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Abstract A temporal graph G is a sequence of static graphs indexed by a set
of integers representing time instants. Given ∆ an integer, a ∆-module is a set
of vertices A having the same neighbourhood outside of A for ∆ consecutive
instants. We address specific cases of ∆-module enumeration, when |A| = 2
or when ∆ = ∞. Our main parameter for time complexity analysis is the
history length τ = max{t : Gt ∈ G not empty }−min{t : Gt ∈ G not empty }.
Using red-black tree data structure, we give solutions to above enumeration
problems in time logarithmic in τ . For the general ∆-module enumeration
problem, we give a pre-processing using overlapping properties of minimal ∆-
modules. Numerical analysis of our implementation on graphs collected from
real world data scales up to a history length of 108 time instants1.

Keywords graph theory · historical data · modular decomposition · temporal
graph

Supported by Courtanet – Sorbonne Université convention C19.0665 and ANRT grant
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1 Introduction

When retrieving information from a historical dataset, the time instant when
a piece of information is recorded in the database can be as important as the
recorded data itself. This can globally be modelled in the formalism of a link
stream, a time varying graph, a temporal graph or an evolving graph [2,3,6,13].
These notions occur in as various use cases as transportation timetables [4,7,
11], navigation programs [14], email exchanges [12], proximity interactions [16],
and many other types of datasets [17]. Let us consider a temporal graph to be
a sequence of classical graphs G = (Gt)t∈T . The main focus of our paper can
be understood as the retrieval of a specific behaviour represented by (part of)
the temporally evolving neighbourhood of a given vertex v. For convenience,
we call this vertex the deviant vertex and the temporal neighbourhood under
question the deviant behaviour.

In the most simple form of deviant behaviour detection, we would like to
enumerate all vertices which record the same neighbourhood as v at any time
instant in the dataset. Formally, we define a pair of eternal twins {u,w} ∈(
V (G)
2

)
, where V (G) = ∪t∈TV (Gt) and V (Gt) the vertex set of Gt, as a pair

of vertices for which the neighbourhoods Nt(u) and Nt(w) are strictly equal
in V (G) \ {u,w} for every instant t ∈ T . Here, Nt(u) is the set of all vertices
adjacent to u in graph Gt. Note that twins in a static graph is the base case
for modular decomposition, which, among other things, helps in reducing both
space and time complexity of graph problems, see e.g [5,8,15] for a broad
survey. The enumeration problem associated to our temporal case is defined
as follows.

EternalTwinsOfAGivenVertex
Input : A temporal graph G; a deviant vertex v ∈ V (G).
Output : A list of all vertices forming a pair of eternal twins with v in G.

Vertices which form eternal twins with the deviant vertex are those having
exactly the same behaviour at any time instant as the deviant vertex. In reality,
this is very strict. Eternal twins are more likely data duplicates than genuine
peers of the deviant vertex. An example of such twins is given in Figure 3
where 1 and 2 have the exact same neighbourhood for the entire history of the
temporal graph, that we denote by τ = max{t : Gt ∈ G not empty }−min{t :
Gt ∈ G not empty }.

It is in this sense that we consider in the present paper the following notions
of ∆-modules and eternal modules. Both on the other hand represent a partial
likeliness between vertices which are not duplicate per se. For an integer ∆,
a ∆-module is a set A ⊆ V (G) where there exists a time t0 when, for all
u,w ∈ A, Nt(u) and Nt(w) are strictly equal in V (G) \ A for ∆ consecutive
instants t0 ≤ t < t0 + ∆ with Jt0, t0 + ∆J⊆ T . When |A| = 2, we call the
∆-module a pair of ∆-twins. When ∆ = τ , we call the τ -module an eternal
module. Naturally, outside the corresponding ∆ time window, the behaviour of
u and w can be different. Moreover, even for eternal modules, the behaviour
of u and w can be very different inside the module A, especially when |A|
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Fig. 1 In this link stream, vertices 0,1 and 2
(represented by rows with the corresponding
identifiers) have exactly the same links to
other vertices at every instants from instant
0 to instant 5 = τ − 1. They form a eternal-
module.
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Fig. 2 In this link stream, vertices 0,1 and 2
(represented by rows with the corresponding
identifiers) have exactly the same links to
other vertices for instants 0, 1, 2, 3. They
form a ∆-module for any ∆ ≤ 4.
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Fig. 3 In this link stream, vertices 1 and 2
(represented by rows with the corresponding
identifiers) have exactly the same links to
other vertices at every instants from instant
0 to instant 5 = τ − 1. They form a pair of
eternal-twins.
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Fig. 4 In this link stream, vertices 1 and 2
(represented by rows with the corresponding
identifiers) have exactly the same links to
other vertices for instants 1, 2 and 3. They
form a pair of ∆-twins for any ∆ ≤ 3.

is large. In Figure 1, the set {0, 1, 2} exemplifies an eternal module, whereas
{0, 1, 2} is a 4-module in Figure 2 and {1, 2} is a 3-module in Figure 4. The
associated enumeration problems are defined as follows.

