
International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

COMPUTING SHORTEST, FASTEST,
AND FOREMOST JOURNEYS
IN DYNAMIC NETWORKS∗

B. BUI XUAN

École Normale Supérieure de Lyon, 46 allée d’Italie
69007 Lyon, France

Binh.Minh.Bui.Xuan@ens-lyon.fr

A. FERREIRA

CNRS – i3s & inria Sophia Antipolis, 2004 Route des Lucioles
06902 Sophia Antipolis Cedex, France

Afonso.Ferreira@sophia.inria.fr

and

A. JARRY

i3s & inria Sophia Antipolis, 2004 Route des Lucioles
06902 Sophia Antipolis Cedex, France

Aubin.Jarry@sophia.inria.fr

Received (received date)

Revised (revised date)
Communicated by Editor’s name

ABSTRACT

New technologies and the deployment of mobile and nomadic services are driving the

emergence of complex communications networks, that have a highly dynamic behavior.
This naturally engenders new route-discovery problems under changing conditions over

these networks. Unfortunately, the temporal variations in the network topology are hard
to be effectively captured in a classical graph model. In this paper, we use and extend a

recently proposed graph theoretic model, which helps capture the evolving characteristic

of such networks, in order to propose and formally analyze least cost journeys (the
analog of paths in usual graphs) in a class of dynamic networks, where the changes in

the topology can be predicted in advance. Cost measures investigated here are hop count

(shortest journeys), arrival date (foremost journeys), and time span (fastest journeys).

Keywords: dynamic networks, routing, evolving graphs, graph theoretical models, LEO

satellite networks, fixed-schedule dynamic networks

∗This work was partially supported by the Color action Dynamic and the European FET
project Crescco.

1

1. Introduction

Infrastructure-less mobile communication environments, such as mobile ad-hoc
networks and low earth orbiting (LEO) satellite systems, present a paradigm shift
from back-boned networks, such as cellular telephony, in that data is transfered from
node to node via peer-to-peer interactions and not over an underlying backbone of
routers. Naturally, this engenders new problems regarding optimal routing of data
under various conditions over these dynamic networks [16]. In this setting, the
generalized case of network routing using shortest paths or least cost methods are
complicated by the arbitrary movement of the mobile agents, thereby leading to
variations in link costs and connectivity. This naturally motivates studying the
modeling of such dynamics, and designing algorithms that take it into account [17].

Note, however, that for the case of sensor networks, LEO satellite systems and
other mobile networks with predestined trajectories of the mobile agents, the net-
work dynamics are somewhat deterministic. LEO satellite networks [4, 6, 19, 20] in
particular, communicate via inter-satellite links (ISL’s) between satellites that are
in range of each other. While ISL’s connecting subsequent satellites in the same
orbital plane (intra-planar) do not vary with time because the satellites move with
zero relative angular velocity to each other, inter-planar ISL’s, between satellites in
different orbital planes, vary as the satellites move in and out of range of each other.
This results in the dynamic topology of the network. However, since the trajectories
of the satellites are known in advance, it is possible to exploit this determinism in
optimizing routing strategies [6].

Our work deals with communication issues in such networks, henceforth referred
to as fixed schedule dynamic networks (FSDN’s), where the topology dynamics at
different time intervals can be predicted (see Figure 1). We can suppose that each
node and each edge of a FSDN comes with a list of time intervals, representing the
presence schedule over time, plus sets of weights for the edges, representing length,
traversal cost, traversal time, etc.

Literature related to route discovery issues in dynamic networks started more
than four decades ago, with papers dealing with operations of transport networks
(e.g., [3, 8, 9, 10, 11, 15]). Recent work on time-dependent networks can be found
in [7, 13, 14], where flow algorithms are studied in static networks with edge traver-
sal times that may depend on the number of flow units traversing it at a given
moment. If traversal times are discrete, then the approach proposed in [8], namely
of expanding the original graph into layers representing the time steps, may work
for computing several path-related problems (see [7, 13, 14] and references therein).

In the non-discrete case, this approach might also be employed, but the time
complexity explodes because of the requirement of many layers (roughly, one per
edge) and of the time discretization. This precludes the use of the time-expanded
graph approach, since the expansion factor would be huge, given that there are
many networks to expand, and they can have non-discrete traversal times. There-
fore, different techniques were developed in the literature in order to cope with the
dynamics of networks as well as with their time dependency. For instance, in [3, 10]
shortest time paths were first addressed and in [15], the continuous flow problem

2

(0) (1)

(2) (3)

Figure 1: An FSDN represented as an indexed set of networks. The indices corre-
spond to successive time-steps.

was discussed.
Recently, evolving graphs [5] have been proposed as a formal abstraction for

dynamic networks, and can be suited easily to the case of FSDN’s. Concisely,
an evolving graph is an indexed sequence of subgraphs of a given graph, where the
subgraph at a given index point corresponds to the network connectivity at the time
interval indicated by the index number. The time domain is further incorporated
into the model by restricting journeys (i.e., the equivalent of paths in usual graphs)
to never move into edges which existed only in past subgraphs (cf. Figure 2 below,
and Section 2.2).

0,1,2,3

30,1,2,3

1,2,3

1

0,2,3

0,3

0

1,2,3
0,1,2

0,1,30,1,2

0,1,3

0,1

0,1,2,3

A

B

C

D

E

F

0

2,3

Figure 2: Evolving graph corresponding to FSDN in Figure 1. Edges are labeled
with corresponding time-steps. Observe that CBF is not a valid journey since BF
exists only in the past with respect to CB.

