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Abstract. Boolean-width is a recently introduced graph invariant. Sim-
ilar to tree-width, it measures the structural complexity of graphs. Given
any graph G and a decomposition of G of boolean-width k, we give al-
gorithms solving a large class of vertex subset and vertex partitioning

problems in time O∗(2O(k2)). We relate the boolean-width of a graph to
its branch-width and to the boolean-width of its incidence graph. For this
we use a constructive proof method that also allows much simpler proofs
of similar results on rank-width in [S. Oum. Rank-width is less than or
equal to branch-width. Journal of Graph Theory 57(3):239–244, 2008].
For an n-vertex random graph, with a uniform edge distribution, we show
that almost surely its boolean-width is Θ(log2 n) – setting boolean-width
apart from other graph invariants – and it is easy to find a decomposition
witnessing this. Combining our results gives algorithms that on input a
random graph on n vertices will solve a large class of vertex subset and

vertex partitioning problems in quasi-polynomial time O∗(2O(log4 n)).

1 Introduction

Width parameters of graphs, like tree-width, branch-width, clique-width and
rank-width, have many applications in the field of graph algorithms and espe-
cially in Fixed Parameter Tractable (FPT) algorithmics, see e.g. Downey and
Fellows [7], Flum and Grohe [8], and Hliněný et al. [11]. When comparing width-
parameters, we should consider the values of the parameters on various graph
classes, the runtime of algorithms for finding the corresponding optimal decom-
position, the classes of problems that can be solved by dynamic programming
along such a decomposition, and the runtime of these algorithms. Recently, Bui-
Xuan et al. [2] introduced a new width parameter of graphs called boolean-width.
While rank-width is based on the number of GF(2)-sums (1 + 1 = 0) of rows
of adjacency matrices, boolean-width is based on the number of Boolean sums
(1+1 = 1) of these rows. Although is it open whether computing boolean-width
is FPT, the number of Boolean sums of rows for a matrix is easy to compute
in FPT time by an incremental approach, and surprisingly is the same for the
matrix and its transpose.
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Fig. 1. Upper bounds tying parameters tw=tree-width, bw=branch-width, cw=clique-
width, rw=rank-width and boolw=boolean-width, and runtimes achievable for Mini-
mum Dominating Set using various parameters. In the upper part of the figure, an
arrow from P to Q labelled f(k) means that any class of graphs having parameter P at
most k will have parameter Q at most f(k), and ∞ means that no such upper bound
can be shown. Except for the labels in boxes the bounds are known to be tight, mean-
ing that there is a class of graphs for which the bound is Ω(f(k)). For the two boxes
containing labels 2k and 2k+1, a Ω(2k/2) bound is known [4]. For the box containing
label k2 a Ω(k) bound is known [2]. The arrows bw → boolw and tw → boolw are
proven in Section 4 of this paper.

This paper gives new algorithmic applications of boolean-width, and new
structural properties of graphs of bounded boolean-width. It is well-known that
for any class of graphs their tree-width is bounded by a constant if and only
if their branch-width is bounded by a constant: we say the two parameters are
equivalent. Likewise, clique-width, rank-width, and boolean-width are equiva-
lent. For any graph class we have only three possibilities: either all five parame-
ters are bounded (e.g. for trees) or none of them are bounded (e.g. for grids) or
only clique-width, rank-width and boolean-width are bounded (e.g. for cliques).
Capturing known results and new insights from Section 4, we show in Figure 1
information allowing for a finer comparison. Let us say that parameter P is
polylog on a graph class C if the value of P for any graph G in C is polyloga-
rithmic in the size of G. Then if P is polylog on C any algorithm with runtime1

O∗(2poly(P )) single exponential in parameter P runs in quasi-polynomial time on
input a graph in C. From Figure 1 we see that if any of tree-width, branch-width,
clique-width or rank-width is polylog on a class of graphs then so is boolean-
width, while in Section 5 we show that the random graphs give an example of
a class where boolean-width is polylog but none of the other parameters are. A
finer comparison can be made by looking at the bounds between the parameters
in combination with the runtimes achievable for a particular problem, as done
for Minimum Dominating Set (MDS) in Figure 1. In this way, for MDS, and
in fact all problems addressed in Section 3, boolean-width compares well to the
other parameters. The paper is organized as follows.

