lists intersects.

Implementation of £ using X at process p;:

1 output := “false”;
> If X-output = {p;}, then output := “true”;

15/18

> is not stronger than £, if n > 2:

Proof idea (M = {p1, p2, p3}):

o If correct = {p1} or {p1, p2}, then L can output “true” at p;
and po.

@ = The failure patterns are indistinguishable for p; (for any
finite amount of time).

o If correct = {p1}, then X has to output {p1}.

e = If correct = {p1, p2}, then X outputs also {p1} (and
equivalently for py).

@ = Contradiction to intersection.

16/18

Relations between the Failure Detector Classes

emulating registers set-agreement set-agreement
in message-passing in message-passing in shared-memory

| | |

> L anti-2
is strictly stronger s strictly stronger

(n>2)

17/18

Conclusions:

@ L is the weakest failure detector for message passing
set-agreement.

@ The proof is surprisingly simple (especially compared to the
shared memory proof).

@ Sometimes results in message passing are easier to prove than
in shared-memory.

Can this approach be extended to k-set-agreement?

@ Is there some distinct type of a weak register that “belongs”
to (k-)set-agreement?

18/18

