
An Improved Snap-Stabilizing PIF Algorithm

Lélia Blin, Alain Cournier, and Vincent Villain

LaRIA, Université de Picardie Jules Verne, France
5, rue du Moulin Neuf, 80000 Amiens, France

{blin,cournier,villain}@laria.u-picardie.fr

Abstract. A snap-stabilizing protocol, starting from any arbitrary ini-
tial configuration, always behaves according to its specification. In [10],
Cournier and al. present the first snap-stabilizing Propagation of Infor-
mation with Feedback (PIF) protocol in arbitrary networks. But, in or-
der to achieve the desirable property of snap-stabilization, the algorithm
needs the knowledge of the exact size of the network. This drawback
prevents the protocol from working on dynamical systems. In this paper,
we propose an original protocol which solves this drawback.

Keywords: Fault-tolerance, propagation of information with feedback,
reset protocols, self-stabilization, snap-stabilization, wave algorithms.

1 Introduction

Chang [8] and Segall [18] defined the concept of Propagation of Information
with Feedback (PIF) (also called wave propagation). A processor p initiates the
first phase of the wave: the propagation or broadcast phase. Every processor,
upon receiving the first broadcast message, chooses the sender of this message
as its parent in the PIF wave, and forwards the wave to its neighbors except
its parent. When a processor receives a feedback (acknowledgment) message
from all its children with respect to the current PIF wave, it sends a feedback
message to its parent. So, eventually, the feedback phase ends at p. Broadcast
with feedback scheme has been used extensively in distributed computing to solve
a wide class of problems, e.g., spanning tree construction, distributed infimum
function computations, snapshot, termination detection, and synchronization
(see [17, 19, 16] for details). So, designing efficient fault-tolerant wave algorithms
is an important task in the distributed computing research.

The concept of self-stabilization [12] is the most general technique to design
a system to tolerate arbitrary transient faults. A self-stabilizing system, regard-
less of the initial states of the processors and initial messages in the links, is
guaranteed to converge to the intended behavior in finite time. Snap-stabilization
was introduced in [7]. A snap-stabilizing algorithm guarantees that it always be-
haves according to its specification. In other words, a snap-stabilizing algorithm
is also a self-stabilizing algorithm which stabilizes in 0 steps. Obviously, a snap-
stabilizing protocol is optimal in stabilization time.

S.-T. Huang and T. Herman (Eds.): SSS 2003, LNCS 2704, pp. 199–214, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



200 Lélia Blin et al.

Related Work. PIF algorithms have been proposed in the area of self-
stabilization, e.g., [7, 13, 15] for tree networks, and [9, 10, 20] for arbitrary
networks. The self-stabilizing PIF protocols have also been used in the area
of self-stabilizing synchronizers [2, 4, 6]. The most general method to “repair”
the system is to reset the entire system after a transient fault is detected. Re-
set protocols are also PIF-based algorithms. Several reset protocols exist in
the self-stabilizing literature (see [1, 3, 4, 5, 20]). Self-stabilizing snapshot al-
gorithms [14, 20] are also based on the PIF scheme. The first snap-stabilizing
PIF algorithm for arbitrary networks has been presented in [10].

Contribution. In [10], the system needs the knowledge of the exact size of the
network (i.e., the number of processors). So this size must be constant and
the protocol cannot work on dynamical networks. In this paper, we solve this
drawback by the composition of three protocols. The first one is the actual PIF
protocol, the second one allows the processors to execute the feedback phase,
and the role of the third one is to deal with the processors having an abnormal
state.

Outline of the paper. In the next section (Section 2), we describe the distributed
system and the model in which our PIF scheme is written. In the same sec-
tion, we also state what it means for a protocol to be snap-stabilizing and give
a formal statement of the problem solved in this paper. The PIF algorithm is
presented in Section 3. We then prove the correctness of the algorithm in Sec-
tion 4, followed by the complexity analysis. Finally, we make some concluding
remarks in Section 5.

2 Preliminaries

Distributed System. We consider an asynchronous network of N processors con-
nected by bidirectional communication links according to an arbitrary topology.
We consider networks which are asynchronous. Neigp denotes the set of neigh-
bors of processor p (Neigp is shown as an input from the system). We consider
the local shared memory model of communication. The program of every pro-
cessor consists of a set of shared variables (henceforth, referred to as variables)
and a finite set of actions. A processor can only write to its own variables, and
read its own variables and variables owned by the neighboring processors.

Each action is of the following form: < label >::< guard >−→<
statement >. The guard of an action in the program of p is a boolean expression
involving the variables of p and its neighbors. The statement of an action of p
updates one or more variables of p. An action can be executed only if its guard
evaluates to true. We assume that the actions are atomically executed, meaning,
the evaluation of a guard and the execution of the corresponding statement of
an action, if executed, are done in one atomic step.