3

Notice that this model allows for arbitrary changes between two subsequent time
steps, with the possible creation and/or deletion of any number of vertices and edges.
More interestingly and perhaps surprisingly, previous work showed that, unlike usual
graphs, finding connected components in evolving graphs is NP-Complete [1]. In this
paper we use and extend evolving graphs in order to propose and formally analyze
least cost journeys in FSDNs. Cost measures investigated here are arrival date
(foremost journeys), hop-count (shortest journeys), and time span (fastest journeys).

This paper is organized as follows. The formal definitions of evolving graphs and
of some of their main parameters are revised in the next section. Then, algorithms
for computing foremost (earliest arrival date) journeys, shortest (minimum hop
count) journeys and fastest (minimum time) journeys, are given and analyzed in
the subsequent sections. Since these questions in untimed evolving graphs can be
solved through the time-expansion approach, our algorithms are all designed for
timed evolving graphs. We close the paper with concluding remarks and ways for
further research.

2. A Model for Dynamic Networks

A dynamic network can be seen as a − potentially infinite − sequence N =
. . . ,Nt−1,Nt,Nt+1, . . . of networks over time. The dynamic networks considered
here are FSDNs, i.e., they have predictable changes in their topologies. We show in
this section a graph theoretic model that takes into account such changes.

2.1. Graph Theoretic Model

Definition 1 (Evolving Graphs) Let be given a graph G(V,E) and an ordered
sequence of its subgraphs, SG = G1, G2, . . . , GT such that

⋃T
i=1 Gi = G. Then, the

system G = (G,SG) is called an evolving graph.
Let EG =

⋃
Ei, and VG =

⋃
Vi. We denote M = |EG | and N = |VG |. Two

vertices are said to be adjacent in G if and only if they are adjacent in some Gi.
The degree of a vertex in G is defined as its degree in EG .

Like usual graphs, evolving graphs can be weighted, the weights on the edges
representing traversal distance, traversal cost, etc. On the other hand, weights can
also belong to the time domain (in this paper, we denote it T = R+

⋃
{∞}). In this

case, we shall speak of timed evolving graphs because the weights on the edges will
represent their traversal time.

Consider I = [t1, tT +1[⊂ T as a time interval, where Gi is the subgraph in place
during [ti, ti+1[. Then G = (G, SG) is a simple time-dependent discrete dynamical
system, running during I. In case of untimed evolving graphs, or more generally
when the traversal times are discrete, we can make the whole system discrete by
taking I = [1, T].

Throughout this text we shall consider packet networks. Hence, transmitting one
piece of information means transmitting one packet over one edge. The duration of
transmitting one packet over a link in a FSDN is given as a function ζ representing
the links’ traversal times. In order to model a FSDN N by an evolving graph, it

4

suffices to be given a time window W of size T , and to work with a timed evolving
graph G = (

⋃
Ni|i ∈ W,FSDN|W), and the function ζ, redefined, from EG to T.

2.2. Journeys

We call route in G a path R = e1, e2, . . . , ek with ei ∈ EG in G. Let Rσ =
σ1, σ2, . . . , σk with σi ∈ T be a time schedule indicating when each edge of the
route R is to be traversed. We define a journey J = (R,Rσ) if and only if Rσ is
in accordance with R, ζ, G and I, i.e., J allows for a traversal from u to v in G.
Note, for instance, that journeys cannot go to the past.

A round journey is a journey J = (R,Rσ) in G, where R is a cycle in G. It is
the analogous to a usual circuit in a graph, with the difference that once the round
journey ends back in u ∈ Gk, for some k, nothing implies the existence of another
time schedule allowing to use the same route again.

2.3. Distances

The definitions above give rise to at least three different quality measures of
journeys, namely hop-count or length, arrival date, and journey time, two of which
are in the time domain.

Let J = (R,Rσ) be a journey where R = e1, e2, . . . , ek and Rσ = σ1, σ2, . . . , σk.
Then,

• The hop-count or length of J is defined as |J |h = |R| = k. It is also denoted
h(J).

• The arrival date of J is defined as |J |a = σk + ζ(ek), i.e., the scheduled time
for the traversal of the last edge in J , plus its traversal time. It is also denoted
a(J).

• The journey time of J is defined as the elapsed time between the departure
and the arrival, i.e. |J |t = |J |a − σ1. It is also denoted t(J).

Likewise, there are at least three different ways of defining the notion of “dis-
tance” in an evolving graph, as follows.

• The distance in G between two vertices u and v is defined as d(u, v) =
min{|J |h}, taken over all journeys in G between u and v. We shall say that
one such journey is the shortest. Further, a node w such that d(u, w) is max-
imum is called the antipode of u. In this case, we say that the eccentricity of
u equals d(u, w).

• The earliest arrival date in G between two vertices u and v is given by the
first journey arriving at v from u, denoted a(u, v). We shall say that one such
journey is the foremost. If there is no journey in G between u and v, we say
that a(u, v) =∞.

• The delay in G between two vertices u and v is defined as delay(u, v) =
min{|J |t}, taken over all journeys in G between u and v. We shall say that

5

one such journey is the fastest. If there is no journey in G between u and v, we
say that delay(u, v) =∞. Again, a node w such that delay(u, w) is maximum
is called the time-antipode of u. In this case, we say that the time-eccentricity
of u equals delay(u, w).

Summarizing, d(u, v) gives the minimum number of hops required to go from
u to v in G; delay(u, v) gives the minimum time required to go from u to v in G;
and the a(u, v) indicates the earliest arrival date at node v from node u. Further,
eccentricity(u) gives the maximum number of hops required to go from u to any
other node in G; and time-eccentricity(u) gives the maximum time required to go
from u to any other node in G.