1 We use O∗ notation that hides polynomial factors.
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In Section 2 we define branch-width, rank-width, and boolean-width in a com-
mon framework. In Section 3 we depict algorithms that given a decomposition
tree of boolean-width k of a graph, solve a large class of NP-hard vertex subset
and vertex partitioning problems, namely (σ, ρ)-problems and Dq-problems [23],
in time O∗(2O(k2)). These are monadic second order logic expressible problems
related to domination, independence and homomorphism, including Max or Min
Perfect Code, Max or Min Independent Dominating Set, Min k-Dominating Set,
Max Induced k-Regular Subgraph, Max Induced k-Bounded Degree Subgraph,
H-Coloring, H-Homomorphism, H-Covering, H-Partial Covering. From Cour-
celle’s theorem [5] they belong to FPT when parameterized by either the tree-
width, branch-width, clique-width, rank-width or boolean-width of the graph,
when an appropriate decomposition is given. Although the runtime given in
Courcelle’s theorem contains a highly exponential factor (tower of powers), the
problems behave very well for tree-width and branch-width: given a decom-
position tree of tree-width tw, they can be solved in O∗(2O(tw)) time [23]. In
particular, (σ, ρ)-problems can be solved in O∗((d(σ) + d(ρ) + 2)tw) time [22]
for some problem specific constants d(σ) and d(ρ) (see Section 3). This is not
the same situation for clique-width, where until now the best runtime contains
a O∗(22poly(cw)

) double exponential factor [10]. Having small boolean-width is
witnessed by a decomposition of the graph into cuts with few different unions
of neighborhoods across the cut. This makes the decomposition natural to guide
dynamic programming algorithms to solve problems, like Max Independent Set,
where vertex sets having the same neighborhoods can be treated as equiva-
lent [2]. Surprisingly, in this paper we extend such an observation to the much
larger class of vertex subset and vertex partitioning problems. Several new tech-
niques are introduced in order to achieve this and the runtime of these algo-
rithms is O∗(2O(boolw2)), which then can also be interpreted as O∗(2O(cw2)) and
O∗(2O(rw4)) by using the relationships in Figure 1, improving the O∗(22poly(cw)

)
runtime in [10].

In Section 4 we relate boolean-width to branch-width. We prove for every
graph G with bw(G) �= 0 that boolw(G) ≤ bw(G). For the proof we develop a
general method of constructive manipulations of the decompositions that gives
a good understanding of the connections between the graph parameters. In [20],
Oum studies the relation of rank-width and branch-width using deep results from
matroid theory. Our framework also allows to address this relation in a simpler
and direct way. Independently, Kanté [14] gave a constructive proof showing
that the rank-width of a graph is at most 4 times its tree-width plus 2. We show
constructively that (except for some trivial cases) rank-width is at most branch-
width, and also constructively that rank-width is at most tree-width plus one,
simplifying Oum’s proof and improving Kanté’s construction.

In Section 5 we show for a random graph on n vertices where the edges are drawn
with respect to a uniform distribution that almost surely2 its boolean-width is
Θ(log2 n), and it is easy to find a decomposition tree witnessing the upper bound.
This contrasts sharply with a series of negative results establishing that almost
2 We use term “almost surely” to denote events whose asymptotic probability is 1.
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surely a random graph on n vertices has tree-width and branch-width [16], clique-
width [13] and rank-width [18] all in Θ(n). The importance of this result is possibly
not in the random graphs themselves, but in the indication that boolean-width is
quite often much smaller than all the other parameters, and therefore potentially
very useful. Our result also implies the following: any problem solvable by dynamic
programming in time O∗(2poly(k)) given a decomposition of boolean-width k, can
be solved in quasi-polynomial time on input a random graph (where we do not need
a decomposition as part of input). Such problems include Minimum Dominating
Set and Maximum Independent Set which can be solved in time O(n(n + 23kk))
[2]. Moreover, combining our results from Sections 3 and 5 we get an algorithm
that given a random graph on n vertices, solves (σ, ρ)-problems and Dq-problems
in quasi-polynomial time O∗(2O(log4 n)).