The state of a processor is defined by the value of its variables. The state of
a system is the product of the states of all processors (∈ V ). We will refer to



An Improved Snap-Stabilizing PIF Algorithm 201

the state of a processor and system as a (local) state and (global) configuration,
respectively. Let a distributed protocol P be a collection of binary transition
relations denoted by �→, on C, the set of all possible configurations of the system.
A computation of a protocol P is a maximal sequence of configurations e =
γ0, γ1, . . . , γi, γi+1, . . ., such that for i ≥ 0, γi �→ γi+1 (a single computation
step) if γi+1 exists, or γi is a terminal configuration. Maximality means that the
sequence is either infinite, or it is finite and no action of P is enabled in the
final configuration. All computations considered in this paper are assumed to
be maximal. The set of all possible computations of P in system S is denoted
as E . A processor p is said to be enabled in γ (γ ∈ C) if there exists an action A
such that the guard of A is true in γ. We consider that any processor p executed
a disable action in the computation step γi �→ γi+1 if p was enabled in γi and not
enabled in γi+1, but did not execute any action between these two configurations.
(The disable action represents the following situation: At least one neighbor of p
changed its state between γi and γi+1, and this change effectively made the
guard of all actions of p false.) Similarly, an action A is said to be enabled (in γ)
at p if the guard of A is true at p (in γ).

We assume a weakly fair and distributed daemon. The weak fairness means
that if a processor p is continuously enabled, then p will be eventually chosen by
the daemon to execute an action. The distributed daemon implies that during
a computation step, if one or more processors are enabled, then the daemon
chooses at least one (possibly more) of these enabled processors to execute an
action.

In order to make our algorithmmore readable, we designed it as a composition
of three algorithms. In this composition, if a processor p is enabled for k of the
combined protocols, then, if the daemon chooses it, p executes an enabled action
of each of the k protocols, in the same step. Variables, predicates, or macros of
an algorithm A used by an algorithm B are shown as inputs in Algorithm B.

In order to compute the time complexity measure, we use the definition of
round [13]. This definition captures the execution rate of the slowest processor
in any computation. Given a computation e (e ∈ E), the first round of e (let
us call it e′) is the minimal prefix of e containing the execution of one action
(an action of the protocol or the disable action) of every continuously enabled
processor from the first configuration. Let e′′ be the suffix of e, i.e., e = e′e′′.
The second round of e is the first round of e′′, and so on.

Snap-Stabilization. Let X be a set. x 
 P means that an element x ∈ X satisfies
the predicate P defined on the set X .
Definition 1 (Snap-Stabilization). Let T be a task, and SPT a specification
of T . The protocol P is snap-stabilizing for the specification SPT on E if and
only if the following condition holds: ∀e ∈ E :: e 
 SPT .

The Problem To Be Solved. Any processor can be an initiator in a PIF protocol,
and several PIF protocols may run simultaneously. We consider the problem in
this paper in a general setting of the PIF scheme where we assume that the PIF
is initiated by a processor, called the root. We denote the root processor by r.



202 Lélia Blin et al.

Specification 1 (PIF Cycle) A finite computation e = γ0, . . . , γi, γi+1, . . . ,
γt ∈ E is called a PIF Cycle, if and only if the following condition is true:
If Processor r broadcasts a message m in the computation step γ0 �→ γ1, then:

[PIF1] For each p �= r, there exists a unique i ∈ [1, t− 1] such that p receives m
in γi �→ γi+1, and

[PIF2] In γt, r receives an acknowledgment of the receipt of m from every pro-
cessor p �= r.

Remark 1. So in practice, to prove that a PIF algorithm is snap-stabilizing we
have to show that every execution of the algorithm satisfies the following two
conditions: 1. if r has a message m to broadcast, then it will be able to start
the broadcast in a finite time, and 2. starting from any configuration where r is
ready to broadcast, the system satisfies Specification 1.

3 Algorithm

The snap-stabilizing PIF algorithm we proposed is divided in three parts: PIF
Algorithm (Algorithms 1 and 2), Question Algorithm (Algorithms 3 and 4), and
Error Algorithm (Algorithms 5 and 6). PIF Algorithm is the main algorithm.
It works in three phases: the broadcast phase, the feedback phase following the
broadcast phase, and the cleaning phase which cleans the trace of the feedback
phase so that the root is ready to broadcast a new message. Question Algorithm
controls that the processors do not execute the feedback phase too early. Error
Algorithm cleans the processors which do not have a normal configuration.

We first present the normal behavior of the PIF algorithm. We then explain
the method of error correction.

3.1 Normal Behavior

Consider the configuration where ∀p, P ifp = C. We refer to this configuration
as the normal starting configuration. In this configuration, the root is the only
enabled processor. The root broadcasts a message m and switches to the broad-
cast phase by executing Pifr = B (B-action). When a processor p (such that
Pifp = C) waiting for a message finds one of its neighbors q in the broadcast
phase, p receives the message from q. Then, p sets its variable Pifp to B, points
to q using the variable Parp, and sets its level Lp to Lq + 1 (B-action). Typ-
ically, Lp contains the length of the path followed by the broadcast message
from the root r to p. (Since r never receives a broadcast message from any of
its neighbor, r does not have any variable Par and Lr is shown as a constant
in the algorithm.) Processor p is now in the broadcast phase (Pifp = B) and
is supposed to broadcast the message to its neighbors (except Parp). So, step
by step, a spanning tree (w.r.t. the variable Par) rooted at r is dynamically
built during the broadcast phase. Let us call this tree the B-treer. Each time
a processor broadcast m, it also executes Quep := Q (QB-action in Question