Finally, we can define three sorts of “diameter” measures in evolving graphs. One
is the usual hop diameter, defined as the maximum distance in the system, taken
over all pairs of nodes. It can also be defined as the maximum of all eccentricities
in the system. The second is a sort of a counterpart in the time domain, which we
will denote the system-lag of an evolving graph, and it is defined as the maximum
of all time-eccentricities. Finally, the rapidity of an evolving graph is the maximum
of all earliest arrival dates in the system, taken over all pair of nodes.

2.4. Dynamics

Corresponding to each edge e in EG (respectively, node v in VG) we can define
an edge presence schedule PE(e) (respectively, node presence schedule PV (v)) as a
set of intervals indicating the subgraphs in which they are present, and possibly
some of its parameters during each interval. Thus, we may alternatively define an
evolving graph as G = (VG , EG), where each node and edge has a schedule defined
for it. An edge e and a schedule σ are valid in a journey, if and only if e is present at
least in the interval [σ;σ + ζ(e)]. To simplify our computations, it is safe to assume
that the intervals of presence of an edge e are closed and that they are longer than
ζ(e).

With the help of these edge and node schedules, we can now introduce ways to
measure how much an evolving graph changes its topology during the time interval
I. First, we define the activity of a vertex v as δV (v) = |PV (v)|, and the activity of
an edge e as δE(e) = |PV (e)|. We then define the node activity of an evolving graph
as δV = max {δV (v), v ∈ VG}, and the edge activity as δE = max {δE(e), e ∈ EG}.
The activity of an evolving graph is defined as δ = max(δV , δE). And the dynamics
of an evolving graph is defined as (δ−1)

T . As a consequence, since usual graphs have
δ = 1, they have dynamics zero.

2.5. Coding

In this paper, we assume that the input G is given as linked adjacency lists,
with the sorted edge schedule attached to each neighbor, given as time intervals
indicating when that edge is alive. The traversal time of that edge is also attached
to the corresponding neighbor. The head of each list is a vertex with its own sorted
node schedule list attached, also given as time intervals (see Figure 3).

6

node schedule list

arc schedule list arc schedule list

traversal time traversal time

An other
neighborA node A neighbor ... etc

I1 I2 δV(u)I

δV(u)vv1 v2

(u,v)1ζ

(u,v)1δE
JJ2J1

u

...

...

...

...

Figure 3: The data structure for coding a fixed-schedule dynamic network modeled
by an evolving graph.

Thus, for each vertex v, and each edge e, the corresponding PV (v) and PE(e) are
defined as sets of time intervals. This data structure is especially useful when consid-
ering networks with low dynamics, meaning there are few activations/desactivations
on nodes and edges.

The memory space used by the input is proportional to the size of the adjacency
linked lists, plus the size of the edges and nodes schedule lists. Therefore, the total
size of the lists is O(MδE + NδV).

2.6. A Very Useful Function

Below we give a standard function on timed evolving graphs which will be used
in the remainder of this paper. Let consider an edge (u, v) ∈ EG and a time instant
t. We call f((u, v), t) the function which gives, for each edge (u, v), and each time
instant t, the earliest moment after t where node u can transmit a message to v. If
such a moment does not exist, f returns ∞.

Notice that our data structure allows for a quick computation of the function f .
Indeed, with a binary search, this computation can be done in O(log δE).

7

3. Computing Foremost Journeys

In this section we show how to compute foremost journeys from a source node
s to all other nodes, problem already studied several times in the literature, as
shortest (time) path in time-dependent (transport) networks, e.g. in [3, 9, 11, 18].
To our knowledge, ours is the first algorithm to be presented with a formal and
detailed complexity analysis for the non-discrete case. Remind that, in order to
compute shortest paths, the usual Dijkstra’s algorithm [2] proceeds by building a
set C of closed vertices, for which the shortest paths have already been computed,
then choosing a vertex u not in C whose shortest path estimate, d(u), is minimum,
and adding u to C, i.e., closing u. At this point, all arcs from u to V −C are opened,
i.e., they are examined and the respective shortest path estimate, d, is updated for
all end-points. In order to have quick access to the best shortest path estimate, the
algorithm keeps a min-heap priority queue Q with all vertices in V − C, with key
d. Note that d is initialized to ∞ for all vertices but for s, which has d = 0.

The main observation in Dijkstra’s method is that prefix paths of shortest paths
are shortest paths themselves. Unfortunately, it is obvious that a prefix journey
of a foremost journey is not necessarily a foremost journey. Notwithstanding, the
theorem below shows that there exist foremost journeys with such a property in
a timed evolving graph. Further below, Property 1 shows how such journeys help
computing earliest journeys in a timed evolving graph.
Proposition 1 (Ubiquitous earliest journey) Let s and v be two vertices in a
given timed evolving graph G. If there is a journey in G linking s to v, then, among
all journeys linking s to v, there exists at least one foremost journey such that
all its prefix journeys are themselves foremost journeys. Such a journey is called
ubiquitous foremost journey (ufj).