2 Framework

We address loopless simple undirected graphs. Let G be a graph with vertex
set V (G) and edge set E(G). For a vertex v ∈ V (G) let N(v) be the set of all
neighbours of v in G. We extend this to subsets X ⊆ V (G) by letting N(X) :=⋃

v∈X N(v). For a tree T we denote the set of leaves by L(T ). A tree is subcubic
if every vertex has degree either 1 or 3.

Let A be a finite set. For a subset X ⊆ A let X := A \ X . Let f : 2A → R

be a symmetric set function, i.e. f satisfies f(X) = f(X) for all X ⊆ A. A
decomposition tree of f (on A) is a pair (T, δ), where T is a subcubic tree and
δ : L(T ) → A is a bijection. Each edge e ∈ E(T ) yields a partition Pe of A,
induced by the leaf labels of the two trees we get by removing e from T : if T1 and
T2 denote the two components of T − e, then Pe :=

(
δ(L(T1)∩L(T )), δ(L(T2)∩

L(T ))
)
. We extend the domain of f to edges e of T by letting f(e) := f(X)

for Pe = (X, X). This is well-defined because f is symmetric. The f -width of a
decomposition tree (T, δ) is f -w(T, δ) := max{f(e) | e ∈ E(T )}. The width of f
is width(f) := min{f -w(T, δ) | (T, δ) decomposition tree of f}. If |A| ≤ 1, then
f has no decomposition tree and we let width(f) := f(A).

We now define branch-width of a graph G. For any subset X ⊆ E(G) let

∂(X) := {v ∈ V (G) | v incident to both an edge from X and from X}

denote the border of X . We define cut-bwG := cut-bw : 2E(G) → N as
cut-bw(X) := |∂(X)|. Clearly, cut-bw is symmetric. The branch-width of G is
defined as bw(G) := width(cut-bw).

For subsets X, Y ⊆ V (G) let M(X,Y ) denote the X × Y -submatrix of the
adjacency matrix of G. Let Δ denote the symmetric difference of sets: AΔB =
(A \ B) ∪ (B \ A). We define cut-rkG := cut-rk : 2V (G) → N as

cut-rk(X) := log2

∣
∣
∣
∣
∣
{B ⊆ X

∣
∣ ∃A ⊆ X, B =

�

v∈A

N(v) ∩ X}
∣
∣
∣
∣
∣
= rk

(
M(X,X)

)
,
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where rk
(
M(X,X)

)
denotes the GF(2)-rank of M(X,X). Then the rank-width of

G is rw(G) := width(cut-rk).
For boolean-width we define cut-boolG := cut-bool : 2V (G) → R as

cut-bool(X) := log2

∣
∣{B ⊆ X

∣
∣ ∃A ⊆ X with B = N(A) ∩ X}∣∣ .

Surprisingly, the function cut-bool is symmetric [15, Theorem1.2.3].The boolean-
width of a graph G is boolw(G) := width(cut-bool). Let us give an alternative
view on boolean-width. Let R(M(X,Y )) denote the set of all vectors spanned by
the rows of M(X,Y ) by taking Boolean sums, i.e. 1 + 1 = 1. It is easy to see that

cut-bool(X) = log2

∣
∣
∣R(M(X,X))

∣
∣
∣ .

3 Vertex Subset and Vertex Partitioning Problems

Given a graph G together with a decomposition tree of cut-bool of width boolw,
we depict algorithms with runtime O∗(2O(boolw2)) solving a large class of prob-
lems, the so-called (σ, ρ) vertex subset and Dq vertex partitioning problems as
defined in [23].