An Improved Snap-Stabilizing PIF Algorithm 203

Algorithm). When its neighbors (with variable Pif �= C) have taken p’s ques-
tion in account by setting Que to R (QR-action), p can also execute QR-action,
meaning that it send a request to r: ”Do you authorize me to feedback?”. Even-
tually, some processors in B-treer cannot broadcast the message because all its
neighbors have received the message from some other neighbor. The processors
which are not able to broadcast the message further are the leaves of B-treer. In
this case the leaves execute Quep := W (QW -action), meaning that now they
are waiting for an answer from r. This action is propagated toward the root
if possible. (p propagates it if all its children in B-treer have setted their Que
variable to W and no neighbor has still Pifp = C.) With similar conditions, r
executes its QA-action: it sends an answer to its children (QA-action) meaning
that they are authorized to feedback. When a leaf receives this answer, it can
execute the feedback phase (F -action). So, step by step, every processor p prop-
agates the feedback phase towards the root in B-treer by executing F -action.
The feedback phase eventually reaches the root r. Finally, the leaf processors
in B-treer initiate the third phase, called the cleaning phase. The aim of this
phase is to erase the trace of the last PIF cycle (the broadcast phase followed
by the feedback phase) initiated by the root, i.e., to bring the system in the nor-
mal starting configuration again (∀p, P ifp = C). A leaf processor p in B-treer

initiates the cleaning phase by setting Pifp to C when each of its neighbors q
is either in the feedback phase (Pifq = F ) or in the cleaning phase (Pifq = C).
So, the cleaning phase works in parallel and follows the feedback phase. Once
all neighbors of the root change to the cleaning phase, the root also participates
in the cleaning phase.

3.2 Error Correction

During the normal behavior, the processors must maintain some properties based
on the value of their variables and that of their parent. For the processors p which
are not the root (p �= r), we list some of those conditions below:

1. If p is in the broadcast phase, then its parent is also in the broadcast phase.
Also, if p is in the feedback phase, then its parent is either in the broadcast
or feedback phase (Predicate GoodP if in PIF Algorithm).

2. If p is involved in the PIF Cycle (Pifp �= C), then its level Lp must be equal
to one plus the level of its parent (Predicate GoodLevel in PIF Algorithm).

3. If p is involved in the PIF Cycle it must satisfy (1) and (2) (Predicate
¬AbRoot in PIF Algorithm).

Starting now from any configuration, a processor p may satisfy AbRoot. In
this case, we cannot simply set Pifp to C. Assume that Pifp = B. Since p
satisfies AbRoot, that means that some processors in the broadcast phase can
be in the abnormal tree rooted in p (B-treep). If we simply set Pifp to C, p
can participate again to the broadcast of the tree of which it was the root.
Since we do not assume the knowledge of any bound on the L values (we may
assume that the maximum value of L is any upper bound of N), this scheme



204 Lélia Blin et al.

can progress infinitely often (respectively, too many times), and the system con-
tains an abnormal tree which can prevent (respectively, dramaticaly slow down)
the progression of the tree of the normal broadcast phase (B-treer). Error Al-
gorithm solves this problem by paralyzing the progress of any abnormal tree
before to remove it. A processor p can broadcast a message from a neighbor q
only if q satisfies Pifq = B and FreeError(q), i.e., Eq = C (see Potential
and Pre Potential in PIF Algorithm). So, if p is an abnormal root, it sets its
variable Ep to B and broadcasts this value in its tree (and only in its tree).
When p receives an aknowledgment of all its children (value F of variable E), it
knows that all the processors q of its tree have Eq = F and no processor can now
participate in the broadcast of q. Then p can leave its tree and it will not try
to broadcast a message of one of the processors q before q broadcasts a message
of another tree. By this process, all abnormal trees eventually disappear, and
B-treer will be able to grow until it reaches all the processors of the network.

Question Algorithm has now to deal with abnormal trees meaning that some
processor p broadcasting the message from r can execute the B-action while q,
one of its neighbors, belongs to an abnormal tree. Then, to prevent q to set Queq

to A, p is waiting for q to set Queq to R (QR-action). This value will erase all A
values in the path from q to the abnormal root. Since only r can generate a A
value, q will never receives any A and will eventually leave the abnormal tree as
described above.

Algorithm 1 PIF for the root (p = r).

Input:
Neigp: set of (locally) ordered neighbors of p
AnswerOK(): predicate from Question Algorithm

Constant:
Lp = 0

Variables:
Pifp ∈ {B, F, C}

Predicates:
Leaf(p) ≡ (∀q ∈ Neigp :: (Pifq �= C) ⇒ (Parq �= p));

Broadcast(p) ≡ (Pifp = C) ∧ Leaf(p);
CFree(p) ≡ (∀q ∈ Neigp :: (Pifq �= C);
BLeaf(p) ≡ (Pifp = B) ∧ (∀q ∈ Neigp :: (Parq = p) ⇒ (Pifq = F ));

Feedback(p) ≡ BLeaf(p) ∧ CFree(p) ∧ AnswerOK(p);
Cleaning(p) ≡ (Pifp = F ) ∧ Leaf(p) ∧ (∀q ∈ Neigp :: Pifq �= B));

Actions:
B-action :: Broadcast(p) → Pifp := B;
F -action :: Feedback(p) → Pifp := F
C-action :: Cleaning(p) → Pifp := C



An Improved Snap-Stabilizing PIF Algorithm 205

Algorithm 2 PIF for p �= r.