Proof. Let J = (e1, . . . , ek, σ1, . . . , σk) be a journey from s to v. If the hop-
count |J |h = k of J is greater than N × δV +1, then there are two integers i < j, a
vertex u and a time interval [t1, t2] such that both ei and ej start from u, and both
σi and σj are in [t1, t2]. In this case, we can produce R′ = e1, . . . , ei−1, ej , . . . , ek

and R′
σ = σ1, . . . , σi−1, σj , . . . , σk, so that J ′ = (R′, R′

σ) is a journey from s to v

with |J ′|h < |J |h and |J ′|a = |J |a. Observe that if J was an ufj, then so is J ′.
This means that the only relevant journeys for our problem contain at most N ×δV

edges, and that if there is a ufj, then there is an ufj with less than N × δV edges.
Now, let J = (e1, . . . , ek, σ1, . . . , σk) and J ′ = (e′1, . . . , e

′
k′ , σ

′
1, . . . , σ

′
k′) be two

journeys from s to v. We say that J ≤ubiquituous J ′ if and only if:

1. |J |a < |J ′|a or

2. |J |a = |J ′|a and σk < σ′k or

3. |J |a = |J ′|a, there is i such that ∀j > i, σj = σ′j and σi < σ′i.

4. |J |a = |J ′|a, ∀j, σj = σ′j .

Notice that ≤ubiquituous defines a total pre order relationa over all the journeys from
aI.e., transitive and reflexive.

8

s to v. The space of relevant journeys from s to v is bounded in time and in space
(N×δV) and closed (we consider closed intervals of presence), so it has a minimum.
Observe that such a minimum is an UFJ, so this proves the existence of an UFJ

from s to v. 2

We now point out how earliest arrival dates in an ufj can be easily computed
thanks to the function f(e, t), which gives, for each edge e = (u, v), and each time
instant t, the earliest moment after t where node u can retransmit a message to its
neighbor v.
Property 1 (Computing earliest arrival dates in an ufj) Let s and v be two
distinct vertices in G, and J be an ufj from s to v, with k = |J |h ≥ 1. Let u be
the vertex which immediately precedes v in J = (R(u), (u, v), Rσ(u), σk). Then
a(s, v) = f((u, v), a(s, u)) + ζ(u, v).

Proof. As J is an ufj, we have |(R(u), Rσ(u))|a = a(s, u). Also, considering
the arrival date of the journey J , we deduce that a(s, v) ≤ f((u, v), a(s, u))+ζ(u, v).
Since J cannot leave node u before arriving at it, the property follows. 2

3.1. Computing ufjs

Below, we give an efficient algorithm to compute the single-source ufjs in evolv-
ing graphs.
Algorithm 1 (ufjs)
Input : An evolving graph G, a vertex s ∈ VG
Output : An array tEAD[v] ∈ T which gives for each vertex v ∈ VG the Earliest
Arrival Date from s; and an array father[v] ∈ VG which gives for each vertex v 6=
s ∈ VG its father in the ubiquitous foremost journey tree.
Variables : A min-heap Q of vertices, sorted by the array tEAD. The array tEAD

will be updated.

1. Initialize tEAD[s] ← 0; and for all v 6= s ∈ VG, tEAD[v] ← ∞. Initialize Q

with only s in the root.

2. While Q 6= ∅ do:

(a) Extract u, the vertex at root(Q), and close it.

(b) Delete root(Q).

(c) Traverse the adjacency list of u, and for each open neighbor v do:

i. Let t = f((u, v), tEAD[u]).
ii. If t + ζ(u, v) < tEAD[v] then

Update tEAD[v]← t + ζ(u, v),
Update father[v]← u and
insert v in the Q if it was not there already.

(d) Update Q.

The foremost journey is found by backtracking the variable father. In case two
successive time-labels differ by more than the corresponding ζ, this implies that the

9

foremost journey yields a forced stay of the information in that vertex for a number
of steps, until the connection is established to its successor.

The algorithm termination is clear. In each step of Loop 2, one vertex is closed
and we never re-insert a closed vertex into the heap Q. Thus the loop is repeated
at most N times, and the algorithm ends. The validity of the algorithm will be
proved through the following lemma.
Lemma 1 For all vertices u in VG, tEAD[u] = a(s, u) when u is closed.

Proof. By induction on the set C of closed vertices. At the beginning, C = {s}
and tEAD[s] = 0 = a(s, s). The property holds.

Suppose that at some moment the algorithm has correctly computed C, and a
vertex v is to be closed, i.e., the algorithm is at the moment just before closing v.
Thus v has been inserted in the heap Q, so s and v are connected. Let J be an
ufj from s to v. This journey links the vertex s inside of C to the vertex v outside
of C. Let now v′ be the first vertex in J which is not in C, and u be the vertex
which precedes immediately v′ in J (see Figure 3.1).

J
s

x y

u

C

Figure 4: Validity of Algorithm 1: earliest arrival dates.

Since C has been correctly computed, then tEAD[u] = a(s, u). When u was
closed, v′ was inserted in the Q, and since v′ is before v in the journey J , tEAD[v′] ≤
tEAD[v] and clearly v′ = v. Furthermore, Property 1 states that a(s, v) = f((u, v),
a(s, u)), hence tEAD[v] = a(s, v). 2

We can see that, starting from s, the algorithm examines all its neighbors,
and for each one there is one table look-up to find the valid edge schedule times,
plus a heap update. Therefore, for each closed vertex, the algorithm performs
O(log δE + log N) operations per neighbor. Hence, the total number of operations
is at most O(

∑
v∈VG

[|Γ(v)|(log δE + log N)]) = O(M(log δE + log N)).
A consequence of the above results is the following theorem.

Theorem 1 Algorithm 1 correctly computes ufjs from a source node s to all others
nodes in O(M(log δE + log N)) time.

4. Computing Shortest Journeys

In this section, we focus on the hop-count of journeys, which we want to min-
imize. We will again use an approach close to Dijkstra’s algorithm [2], computing
all the shortest journeys from a single vertex s to all the other vertices.

10

The difficulty stems from the edge traversal times, which again make that prefix
of shortest journeys are not necessarily shortest (see Figure 5).