Definition 1. Let σ and ρ be finite or co-finite subsets of natural numbers. A
subset X of vertices of a graph G is a sigma-rho set, or simply (σ, ρ)-set, of G if

∀v ∈ V (G) : |N(v) ∩ X | ∈
{

σ if v ∈ X,
ρ if v ∈ V (G) \ X.

The vertex subset problems consist of finding the size of a minimum or maximum
(σ,ρ)-set in G. Several NP-hard problems are expressible in this framework, e.g.,
Max Independent Set({0}, N), Min Dominating Set(N, N \ {0}), Max Strong
Stable Set({0}, {0, 1}), Max or Min Perfect Code({0}, {1}). Also if we let Mk =
{0, 1, 2, . . . k} then Min k-Dominating Set(N, N \ Mk), Max Induced k-Regular
Subgraph({k}, N) (see [23] for further details and a more complete list). This
framework is extendible to problems asking for a partition of V (G) into q classes,
with each class satisfying a certain (σ, ρ)-property:

Definition 2. A degree constraint matrix Dq is a q by q matrix with entries
being finite or co-finite subsets of natural numbers. A Dq-partition in a graph
G is a partition {V1, V2, ..., Vq} of V (G) such that for 1 ≤ i, j ≤ q we have
∀v ∈ Vi : |N(v) ∩ Vj | ∈ Dq[i, j].

The vertex partitioning problems for which we give algorithms in this paper
consist of deciding if G has a Dq partition, the so-called ∃Dq problem. NP-
hard problems fitting into this framework include e.g. for any fixed graph H the
problems known as H-Coloring or H-Homomorphism (with q-Coloring being
Kq-Coloring), H-Covering, H-Partial Covering, and in general the question of
deciding if a graph has a partition into q (σ, ρ)-sets [23].

We focus on algorithms for the vertex subset problems. Let a graph G and
a decomposition tree (T, δ) of cut-bool be given as input. Our algorithm will
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follow a bottom-up dynamic programming approach: subdivide an arbitrary edge
of T to obtain a root r, and denote by Tr the resulting rooted tree. With each
node w of Tr we associate a table data structure Tabw, that will store optimal
solutions to subproblems related to Vw , the set of vertices of G mapped to the
leaves of the subtree of Tr rooted at w. Each index of the table will be associated
with a certain class of equivalent subproblems that we need to define depending
on the problem on which we are focusing.

Let d(N) = 0 and let d(∅) = 0. For every finite or co-finite set μ ⊆ N, let
d(μ) = 1 + min{maxx∈Nx : x ∈ μ, maxx∈Nx : x /∈ μ}. We denote by d(σ, ρ), or
simply by d when it appears clearly in the context that σ and ρ are involved,
the value d = d(σ, ρ) = max{d(σ), d(ρ)}. Note that when checking if a subset
A of vertices is a (σ, ρ)-set, as in Definition 1, it suffices to count the number
of neighbors up to d that a vertex has in A. This is the key to getting fast
algorithms and motivates the following equivalence relation.

Definition 3 (d-neighbor equivalence). Let G be a graph and A ⊆ V (G).
Two vertex subsets X ⊆ A and X ′ ⊆ A are d-neighbor equivalent w.r.t. A,
denoted by X ≡d

A X ′, if

∀v ∈ A, (|N(v) ∩ X | = |N(v) ∩ X ′|) ∨ (|N(v) ∩ X | ≥ d ∧ |N(v) ∩ X ′| ≥ d) .

We now depict the entries of the table data structure Tabw. Roughly, we aim
at solving the vertex subset problems using one d-neighbor equivalence class
per entry in Tabw. For this, we first define a canonical representative for every
d-neighbor equivalence class.

Lemma 1. Let G be a graph and A ⊆ V (G). Then, for every X ⊆ A, there is
R ⊆ A such that R ≡d

A X and |R| ≤ d · cut-bool(A). Moreover, the number of
equivalence classes of ≡d

A is at most 2d·cut-bool(A)2 .