Input:
Neigp: set of (locally) ordered neighbors of p
AnswerOK(): predicate from Question Algorithm
FreeError(), CError(): predicates from Error Algorithm

Variables:
Pifp ∈ {B, F, C}
Lp : integer
Parp ∈ Neigp

Macros:
Pre Potentialp = {q ∈ Neigp :: (Pifq = B) ∧ (Parq �= p) ∧ FreeError(q)};

Potentialp = {q ∈ Pre Potential :: ∀q′ ∈ Pre Potential, Lq ≤ Lq′};
Childp ≡ {q ∈ Neigp :: (Pifq ∈ {B, F}) ∧ (Parq = p)

∧[(Pifp �= Pifq) ⇒ (Pifp = B)] ∧ (Lq = Lp + 1)};
Predicates:

Leaf(p) ≡ (∀q ∈ Neigp :: (Pifq �= C) ⇒ (Parq �= p));
Broadcast(p) ≡ (Pifp = C) ∧ Leaf(p) ∧ (Potentialp �= ∅);

CFree(p) ≡ (∀q ∈ Neigp :: (Pifq �= C);
BF (p) ≡ (Pifp = B) ∨ (Pifp = F );

GoodP if(p) ≡ BF (p) ⇒ ((PifParp �= Pifp) ⇒ (PifParp = B));
GoodLevel(p) ≡ BF (p) ⇒ (Lp = LParp + 1);

AbRoot(p) ≡ ¬GoodP if(p) ∨ ¬GoodLevel(p);
Normal(p) ≡ ¬AbRoot(p) ∧ FreeError(p);
BLeaf(p) ≡ (Pifp = B) ∧ (∀q ∈ Neigp :: (Parq = p) ⇒ (Pifq = F ));

Feedback(p) ≡ BLeaf(p) ∧ Normal(p) ∧ CFree(p) ∧ AnswerOK(p);
Cleaning(p) ≡ (Pifp = F ) ∧ Normal(p) ∧ Leaf(p) ∧ (∀q ∈ Neigp :: Pifq �= B));

Actions:
B-action :: Broadcast(p) → Pifp := B;Parp := min≺p(Potentialp);Lp :=LParp+1;
F -action :: Feedback(p) → Pifp := F
C-action :: Cleaning(p) → Pifp := C
E-action :: CError(p) → Pifp := C

4 Proof of Correctness

As the system can start in an arbitrary (including an undesirable) configura-
tion, we need to show that the algorithm can deal with all the possible errors.
To characterize these erroneous configurations, in Subsection 4.1, we define some
terms to distinguish these configurations. Moreover, we must show that despite
these erroneous configurations, the system always behaves according to its spec-
ifications, i.e., is snap-stabilizing.

4.1 Some Definitions

Definition 2 (E-Trace). Let Y be a t-uple of processors (Y = (p0, p1, . . . , pk)).
E − trace(Y ) = E0E1 . . . Ek is the sequence of the values of Variable E on
processors pi (i = 0 . . . k).



206 Lélia Blin et al.

Algorithm 3 Question Algorithm for the root (p = r).

Input:
Neigp: set of (locally) ordered neighbors of p
Parq, Pifp, Pifq : variables from PIF
CFree(),Broadcast(): predicate from PIF

Variables: Quep ∈ {Q, R, A}
the protocol below concerns only p such that Pifp ∈ {B, F}
Predicates:

Require(p) ≡ ([(Quep = Q) ∧ (∀q ∈ Neigp :: (Queq ∈ {Q, R})]
∨[(Queq ∈ {W, A})
∧(∃q ∈ Neigp :: (Queq = Q) ∨ ((Parq = p) ∧ (Queq = R)))]);

Answer(p) ≡ (Quep = R) ∧ CFree(p)
∧(∀q ∈ Neigp :: (Pifq �= C) ⇒ [((Parq = p) ∧ (Queq = W ))

∨((Parq �= p) ∧ (Queq ∈ {W, A}))]);
AnswerOK(p) ≡ (Quep = A) ∧ (∀q ∈ Neigp :: (Pifp �= C) ⇒ (Queq = A));
Actions:
QB-action :: Broadcast(p) → Quep := Q
QR-action :: Require(p) → Quep := R
QA-action :: Answer(p) → Quep := A

Example: Let p and q be two processors such that Ep = C and Eq = B. Then
E − Trace(p, q) = CB.

Definition 3 (E-Prohibited Pairs). Let p and q such that Pifp �= C and
Pifq �= C, and Parq = p. The E − trace(p, q) of type {CB,CF, FC, FB} are
called E-prohibited pairs. In this case, we also say that E − trace(p, q) is E-
prohibited.

Remark 2. Let p and q such that Pifp �= C and Pifq �= C, and Parq = p.
E − trace(p, q) is E-prohibited if and only if (FCorrection(p) ∧ Eq �= F ) ∨
BCorrection(q) ∨ (FCorrection(q) ∧ Ep = C).