[1] [1][1−2] [1−2][1−3] [1−3][1−4]

[3]
[1] [2]

S

[4]

Figure 5: The shortest journey from s to its antipode takes 8 hops at time step 1,
whereas there is a shortcut a time step 4 to the fourth point.

Nevertheless, we note that if the last edge, say (u, v), of a shortest journey
between vertex s and vertex v arrives at time t, then the prefix journey (going from
s to u) is shorter than all the journeys from s to u ending before t. Therefore, we
will consider certain pairs (u, t) ∈ VG ×T and compute the shortest journeys from s

to vertex u arriving before time t. In this manner, the prefix property is respected,
that is, a prefix of a shortest journey will be shortest, under the condition that
it arrives before some time step t′. Using this property, we will build a tree of
journeys between s and pairs (u, t), in which each vertex u appears at least once
(see Figure 6).

(S,0)

(A,1)

(B,2)

(C,3)

(D,4)

(B,1) (C,1) (D,1) (E,1) (F,1) (G,1) (H,1)

(C,2) (D,2) (E,2) (G,2)(F,2)

(D,3) (E,3) (F,3)

(E,4)

Figure 6: Tree of shortest paths.

In order to proceed, we introduce Algorithm 2, below. Given an array tLBD (in-
dexed on u ∈ VG) of Lower Bound on Departure times tLBD[u] ∈ T, it computes an
array emin and an array tmin (indexed on v ∈ VG) of edges emin[v] ∈ EG and sched-
ules tmin[v] ∈ T such that e[v] = (u, v) exists during the whole [tmin[v], tmin[v] +
ζ(emin[v])] time interval; and such that tLBD[u] ≤ tmin[v]. Moreover, the couple
(emin[v], tmin[v]) is chosen so that tmin[v] + ζ(emin[v]) is minimal over all possible
couples, and we add the condition that tmin[v] + ζ(emin[v]) ≤ tLBD[v]. If no such
couple exist, the default one is (nil,∞).
Algorithm 2 (Edge and schedule selection)
Input: A timed evolving graph G and an array tLBD[u] ∈ T which gives for each

u ∈ VG a Lower Bound on Departure time.
Output : Two arrays emin[v] ∈ EG and tmin[v] ∈ T which give for each v ∈ VG an
edge emin[v] = (u, v) along with a schedule tmin[v] for this edge.

11

Variable : An array tarrival[v] ∈ T which gives the arrival date of the former
edge(tarrival = tmin + ζ(emin)). The output array will vary.

1. For all v ∈ VG initialize emin[v]← nil; tmin[v]←∞ and
tarrival[v]← tLBD[v].

2. For all (u, v) in EG do:

(a) Let t = f((u, v), tLBD[u]).

(b) If (t + ζ(u, v)) < tarrival[v] then

i. Let emin[v]← (u, v).
ii. Let tmin[v]← t.
iii. Let tarrival[v]← t + ζ(u, v).

Now, observe that given a shortest journey with hop-count k, all its prefixes
have a hop-count smaller than k − 1. Our algorithm will compute all the arrival
dates with hop-count k−1, and then proceed for hop-count k. The algorithm stops
when all vertices have an arrival date smaller than ∞, and keeps track of the first
time when a vertex was encountered and its shortest path from s. The number of
iterations in our algorithm is of course the eccentricity of G.
Algorithm 3 (Shortest journeys)
Input: A timed evolving graph G, a vertex s ∈ VG.
Output: An array Jshortest[v] ∈ {set of all journeys} which gives for each v ∈ VG
a shortest journey from s to v.
Variables: An array J [v] ∈ {set of all journeys} which gives for each v ∈ VG a
journey from s to v; an array tLBD[u] ∈ T which gives for each u ∈ VG a Lower
Bound on Departure time; two arrays emin[v] ∈ EG and tmin[v] ∈ T which give for
each v ∈ VG an edge emin[v] = (u, v) along with a schedule tmin[v] for this edge;
and a number of hops k ∈ N.

1. Initialize tLBD[s] ← 0, J [s] ← () and define Jshortest[s] = (); for all v 6= s

tLBD[v]←∞ and J [v]← (); k ← 0.

2. While there is v ∈ VG such that tLBD(v) =∞ and
While k < N do:

(a) k ← k + 1

(b) Call Algorithm 2 with input (G, tLBD), and store the results in the arrays
emin and tmin.

(c) For each vertex v ∈ VG do:
If emin[v] 6= nil then

i. Let emin[v] = (u, v).
ii. Let (R,Rσ) = J [u].
iii. Update J [v]← (R, emin[v], Rσ, tmin[v]).
iv. If tLBD[v] =∞ then define Jshortest[v] = J [v].

12

v. Update tLBD[v]← tmin[v] + ζ(emin[v]).

Proposition 2 The algorithm above computes shortest journeys from a single source
s to all the vertices in G, if such journeys exist. If G is connected, then the com-
plexity of the algorithm is O(Md logδE), where d is the eccentricity of s. If G is
not connected the complexity of the algorithm is O(NM log δE)
Proof. For each k, all the edges are processed, and the retrieval of arrival dates
takes O(logδE), so the overall complexity for a value of k is O(M logδE). We will
prove by induction that for each k, the earliest arrival date with k hops is computed
for the couple (s, v),∀v ∈ VG . It is immediately true for k = 0. As in Section 3,
observe that a journey that gives such an arrival date can be computed via its prefix,
which has k − 1 hops. Thus, the shortest journeys of k hops are reached after step
k. So the overall complexity is O(Md logδE), where d is the eccentricity of s, if G
is connected. In case G is not connected, the algorithm will stop because k > N at
step 2. In this case, the overall complexity is O(NM log δE). 2

5. Computing Fastest Journeys

In this section, we are interested in the journey time measure, and we will
compute fastest journeys from s to all the other vertices. This problem is much
more complex than the two former ones, because a faster journey may appear well
ahead in time, or can be really long compared to the shortest journeys. Moreover,
the speed of a journey prefix is almost irrelevant regarding the speed of the whole
journey. Indeed, a fast prefix may well imply a long waiting time, offsetting the
apparent gain in speed. On the other hand, some prefix journeys are too slow and
hence useless to our computations. The remaining prefixes will be grouped within
classes of relevant journeys.