We now define the canonical representative cand
Vw

(X) of every subset X ⊆ Vw,
and the canonical representative cand

Vw
(Y ) of every subset Y ⊆ Vw. For sim-

plicity we define this for Vw only, but the definition can be used for Vw as well,
since everything we say about X ⊆ Vw, cand

Vw
(X) and ≡d

Vw
will hold also for

cand
Vw

(Y ), Y ⊆ Vw and ≡d
Vw

. Canonical representatives are to be used for index-
ing the table Tabw at node w of the tree Tr. Three properties will be required.
Firstly, if X ≡d

Vw
X ′, then we must have cand

Vw
(X) = cand

Vw
(X ′). Secondly,

given (X, Y ), we should have a fast routine that outputs a pointer to the entry
Tabw[cand

Vw
(X)][cand

Vw
(Y )]. Thirdly, we should have a list whose elements can

be used as entries of the table, i.e. a list containing all canonical representatives
w.r.t. ≡d

Vw
. The following definition trivially fulfills the first requirement.

Definition 4. We assume that a total ordering of the vertices of V (G) is given.
For every X ⊆ Vw, the canonical representative cand

Vw
(X) is defined as the

lexicographically smallest set R ⊆ Vw such that: |R| is minimized and R ≡d
Vw

X .

Definition 5. Let G be a graph, A ⊆ V (G), and μ ⊆ N. For X ⊆ V (G), we
say that X μ-dominates A if ∀v ∈ A : |N(v) ∩ X | ∈ μ. For X ⊆ A, Y ⊆ A,
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we say that (X, Y ) σ, ρ-dominates A if (X ∪ Y ) σ-dominates X and (X ∪ Y )
ρ-dominates A \ X .

Definition 6. Let opt stand for either function max or function min, depending
on whether we are looking for a maximum or minimum (σ, ρ)-set, respectively.
For every node w of Tr, for X ⊆ Vw and Y ⊆ Vw, let RX = cand

Vw
(X) and

RY = cand
Vw

(Y ). We define the contents of Tabw[RX ][RY ] as:

Tabw[RX ][RY ] def=

⎧
⎨

⎩

optS⊆Vw{|S| : S ≡d
Vw

X and (S, Y ) σ, ρ-dominates Vw},
−∞ if no such set S exists and opt = max,
+∞ if no such set S exists and opt = min.

Lemma 2. For any node w of Tr with k = cut-bool(Vw), we can compute a list
containing all canonical representatives w.r.t. ≡d

Vw
in time O(m+d ·k ·22d·k2+k).

For any subset X ⊆ Vw, a pointer to cand
Vw

(X) can be found in time O(|X | ·2k).

Note that at the root r of Tr the value of Tabr[X ][∅] (for all X ⊆ V (G)) would
be exactly equal to the size of a maximum, resp. minimum, (σ, ρ)-set of G (cf.
≡d

Vr
has only one equivalence class). For initialization, the value of every entry

of Tabw will be set to +∞ or −∞ depending on whether we are solving a min-
imization or maximization problem, respectively. For a leaf l of Tr, we perform
a brute-force update: let A = {l} and B = A, for every canonical representative
R w.r.t. ≡d

B, we set:

– If |N(l) ∩ R| ∈ σ then Tabl[A][R] = 1.
– If |N(l) ∩ R| ∈ ρ then Tabl[∅][R] = 0.

For a node w of Tr with children a and b, the algorithm proceeds as follows. For
every canonical representative Rw w.r.t. ≡d

Vw
, for every canonical representative

Ra w.r.t. ≡d
Va

, and for every canonical representative Rb w.r.t. ≡d
Vb

, do:

– Compute Rw = cand
Vw

(Ra∪Rb), Ra = cand
Va

(Rb∪Rw) and Rb = cand
Vb

(Ra∪
Rw)

– Update Tabw[Rw][Rw] = opt(Tabw[Rw][Rw],Taba[Ra][Ra] + Tabb[Rb][Rb]).