Definition 4 (Path). The sequence of processors p0, p1, p2, . . . pk is called
a path if ∀i, 1 ≤ i ≤ k, pi ∈ Neigi−1. The path is referred to as an ele-
mentary path if ∀i, j, 0 ≤ i < j ≤ k, pi �= pj. The processors p0 and pk are
termed as the extremities of the path.

Definition 5 (ParentPath). For any processor p such that BF (p), a unique
path p0, p1, p2, . . . pk = p, called ParentPath(p), exists if and only if the following
conditions are true: 1. ∀i, 1 ≤ i ≤ k, Parpi = pi−1. 2. ∀i, 1 ≤ i ≤ k, BF (pi) ∧
¬AbRoot(pi)∧ (E−Trace(pi−1, p) is not E-prohibited). 3. p0 = r or AbRoot(p0)
or E − Trace(Parp0 , p0) is E-prohibited.

Definition 6 (Tree). For any processor p such that p = r or p is an abnormal
processor, we define a set Tree(p) of processors as follows: For any processor q,
q ∈ Tree(p) if and only if p is the first extremity of ParentPath(q).



An Improved Snap-Stabilizing PIF Algorithm 207

Algorithm 4 Question Algorithm for p �= r.

Input:
Neigp: set of (locally) ordered neighbors of p
Parp, Parq, Pifp, Pifq: variables from PIF
CFree(),Broadcast(): predicate from PIF

Variables: Quep ∈ {Q, R, W,A}
the protocol below concerns only p such that Pifp ∈ {B, F}
Predicates:

Require(p) ≡ ¬AbRoot(p)
∧([(Quep = Q) ∧ (∀q ∈ Neigp :: (Queq ∈ {Q, R})]
∨[(Queq ∈ {W, A}) ∧ (∃q ∈ Neigp :: (Queq = Q)

∨((Parq = p) ∧ (Queq = R)))]);
Wait(p) ≡ ¬AbRoot(p) ∧ (Quep = R) ∧ (QueParp = R) ∧ CFree(p)

∧(∀q ∈ Neigp :: (Queq �= Q) ∧ ((Parq = p) ⇒ (Queq = W )));
Answer(p) ≡ ¬AbRoot(p) ∧ (Quep = W ) ∧ (QueParp = A)

∧(∀q ∈ Neigp :: (Pifq �= C) ⇒ [((Parq = p) ∧ (Queq = W ))
∨((Parq �= p) ∧ (Queq ∈ {W, A}))]);

AnswerOK(p) ≡ (Quep = A) ∧ (∀q ∈ Neigp :: (Pifp �= C) ⇒ (Queq = A));
Actions:
QB-action :: Broadcast(p) → Quep := Q
QR-action :: Require(p) → Quep := R
QW -action :: Wait(p) → Quep := W
QA-action :: Answer(p) → Quep := A

Algorithm 5 Error Algorithm for the root (p = r).

Constant:
Ep = C

Definition 7 (NormalTree). A tree containing only processors p such that
Normal(p)∨p = r is called a NormalT ree. Obviously, the system contains only
one NormalT ree: this tree is rooted by r. A tree rooted by another processor
than r is called an AbnormalT ree.

Definition 8 (Alive). A tree T satisfies Alive(T ) (or is called Alive) if and
only if: ∃p ∈ T such that (Pifp = B) ∧ (Ep = C).

Definition 9 (Dead). A tree T satisfies Dead(T ) (or is called Dead) if and
only if¬Alive(T ).

Remark 3. No processor can hook a Dead tree.

Definition 10 (Alive AbNormal Root: AAR). A processor p is called AAR
if and only if AbRoot(p) ∧Alive(Tree(p)).

Definition 11 (Falldown Alive AbNormal Root: FAAR). A processor p
is called FAAR if and only if CError(p) ∧AAR(p).



208 Lélia Blin et al.

Algorithm 6 Error Algorithm for p �= r.

Input:
Parp, Pifp: variables from PIF
Childp: macro from PIF
AbRoot(), BF (): predicates from PIF

Variables:
Ep ∈ {B, F, C}

General Predicate:
FreeError(p) ≡ BF (p) ⇒ (Ep = C);

the action below concerns only p such that Pifp = C

Action:
EB-init :: Broadcast(p) → Ep := C

the protocol below concerns only p such that Pifp ∈ {B, F}
Predicates:

BError(p) ≡ (Ep = C) ∧ (AbRoot(p)∨ (EParp = B)) ∧ (∀q ∈ Childp :: Eq = C);
FError(p) ≡ (Ep = B) ∧ (AbRoot(p) ∨ (EParp = B)) ∧ (∀q ∈ Childp :: Eq = F );

FAbRoot(p) ≡ (Ep = F ) ∧ AbRoot(p);
BCorrection(p) ≡ [(Ep = B) ∧ (¬AbRoot(p))∧ (Eparp �= B)];
FCorrection(p) ≡ (Ep = F ) ∧ [(¬AbRoot(p) ∧ Eparp = C) ∨ (∃q ∈ Childp :: Eq �= F )];

CError(p) ≡ FAbRoot(p) ∨ BCorrection(p) ∨ FCorrection(p);
Actions:
EB-action :: BError(p) → Ep := B
EF -action :: FError(p) → Ep := F
EC-action :: CError(p) → Ep := C

Definition 12 (Potential Falldown Alive AbNormal Root:PFAAR).
A processor p is called PFAAR in γ0 if and only if ∃e : γ0γ1 . . . γi . . . such
that ∃i ≥ 0, p is FAAR in γi.