As in Section 4, we will proceed hop by hop, since the number of hops in a
fastest journey is also bounded by N . For each k, we will build a list of relevant
journey classes of length k starting in s, by taking the list for hop-count k − 1 and
extending its relevant journey classes to k hops. This is done by examining each
edge of the graph, building the journeys classes that can go through this edge, and
then eliminating irrelevant journey classes. After N hops, we know that the fastest
journeys are included in the final relevant journey class list. Therefore it suffices to
search for the minimum journeys in this list to obtain the requested fastest journeys.
The number of relevant classes is bounded by the size of G, and thus the complexity
of our algorithm remains reasonable.

For each journey, the measure of quality (the journey time) is different from
the hop-count, and from the arrival date. We will not keep track of the hop-count,
which is implicit in our algorithm. We will however use it to stop the algorithm
(after hop-count N −1). Regarding the two other parameters, we will keep track at
each step of several possible journeys from the source s to some vertex v, along with
the arrival date tarrival of each journey and the journey time tspeed of each journey.
Given two journeys from s to v with departure date tdeparture1 , tdeparture2 and arrival
dates tarrival1 , tarrival2 , observe that if we have both tdeparture1 ≥ tdeparture2 and

13

tarrival1 ≤ tarrival2 , then not only journey 1 starts after journey 2, but journey 1
arrives before journey 2. In this case journey 2 is useless for our problem, so we will
keep track only of journey 1.
Definition 2 (Relevance) Let ≤route be an arbitrary order on the routes in G.
Let ≤rel be an order on the journeys of G defined as follows.

1. (on speed) J1 <rel J2 if |J1|t < |J2|t or

2. (on hop-count) J1 <rel J2 if |J1|t = |J2|t and |J1|h < |J2|h or

3. (on ≤route) J1 = (R1, Rσ1) ≤rel J2 = (R2, Rσ2) if |J1|t = |J2|t and |J1|h =
|J2|h and R1 ≤route R2.

Definition 3 (Relevant journeys, Irrelevant journeys) Let G be a timed evolv-
ing graph, and u, v ∈ VG. Let J be a journey from u to v, with departure time
tdeparture and arrival time tarrival. If there is another journey J ′ from u to v which
starts at t′departure and arrives at t′arrival such that J ′ ≤rel J and [tdeparture, tarrival] ⊂
[t′departure, t

′
arrival], then J is called irrelevant journey. Otherwise, J is called rel-

evant journey.
Another observation is that journeys with no waiting time in any vertex may

yield a whole class of journeys with the same speed. To see this, consider two edges
(u, v) and (v, w). Let edge (u, v) have traversal time 3 and be valid at interval [1, 8].
Let edge (v, w) have traversal time 4 and be valid at interval [5, 13]. The journey
((u, v), (v, w), 3, 6) arrives takes 7 time steps to complete. But so do all journeys
((u, v), (v, w), [2, 5], [5, 8]), as illustrated in Figure 7.

In order to handle this, given a journey J = (R,Rσ) with R = e1, e2, . . . , ek and
Rσ = σ1, σ2, . . . , σk, if each edge ei is valid during interval [σi, σi + δ + ζ(ei)] for
some δ ∈ T, then we introduce schedule intervals I(Rσ, δ) = [σ1, σ1 + δ], [σ2, σ2 +
δ], . . . , [σk, σk + δ] and we say that (R, I(Rσ, δ)) is a class of journeys. Observe that
for all ε ∈ [0, δ], (R,Rσ + ε) is a journey. A journey class will be called relevant
journey class if it contains only relevant journeys. A relevant journey class that is
contained in no other relevant journey class will be called maximal relevant journey
class. We are interested in these maximal relevant journey classes.
Lemma 2 (Maximal Relevant Journey Classes) Given an evolving graph G,
two vertices u, v ∈ VG and k ∈ N, the number of maximal relevant journey classes
of k hops (or less) from u to v is bounded by the edges of G and their activity, that
is 2MδE.

Proof. Let us consider a maximal relevant journey class (R, I(Rσ, δ)) of k hops
(or less) from u to v. Let δmax be the biggest integer, such that (R, I(Rσ, δmax)) is
a journey class. If δ = δmax, then there is an edge ei ∈ R with schedule σi ∈ Rσ,
such that σi +δ is the upper extremity of a presence interval of ei. Clearly, no other
relevant journey may use ei during [σi, σi +δ]. On the other hand, if δmax > δ, then
there is a maximal relevant journey class (R′, I(R′

σ, δ′)) which is considered better
than (R, I(Rσ, δ)), that is (R′, R′

σ) <rel (R,Rσ) and |(R′, R′
σ)|a = |(R,Rσ + δ)|a.