Lemma 3. The table at node w is updated correctly, i.e. for any canonical rep-
resentatives Rw and Rw w.r.t. ≡d

Vw
and ≡d

Vw
, if Tabw[Rw][Rw] is not ±∞ then

Tabw[Rw][Rw] = optS⊆Vw{|S| : S ≡d
Vw

Rw ∧ (S, Rw) σ, ρ-dominates Vw}.
If the value of the table is ±∞ then there is no such above set S.

Theorem 1. For every n-vertex, m-edge graph G given along with a decom-
position tree (T, δ) for cut-bool, any (σ, ρ)-vertex subset problem on G with
d = d(σ, ρ) can be solved in time
O(n(m + d · cut-bool-w(T, δ)23d·cut-bool-w(T,δ)2+cut-bool-w(T,δ))).
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Proof. Correctness follows directly from what has been said in this section. For
complexity analysis, for every node w of Tr, we basically call the first computa-
tion of Lemma 2 once, then loop through every triplet Rw, Ra, Rb of equivalence
classes, call the second computation of Lemma 2 three times, and perform the
table update. ��
The algorithms for vertex partitioning problems are similar but require some
graph-theoretic observations and several technical details. For space reasons this
has all been omitted.

Theorem 2. For every n-vertex, m-edge graph G given along with a decompo-
sition tree (T, δ) of cut-bool, any Dq-problem on G, with d = maxi,j d(Dq[i, j]),
can be solved in time
O(n(m + qd · cut-bool-w(T, δ)23qd·cut-bool-w(T,δ)2+cut-bool-w(T,δ))).

4 Boolean-Width is Less than or Equal to Branch-Width

We relate boolean-width to branch-width, and show the following

Theorem 3. Any graph G satisfies boolw(G) ≤ bw(G) (unless E(G) �= ∅ and
no two edges of G are adjacent).

In order to clarify how the decomposition trees relate to each other, we divide our
result into two steps, addressing the intermediary notion of an incidence graph
(see Lemmata 4 and 5). However, we will also show how to easily derive from
our method a direct proof without incidence graphs. Our framework not only
applies for boolean-width, but also captures other settings including rank-width.
The incidence graph I(G) of a graph G is the graph with vertex set V (G)∪̇E(G),
where x and y are adjacent in I(G) if one of x, y is a vertex of G, the other is
an edge of G and x and y are incident in G.

Lemma 4. For any graph G, boolw(I(G)) ≤ bw(G) and rw(I(G)) ≤ bw(G),
unless E(G) �= ∅ and no two edges of G are adjacent. In this case, bw(G) = 0
and rw(I(G)) = boolw(I(G)) = 1.

The proof is omitted, but let us sketch the idea. Starting with a decomposition
tree (T, δ) of cut-bwG of width k, we modify the decomposition tree in two
steps. In the first step, we replace every leaf � of T by a subcubic tree with three
leaves, and we label one of the three leaves with the edge δ(�) and we label the
other two leaves with the two vertices incident with δ(�). In a second step, for
each v ∈ V (G) we choose one leaf with label v, we keep this leaf, and delete all
other leaves that are labelled by v. In this way we obtain a decomposition tree
of cut-boolI(G) (and of cut-rkI(G)) of boolean-width and rank-width both at
most k.

Lemma 5. For any graph G,

max{boolw(G), rw(G)} ≤ min{boolw(I(G)), rw(I(G))}.
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Theorem 3 now follows immediately from Lemmata 4 and 5, as well as the fact
that rank-width is at most branch-width (except for the trivial cases). It is also
easy to give a direct proof using the proof idea of Lemma 4. The only difference
is in the first modification step. Instead of taking a subcubic tree with three
leaves, we take the subcubic tree with two leaves (since we do not need to assign
leaves to graph edges). Note that there is no bound in the converse direction: the
class of all complete graphs has unbounded branch-width and the boolean-width
is at most 1. Nevertheless, moving to incidence graphs we prove a weak converse.