4.2 Abnormal Processors

In this subsection, we show that the network contains no abnormal processor in
at most 3N − 2 rounds. We first deduce from the algorithm and Remark 2 the
following lemma.

Lemma 1. Any p in the NormalT ree satisfies E − Trace(ParentPath(p)) ∈
C+, and any p in an AbnormalT ree satisfies E − Trace(ParentPath(p)) ∈
B∗C∗ ∪B∗F ∗.

Lemma 2. Error Algorithm never generates E-prohibited pairs.

Proof. Let p and q such that Parq = p. By checking all the non E-prohibited
pairs (Pifp = C , Pifq = C , or E − trace(p, q) ∈ {BB,BC,BF,CC, FF})
and the actions of Error Algorithm, it is easy to see that we cannot create any
E-prohibited pair.



An Improved Snap-Stabilizing PIF Algorithm 209

By checking the actions of PIF and Error Algorithms and by Lemma 2, we
can deduce the following result.

Lemma 3. After the first round the system cannot contain any E-prohibited
pair.

Proof. Let p and q be two processors such that E− trace(p, q) is E-prohibited at
the first configuration (Parq = p, Pifp �= C , Pifq �= C , and E − trace(p, q) ∈
{CB,CF, FC, FB}).

1. Assume that E − Trace(p, q) = CB. The only actions of PIF or Error
Algorithm q can execute are E-action and EC-action, respectively, since
BCorrection(q) ⇒ CError(q). Until q moves, no action of p can change the
value of Ep or set Pifp to C. So q is continuously enabled and, since the
daemon is weakly fair, q will execute the E-action and EC-action during the
first round. After this move, E − Trace(p, q) is never more an E-prohibited
pair.

2. Assume that E−Trace(p, q) = CF . The case is similar to the previous one.
3. Assume that E − Trace(p, q) = FC. The only actions of PIF or Error
Algorithm p can execute are E-action and EC-action, respectively, since
FCorrection(p) ⇒ CError(p). If q is not enabled or does not move be-
fore p, p will execute E-action and EC-action during the first round. After
this move, E − Trace(p, q) is never more an E-prohibited pair. Assume now
that q is enabled and moves before p. Depending on Pifp and Pifq, q can
satisfy Feedback(q) or Cleaning(q).
(a) If q satisfies Feedback(q) (in this case Pifp = Pifq = B), it executes

Now q cannot be enabled for PIF until p moves. Since p is still en-
abled, the system is still executing the first round, and , as previously, p
eventually executes execute the E-action and EC-action during the first
round. After this move, E − Trace(p, q) is never more an E-prohibited
pair.

(b) If q satisfies Cleaning(q) (in this case Pifp = Pifq = F ), executes
C-action. Now Pifq = C and E − Trace(p, q) is never more an E-
prohibited pair.

4. Assume that E − Trace(p, q) = FB. Both p and q satisfy CError(). When
one of them (or both of them) executes the E-action and EC-action, E −
Trace(p, q) is never more an E-prohibited pair.

By Lemma 2, Error Algorithm never generates E-prohibited pairs. Since we
just showed that the initial E-prohibited pairs disappear in one round, the lemma
is proved.

Corollary 1. After the first round, the predicates BCorrection(p) and FCorre-
ction(p) will be never more satisfied. The only two ways for a processor p to
change Pifp to C are: p satisfies FAbRoot(p), therefore it satisfies AbRoot(p),
or p satisfies Leaf(p).



210 Lélia Blin et al.

Lemma 4. After the first round the root of an abnormal tree can leave it only
if the tree is dead.

Proof. Let ar be the root of an abnormal tree. From Lemma 1, for all p in
Tree(ar), E − Trace(ParentPath(p)) ∈ B∗C∗ ∪ B∗F ∗. By Error Algorithm,
ar cannot leave the tree until Ear = F . So, when ar executes E-action and
EC-action, E − Trace(ParentPath(p)) ∈ F+ for all p in Tree(ar). By Defini-
tion 9 , Tree(ar) is dead.

Lemma 5. Every processor p such that PIFp = C in γ satisfies ¬PFAAR(p).

Proof. If p never moves then the lemma holds. Assume now that p executes
B-action. Let q be the parent of p, q is in an abnormal tree. Ep = C after p
moves. So by Lemma 4, the root of the abnormal tree will leave the tree only
when the tree is dead. When p becomes the root of a part of the initial tree,
Tree(p) is still dead and the lemma holds.

Lemma 6. After the first round, every processor p satisfies ¬PFAAR(p).

Proof. We check the three possible cases after the first round.
(1) If p verifies Pifp = C, by Lemma 5, p satisfies ¬PFAAR(p).
(2) If p is in the normal tree then it must execute C-action before to be able

to hook on to an abnormal tree. After p executes C-action, Pifp = C. Lemma 5
implies that p satisfies ¬PFAAR(p).

(3) If p is in an abnormal tree then Lemma 4 implies that p leaves the tree
only if Tree(p) is dead. So, when p leaves the tree, it does not verify FAAR(p),
since after this move, p verifies Pifp = C, by the same reasoning as previously, p
satisfies ¬PFAAR(p).