In this case, there is an edge e′i ∈ R′ and a schedule σ′i ∈ R′
σ such that σ′i is the

lower limit of a presence interval of e′i. Clearly, no other relevant journey may arrive

14

1

8

4

5

2

3

6

7

Time

9

10

11

12

13

u 3 4v w

Journey

Journey
class

Edge
presence!
interval

Route

Figure 7: A journey and a class of similar journeys.

at |(R,Rσ + δ)|a. Thus, we can assign an extremity of an edge presence interval
to each different maximal relevant journey class so that they are pairwise disjoint.
Therefore, the number of maximal relevant classes is bounded by twice the number
of edge presence intervals in EG . 2

Given an edge (u, v) and a list of journey classes arriving on vertex u, the first
algorithm we give below computes a list of journey classes arriving on vertex v,
such that each journey in the new classes is formed by an old journey plus the edge
(u, v) scheduled as early as possible.
Algorithm 4 (Augmenting journey classes)
Input: A timed evolving graph G; an edge (u, v) ∈ EG; and a list Lu of journey

classes from s to u.
We suppose that the list is ordered by increasing departure and arrival dates. Let
first(Lu) be the first element of the Lu. We will add and remove elements at the
beginning of the list Lu.
Output: A list Lv of journey classes from s to v.
We add elements one by one to an empty list. Elements are added to the end of
the list Lv.
Variables: A departure time for (u, v): σ(u, v) ∈ T; a maximum delay for the
departure δ(u, v) ∈ T so that a message can enter (u, v) during [σ(u, v), σ(u, v) +

15

δ(u, v)]; and a class of journeys (R, I(Rσ, δ)). Lu will be emptied step by step, while
Lv will be filled.

1. Initialize Lv ← ∅.

2. While Lu is not empty, do:

(a) Let (R, I(Rσ, δ))← first(Lu) and
Remove (R, I(Rσ, δ)) from Lu.

(b) Let σ(u, v)← f((u, v), |(R,Rσ)|a) and
If σ =∞, then end the algorithm.

(c) Let [t1, t2] be the presence interval of (u, v)
such that {t1 ≤ σ(u, v) and σ(u, v) ≤ t2} and
Let δ(u, v)← (t2 − ζ(u, v)).

(d) If (|(R,Rσ)|a + δ) ≤ σ(u, v) then

i. Rσ ← Rσ + δ.
ii. δ ← 0.
iii. Add (R, I(Rσ, δ)) to the end of the list Lv.
iv. Go to 2.

(e) If |(R,Rσ)|a < σ(u, v) then

i. Let δsplit = σ(u, v)− |(R,Rσ)|a.
ii. Rσ ← Rσ + δsplit.
iii. δ ← δ − δsplit.

(f) If (|(R,Rσ)|a + δ) > (σ(u, v) + δ(u, v)) then

i. Let δsplit = (σ(u, v) + δ(u, v))− (|(R,Rσ)|a + δ).
ii. Add the class (R, I(Rσ + δsplit, δ − δsplit)) to the beginning of Lu.
iii. δ ← δsplit.

(g) Add (R, I(Rσ, δ)) to the end of the list Lv.

In order to proceed, we will need an algorithm that merges arriving journey class
lists arriving on the same vertex v, while removing irrelevant journeys. This is a
classical merge of ordered lists with a removal functionality, which we will denote
Merge.

In the following, we give the main algorithm for fastest journeys.
Algorithm 5 (Fastest journeys)
Input: A timed evolving graph G, a vertex s ∈ VG.
Output: An array Jfastest[v] ∈ {set of journeys} which gives for each vertex v ∈ VG
a fastest journey from s to v.
Variables: Two vertices u and v ∈ VG; a hop-count k; and two arrays L[v], L′[v] ∈
{set of all journey class lists} which give for all v ∈ VG a list of journey classes from
s to v.

16

1. Initialize L(s)← ((nil, I(nil,∞))) (A list with one element, the empty journey
class with possible delay ∞). And for all v 6= s, let L(v)← ∅.

2. For k from 1 to N do:

(a) For each vertex v ∈ VG do L′[v]← L[v].

(b) For each edge (u, v) ∈ EG do

i. Call Algorithm 4 with input (G, (u, v), L[u]) and output Lv.
ii. Merge L′[v] with Lv, the output of the call to Algorithm 4, and place

the resulting list in L′[v] .

(c) For each vertex u ∈ VG do L[u]← L′[u].

3. For each vertex v, let fastest(v)← (R,Rσ), where (R, I(Rσ, δ)) is the mini-
mum for ≤rel of L(v).

Proposition 3 Algorithm 5 completes in O(NM2δE) steps.
Proof. According to Lemma 2 the number of maximal relevant journey classes is
bounded by 2MδE . The calls for Algorithm 4 on an edge (u, v) cost the activity of
(u, v) plus the size of the lists, that is O(MδE). The calls to the Merge algorithm cost
each the size of the lists, that is O(MδE). Thus, for each vertex v, the computation
of the lists and the merge procedures cost O(Γ(V)MδE), where Γ(V) is the number
of neighbors of v. Therefore, at each hop count, the cost is O(M2δE). Since there
are N hop counts, the final cost is O(NM2δE) time steps. 2

6. The Case of Fading Messages

With respect to communication networks, one of the hypothesis used in this
paper is that during the routing procedure, if a node which have already received
the message disappears and then reappears, then the message remains valid in
its memory and the node can again participate in the routing (this hypothesis is
somewhat analogous to parking allowed in [15]).

However, in networks where nodes have small batteries, if a node disappears
and then reappears, it may have lost the received messages. In this case, observe
that if the activity of a vertex v ∈ VG is more than one, it is possible to duplicate
the vertex δV (v)− 1 times. Each duplicate is assigned one of the time intervals in
the old node schedule list. After this operation is done, all new node schedule lists
contain one single interval. Edges are duplicated accordingly.