Lemma 6. For any graph G, bw(G) ≤ 2 · min{boolw(I(G)), rw(I(G))}.
Corollary 1. Any graph G satisfies boolw(G) ≤ bw(G) ≤ 2 · boolw(I(G))
(unless E(G) �= ∅ and no two edges of G are adjacent).

Corollary 2. For any graph G,

1. boolw(I(G)) ≤ bw(I(G)) ≤ 2 · boolw(I(G)) and
2. boolw(I(G)) ≤ rw(I(G)) + 1 ≤ 2 · boolw(I(G)) + 1.

Proof. Note that bw(G) = bw(I(G)), unless E(G) �= ∅ and no two edges of G are
adjacent. In this case, bw(G) = 0 and bw(I(G)) = 1. Then, the first statement
follows from Lemmata 4 and 6. The second statement follows from the first by
using a theorem from [20] stating that rw(I(G)) ∈ {bw(G),bw(G) − 1}. ��

5 Random Graphs

Let Gp be a random graph on n vertices where each edge is chosen randomly and
independently with probability p (independent of n). There has been a series of
negative results [13,16,18] establishing that almost surely Gp has rank-width,
tree-width, branch-width and clique-width Θ(n). In contrast we show in this
section the following.

Theorem 4. Almost surely, boolw(Gp) = Θ
(

ln2 n
p

)
.

We start with the upper bound and first prove the following lemma.

Lemma 7. Let Gp be a graph as above, and let kp = � 2 lnn
p �. Then, almost

surely, for all subsets of vertices S ⊂ V (G) with |S| = kp it holds that |N(S)\S| ≥
|S| − kp.

Proof. In what follows, we write simply G and k. Fix a particular S with
|S| = k. For every v ∈ S, let Xv be 1 if v �∈ N(S), and 0 otherwise. Clearly,
Xv = 1 with probability (1 − p)k, and

∑
v∈S Xv = |S \ N(S)|. Observe that

E[
∑

v �∈S Xv] = (1 − p)k(n − k) < (1 − p)kn. Call this expectation μ. By
Chernoff’s Bound (see e.g. [19], p.68),

Pr

⎡

⎣
∑

v∈S

Xv ≥ k

⎤

⎦ <
(eμ

k

)k

<
(
(1 − p)kn

)k
=

(
(1 − p)2 ln n/pn

)k

< n−k ,

the last inequality due to the fact that for p ∈ (0, 1), (1 − p)
1
p ≤ e−1.
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Applying the union bound, we conclude that the probability that there exists
S of size k such that |N(S)\S| < |S|−k is at most

(
n
k

) ·n−k < (k!)−1 = o(1)
and the statement follows. ��
Corollary 3. For G = Gp and k = kp as before, for all cuts

{
A, A

}
in G it

holds almost surely that cut-bool(A) = O
(

ln2 n
p

)
.

Proof. The number of distinct sets N(S) ∩ A contributed by the sets S ⊆ A

with |S| ≤ k is at most
∑k

i=0

(
n
i

)
. By the previous lemma, for all sets S ⊆ A

with |S| ≥ k, it holds almost surely that |N(S)∩A| ≥ |A|−k. Therefore, almost
surely, the sets S ⊆ A with |S| ≥ k, also contribute at most

∑k
i=0

(
n
i

)
distinct

sets N(S) ∩ A. Thus, almost surely there are at most 2
∑k

i=0

(
n
i

)
distinct sets

N(S) ∩ A altogether. Taking the logarithm allows to conclude. ��
The upper bound of Theorem 4 now follows easily: for any decomposition tree of
cut-bool, all the cuts it defines will almost surely have boolean-width at most
O

(
ln2 n

p

)
. Next, we move to the lower bound of Theorem 4. For simplicity of

exposition, we restrict the discussion to the case p = 0.5. The lower bound for
that case follows from:

Lemma 8. Let
{
A, A

}
be a cut where |A| = |A| = m, and the edges are cho-

sen independently at random with probability 0.5. Then, Pr[ cut-bool(A) =
Ω(log2 m) ] ≥ 1 − 2−Ω(m1.3). More concretely, the probability that among the
neighborhoods of the subsets of A of size k = 0.25 · log2 m, there are less than
2c log2 m different ones (for a suitable constant c), is at most 2−Ω(m1.3).