Lemma 7. After the first round all abnormal trees become dead in at most N−1
rounds.

Proof. Corollary 1 implies that after the first round, the root p of an abnormal
tree cannot leave it before Ep = F . The worst case is obtained when any pro-
cessor in the tree has the C value in Variable E. So, it is necessary to propagate
the B value from the root to the leaves. Then, h + 1 rounds are necessary to
propagate this value where h is the maximum height of the tree. All the pro-
cessors different from the root can be in the abnormal tree, this implies that
the maximum height is N − 2, thus the system needs at most N − 1 rounds to
propagate B in the tree.

Lemma 8. In at most 3N−2 rounds, the system does not contain any abnormal
tree.

Proof. From Lemma 6, after the first round, no processor can leave an abnormal
tree and hook on to it again. So any abnormal tree can only contain any processor
at most once, and then, disappear once the successive abnormal roots leave it
(see Lemma 1). As in proof of Lemma 7, it is necessary to have N − 1 rounds to
propagate the value F up, andN−1 rounds to apply C−action and EC−action.
After that, all the dead trees have disappear and the system does not contain
any abnormal tree in at most 3N − 2 rounds.



An Improved Snap-Stabilizing PIF Algorithm 211

4.3 Proof of Snap-Stabilisation

Lemma 9. From any initial configuration containing no abnormal tree, the root
executes the B-action in at most 5N rounds.

Proof. From these configurations, the worst case is the following: The root has
Pifr = B and all the other processors have their Pif variable equal to C. In
this case, the system has to perform a quite complete PIF cycle (a complete
cycle except the first step: B-action of r). According to the algorithm, B-action
is propagated to all processors in at most N − 1 rounds. One extra round is
necessary for the leaf processors of the broadcast to set their Que variable to R.
The time used by the QW -action is bounded by the maximum length of the tree,
N − 1 rounds. By a similar reasoning taking in account that r also executes the
respective actions, it is obvious that QA-action, F -action, and C-action need at
most N rounds. Furthermore the total time is 5N − 1 rounds, and the root can
execute B-action during the next round.

By Lemmas 8 and 9, we can claim the following result.

Theorem 1. From any initial configuration, the root can execute B-action in
at most 8N − 2 rounds.

Lemma 10. Let p be a processor in an abnormal tree such that Quep ∈ {Q,R}.
While p does not leave the tree, Quep �= A.

Proof. If p also satisfies AbRoot(p), then p cannot execute QA-action before it
leaves the tree. Otherwise, if there exists an A value on ParentPath(p), the Q
and R values are a barrier for the A. So while p does not leave the tree, it will
never receive any A value.

Theorem 2. From any configuration such that the root executes B-action, the
execution satisfies PIF specification.

Proof. 1. Assume that there exist some processors which never receive the mes-
sage m sent by r. Then there exists a processor p which never receives m
but one of its neighbor (q) does. When q receives m (in configuration γ), it
executes the B-action. Then, if Pifp �= C and Quep ∈ {W,A}, (Pifq, Quep)
will stay equal to (B,Q) while Quep equals R, so p eventually executes the
QR-action. We can remark in this case, that p is in an abnormal tree, since
it never receives m. From Lemma 10, Quep �= A while p does not leave the
tree. While p does not leave the tree, q cannot execute the F -action. (q does
not satisfy AnswerOK(q) because p). From Lemma 8, p eventually leaves
the tree and we reach a configuration where Pifp = C.
While Pifp = C, q cannot execute the F -action. From Lemma 8, the system
does not contain any abnormal tree in a finite time, so ∀p′ neighbor of p,
Parp′ �= p. So p satisfies Broadcast(p) forever and eventually receives m. (it
executes the B-action.) We obtain a contradiction.



212 Lélia Blin et al.

2. Assume that there exists a processor p, which receives the messagem at least
twice. p executed the B-, F -, and C-actions for m before it satisfies again
Broadcast(p) form. Let P1 be ParentPath(p) (respectively, P2) correspond-
ing to the first (respectively, second) reception ofm by p. It is clear that Pifr

always equals B while some processor is still in B in the network. So, at least
a processor of P1 has still its Pif variable equal to F . Then P2 �= P1. So
there exists a path (P1) from r to p such that Pif −Trace(P1) ∈ B+F+C+

and there exists a path (P2) such that the Pif − Trace(P2) ∈ B+C+. In
this case, the contradiction is that p was not able to execute B-action for
the first reception of m, since at least its neighbor in P2 had its Pif variable
equal to C.
We proved that every processor receives m exactly once. (Property [PIF1]

of Specification 1.) We now show Property [PIF2]. Assume that a processor p
is such that Pifp = B. Then, it is clear that every processor in ParentPath(p)
have their Pif variable equal to B. So, when r executes the F -action, the other
processors executed F -action before and their Pif variable is in {C,F}.

The execution satisfies PIF specification.

From Remark 1 and Theorems 1 and 2, the following theorem is obvious.

Theorem 3. The composition of PIF , Question, and Error Algorithms is snap-
stabilizing for Specification 1.

4.4 Complexity Analysis

From Theorem 1 and Lemma 9, we can deduce the following result.

Lemma 11. From any initial configuration, a complete PIF cycle is executed
in at most 13N − 2 rounds.