We remark that the total number of intervals in edge or node schedules does
not change with this transformation. However, it is useful for each old vertex
v ∈ VG to keep track of its corresponding vertices in the node schedule list. Given
an evolving graph G, we can then build an evolving graph G′ with single presence
interval vertices, along with a node schedule P ′

V for VG which states which are the
copies of the old nodes. If we call N ′ = |VG′ | and M ′ = |EG′ |, notice that whereas
the total number of intervals remains the same, N ′ ≤ δV ×N and M ′ ≤ 2M × δV .
The complexities of Algorithms 1 and 3 for foremost journeys and shortest journeys

17

increase by a factor proportional to the node activity and become O(MδV (logδE +
logN)) and O(MdδV logδE), respectively, whereas the complexity of Algorithm 5 for
fastest journeys, which is based on the number of edge presence intervals, increases
to O(NM2 δ2

V δE).

7. Conclusion and Perspectives

In this paper, we studied route-discovery problems in fixed-schedule wireless
dynamic networks modeled by timed evolving graphs. We focused on journeys, the
extension of paths over time, which embodies the traversal of the network from
one node to another, associating each link to a time schedule. The most important
results lie in the computation of shortest, foremost, and fastest journeys depending
on what one wants to minimize: the hop-count, the arrival date or the time spent
on a journey.

Remarkably, the fact that the evolving graphs are timed and, further, that the
edge traversal times are continuous, turns the computation of shortest journeys more
difficult than in usual graphs, and also makes the computation of fastest journeys
quite intricate. Only the computation of foremost journeys can be inspired by usual
shortest paths computations, and that is probably the explanation why this problem
had received considerable attention in the literature, while the former ones had not
been thoroughly investigated so far.

Finally, we note that recently the same modeling of dynamic networks was pro-
posed in order to tackle wavelength on-line assignment for optical networks [12].
Therefore, evolving graphs may trigger several new insights in the study of wire-
less, optical, mobile, or fixed dynamic networks, opening wide new ways for further
research.

Acknowledgments

We are grateful to Balazs Kotnyek for bringing several references to our atten-
tion. We also thank Hervé Rivano for continuous help and motivation.

References

1. S. Bhadra and A. Ferreira. Computing multicast trees in dynamic networks using
evolving graphs. Research Report 4531, INRIA, 2002.

2. T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The MIT
Press, 1990.

3. S.E. Dreyfus. An appraisal of Some Shortest-Path Algorithms. Operations Research,
17:269–271, 1969.

4. E. Ekici, I. F. Akyildiz, and M. D. Bender. Datagram routing algorithm for LEO
satellite networks. In IEEE Infocom, pages 500–508, 2000.

5. A. Ferreira. On models and algorithms for dynamic communication networks: The
case for evolving graphs. In Proceedings of 4e rencontres francophones sur les Aspects
Algorithmiques des Télécommunications (ALGOTEL’2002), pages 155–161, Mèze,
France, May 2002. INRIA Press.

6. A. Ferreira, J. Galtier, and P. Penna. Topological design, routing and handover in

18

satellite networks. In I. Stojmenovic, editor, Handbook of Wireless Networks and
Mobile Computing, pages 473–493. John Wiley and Sons, 2002.

7. L. Fleisher and Martin Skutella. The quickest multicommodity flow problem. In
Proc. of IPCO’02, 2002.

8. L.R. Ford and D.R. Fulkerson. Constructing maximal dynamic flows from static
flows. Operations Research, 6:419–433, 1958.

9. L.R. Ford and D.R. Fulkerson. Flows in Networks. Princeton University Press,
1962.

10. J. Halpern. Shortest route with time dependent length of edges and limited delay
possibilities in nodes. Zeitschrift für Operations Research, 21:117–124, 1977.

11. J. Halpern and I. Priess. Shortest path with time constraints on movement and
parking. Networks, 4:241–253, 1974.

12. P. Haxell, A. Rasala, G. Wilfong, and P. Winkler. Wide-sense nonblocking WDM
cross-connects. In R. Möhring and R. Raman, editors, Proceedings of ESA 2002,
volume 2461 of LNCS, pages 538–550, Rome, Italy, September 2002. Springer-
Verlag.

13. E. Köhler, K. Langkau, and M. Skutella. Time-expanded graphs for flow-dependent
transit times. In proc. ESA’02, 2002.

14. E. Köhler and M.Skutella. Flows over time with load-dependent transit times. In
Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
174–183, 2002.

15. A.B. Philpott. Continuous-time flows in networks. Mathematics of Operations
Research, 4(15):640–661, 1990.

16. C. Scheideler. Models and techniques for communication in dynamic networks. In
In H. Alt and A. Ferreira, editors, Proceedings of the 19th International Symposium
on Theoretical Aspects of Computer Science, volume 2285, pages 27–49. Springer-
Verlag, March 2002.

17. I. Stojmenovic, editor. Handbook of Wireless Networks and Mobile Computing.
John Wiley & Sons, February 2002.

18. L. Viennot. Routage entre robots dont les déplacements sont connus – Un exemple
de graphe dynamique. Réunion TAROT, ENST, Paris, November 2001.

19. M. Werner and G. Maral. Traffic flows and dynamic routing in leo intersatellite link
networks. In In Proceedings 5th International Mobile Satellite Conference (IMSC
’97), Pasadena, California, USA, June 1997.

20. M. Werner and F. Wauquiez. Capacity dimensioning of ISL networks in broadband
LEO satellite systems. In Sixth International Mobile Satellite Conference : IMSC
99, pages 334–341, Ottawa, Canada, June 1999.

19