To prove this lemma we need some notation and preliminary results first. Let the
(random) set Si ⊆ A, i = 1, 2, . . . , m be the neighborhood of the vertex i ∈ A,
and let SI = ∪i∈ISi. We shall only be interested in the I’s of size k as above.
Call such I bad if m−|SI | < m0.5. Call a set I of size k thick if there are at least
m0.9 indices i ∈ {1, 2, . . . , m} − I such that Si ⊆ SI . Lemma 8 can be proved
using below Corollary 4.

Claim 1. Pr
[

the number of bad I’s
(m

k ) ≥ 0.5
]

< e−Ω(m1.74) .

Claim 2. For a fixed set I of size k, the probability that I is thick conditioned
on its being good (that is, not bad), is at most e−Ω(m1.3).

Corollary 4. Pr
[
the number of thick I’s > 0.5 · (m

k

) ]
< e−Ω(m1.3) .

Proof of Theorem 4: The upper bound has already been proved. For the lower
bound we restrict for simplicity of exposition to the case p = 0.5. Consider a
(1
3 , 2

3 )-balanced cut in G, that is a cut (X, X) with n
3 ≤ |X | ≤ 2n

3 . Due to the
monotonicity of the cut-bool with respect to taking induced subcuts, Lemma 8
applies in this case with m = n/3. Therefore, the probability that cut-bool of
this cut is Ω(log2 n) is 1−e−Ω(n1.3). Since there at most 2n cuts in G, we conclude



On the Boolean-Width of a Graph: Structure and Applications 169

that with probability 1 − e−Ω(n1.3) all balanced cuts have such cut-bool. Since
any decomposition tree of G must contain a (1

3 , 2
3 )-balanced cut, the statement

follows. ��

6 Further Research

In this paper we have seen that for random graphs boolean-width is the right
parameter to consider: any decomposition tree will have boolean-width polylog-
arithmic in n. This also hints at the existence of large classes of graphs where
boolean-width is polylogarithmic in the value of the other parameters, and raises
the question of identifying these. One such class of graphs is defined by the so-
called Hsu-grids [2], where boolean-width is Θ(log n) and rank-width, branch-
width, tree-width and clique-width are Θ(

√
n). In contrast, we know that the

boolean-width of regular graphs is Θ(n) [21], thus such an above mentioned class
should exclude regular graphs.

We believe that boolean-width should be useful for practical applications. We
have initiated research to find fast and good heuristics computing decomposi-
tions of low boolean-width [12], similar to what is done for treewidth in the
TreewidthLIB project [1].

A big open question is to decide if the boolean-width of a graph can be
computed in FPT time. The relationship between rank-width and boolean-width
is still not completely clear. Could it be that the boolean-width of any graph is
linear in its rank-width? Currently the best bound is boolw(G) ≤ 1

4rw(G)2 +
5
4rw(G) + log rw(G) [2].

The runtime of the algorithms given here for (σ, ρ)-problems and Dq-problems
have the square of the boolean-width as a factor in the exponent. For problems
where d = 1 we can in fact improve this to a factor linear in the exponent [2],
but that requires a special focus on these cases. In fact, we believe that also
for the other problems (with any constant value of d) we could get runtimes
with an exponential factor linear in boolean-width. We must then improve the
bound in Lemma 1, by showing that the number of d-neighborhood equivalence
classes is no more than the number of 1-neighborhood equivalence classes raised
to some function of d. This question can be formulated as a purely algebraic one
as follows: First generalize the concept of Boolean sums (1+1 = 1) to d-Boolean
sums (i + j = min(i + j, d)). For a Boolean matrix A let Rd(A) be the set of
vectors over {0, 1, ..., d} that arise from all possible d-Boolean sums of rows of
A. Is there a function f such that |Rd(A)| ≤ |R1(A)|f(d) log log |R1(A)|?
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