The performances described by Theorem 1 and Lemmas 9 and 11 are the
same as those of the previous snap-stabilizing PIF algorithm ([10]) up to a small
constant.

5 Conclusion

We presented a new snap-stabilizing PIF algorithm on an arbitrary network. The
algorithm does not use a pre-constructed spanning tree. The snap-stabilizing
property guarantees that when a processor p initiates the broadcast wave, the
broadcast message will reach every processor in the network. Moreover, all the
feedback messages correspond to the broadcast message and will be received
by p. The snap-stabilizing PIF algorithm presented in this paper improved the
solution presented in [10] because it does not need the knowledge of the exact
size of the network. So our protocol can be used on dynamic networks. This
protocol is a bold step in the comparison of power of self-stabilization and snap-
stabilization. It has been proved in [11] that, in the local shared memory model of



An Improved Snap-Stabilizing PIF Algorithm 213

communication, any static protocol that can be self-stabilized by the extensions
of [14] can also be snap-stabilized by extensions using the snap-stabilizing PIF
of [10]. With this new PIF algorithm, we conjecture that this result can be
extended for dynamic protocols.

References

[1] Y Afek, S Kutten, and M Yung. Memory-efficient self-stabilization on general
networks. In WDAG90 Distributed Algorithms 4th International Workshop Pro-
ceedings, Springer-Verlag LNCS:486, pages 15–28, 1990. 200

[2] L.O. Alima, J. Beauquier, A.K. Datta, and S. Tixeuil. Self-stabilization with
global rooted synchronizers. In ICDCS98 Proceedings of the 18th International
Conference on Distributed Computing Systems, pages 102–109, 1998. 200

[3] A Arora and MG Gouda. Distributed reset. IEEE Transactions on Computers,
43:1026–1038, 1994. 200

[4] B Awerbuch, S Kutten, Y Mansour, B Patt-Shamir, and G Varghese. Time opti-
mal self-stabilizing synchronization. In STOC93 Proceedings of the 25th Annual
ACM Symposium on Theory of Computing, pages 652–661, 1993. 200

[5] B Awerbuch, B Patt-Shamir, and G Varghese. Self-stabilization by local checking
and correction. In FOCS91 Proceedings of the 31st Annual IEEE Symposium on
Foundations of Computer Science, pages 268–277, 1991. 200

[6] B Awerbuch and G Varghese. Distributed program checking: a paradigm for
building self-stabilizing distributed protocols. In FOCS91 Proceedings of the 31st
Annual IEEE Symposium on Foundations of Computer Science, pages 258–267,
1991. 200

[7] A Bui, AK Datta, F Petit, and V Villain. State-optimal snap-stabilizing PIF in
tree networks. In Proceedings of the Forth Workshop on Self-Stabilizing Systems,
pages 78–85. IEEE Computer Society Press, 1999. 199, 200

[8] EJH Chang. Echo algorithms: depth parallel operations on general graphs. IEEE
Transactions on Software Engineering, SE-8:391–401, 1982. 199

[9] A Cournier, AK Datta, F Petit, and V Villain. Self-stabilizing PIF algorithm
in arbitrary rooted networks. In 21st International Conference on Distributed
Computing Systems (ICDCS-21), pages 91–98. IEEE Computer Society Press,
2001. 200

[10] A Cournier, AK Datta, F Petit, and V Villain. Snap-stabilizing PIF algorithm
in arbitrary rooted networks. In 22st International Conference on Distributed
Computing Systems (ICDCS-22), pages 199–206. IEEE Computer Society Press,
2002. 199, 200, 212, 213

[11] A Cournier, AK Datta, F Petit, and V Villain. Enabling snap-stabilization. In
23rd International Conference on Distributed Computing Systems (ICDCS-23).
To appear, 2003. 212

[12] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the Association of the Computing Machinery, 17:643–644, 1974. 199

[13] S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election.
IEEE Transactions on Parallel and Distributed Systems, 8(4):424–440, 1997. 200,
201

[14] S Katz and KJ Perry. Self-stabilizing extensions for message-passing systems.
Distributed Computing, 7:17–26, 1993. 200, 213



214 Lélia Blin et al.

[15] HSM Kruijer. Self-stabilization (in spite of distributed control) in tree-structured
systems. Information Processing Letters, 8:91–95, 1979. 200

[16] N Lynch. Distributed algorithms. Morgan Kaufmann, 1996. 199
[17] M Raynal and JM Helary. Synchronization and Control of Distributed Systems

and Programs. John Wiley and Sons, Chichester, UK, 1990. 199
[18] A Segall. Distributed network protocols. IEEE Transactions on Information

Theory, IT-29:23–35, 1983. 199
[19] G Tel. Introduction to distributed algorithms. Cambridge University Press, 1994.

199
[20] G Varghese. Self-stabilization by local checking and correction (Ph.D. thesis).

Technical Report MIT/LCS/TR-583, MIT, 1993. 200


	An Improved Snap-Stabilizing PIF Algorithm
	Introduction
	Preliminaries
	Algorithm
	Normal Behavior
	Error Correction

	Proof of Correctness
	Some Definitions
	Abnormal Processors
	Proof of Snap-Stabilisation
	Complexity Analysis

	Conclusion