∆-ModulesContainingAVertex
Input : A temporal graph G; a deviant vertex v ∈ V (G).
Output : A list of all ∆-modules containing v in G.

EternalModulesContainingAVertex
Input : A temporal graph G; a deviant vertex v ∈ V (G).
Output : A list of all eternal modules containing v in G.

In a temporal graph representing the activity of users on a e-trade web-
site, pairs of ∆-twins can for example characterize users displaying a similar
purchase behaviour on a given period, underlining a pattern in purchase cycle,
thus allowing purchase recommendations based on this local sameness. In a
similar way, eternal modules could represent a likeliness of vertices who are
not duplicate per se as their behaviour inside the module can differ widely.
Those modules can therefore represent a population who always display the
same behaviour toward the exterior while internal disparities may exist. Such
sets can for example regroup people in a community having the same interac-
tions with people outside of their group, not considering interactions internal
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to the group. In a social media context, eternal modules can then character-
ize sub-cultures or opinion groups like for instance extremists clusters. It is
to be noted that in a bipartite graph represented by two colored sets of ver-
tices, single colored eternal modules would represent a set of data-duplicates as
no interaction would happen inside the module. ∆-modules, finally, combines
both notions previously mentioned, characterizing sets of vertices who display
the same behaviour toward the exterior for a period of time while differing in
both their internal interactions and behaviour outside the considered ∆ time
window. The wide range of divergence allowed by this latest notion allows us
to characterize populations who temporary are of a same group while not be-
ing polluted by their internal specifics. For instance, in a graph representing
mail exchanges, if we consider the time instant of reception of a broadcast
phishing mail, ∆-modules will characterize an identical response, regrouping
fooled users on one side and users diligently reporting the scam to their mail
providers on the other, regardless of differences that may intervene at other
instants. Enumerating ∆-modules and eternal modules could therefore help in
detecting behavioural patterns on a specific time period which would charac-
terize populations of a same group.

For a practical use, the best performance of a streaming algorithm on a
temporal graph would be a worst case time in O(m + n) or in O(τ + n),
where n = |V (G)| and m =

∑
t∈T mt with mt the number of edges in Gt.

This is because n is usually small compared to m or to τ . The comparison
between m and τ is more tricky. On the one hand, we can assume m > τ after
removal of every time instant t where Gt is empty. However, when looking
for ∆-modules where ∆ does represent a real time window, say 51 seconds,
this kind of preprocessing enforces us to do extra computations to preserve
the correspondence between consecutive time instants in G and the actual real
time lapse it represents in real life.

Using bucket sort, it is possible to (partly) solve EternalTwinsOfA-
GivenVertex with a streaming algorithm in worst case O(τ +n) time. More
specifically, we can enumerate all the so-called eternal true-twins of a given
vertex in that time, see the introductory part of [1]. Using a triangular ex-
change property of splitters (roughly, splitters are exterior vertices which give
evidence for a pair not to be twins), we show in Property 1 in Section 4 a fast
streaming process solving EternalTwinsOfAGivenVertex in worst case
time m + O(δv × n), see also [1, Property 1]. The downside of this process
is in the space complexity, when a table of size n2 × τ must be used. Skip-
ping the use of this table, the runtime of the streaming process becomes in
m+O(δv×n×m) worst case time. However, we note that2 it can be practically

2 In our implementation, the inner search consists in determining whether
an edge does not exist between some u and some w in graph Gt, given
a time instant t. It is implemented in a hashmap called mapEdgeByInstant

in function computeEternalTwinsByEdgesIterationWithoutMatrices defined in
src/TwinsAlgorithms.java, cf. https://github.com/DaemonFire/deltatwinsMEI/. The
lookup time is then practically constant instead of O(m). Our full numerical analysis is

https://github.com/DaemonFire/deltatwinsMEI/
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in m+O(δv × n), when using a hasmap in order to speed up some inner loop
of our search.

Our paper addresses the following question: Would there be instantaneous
response to ∆-ModulesContainingAVertex and EternalModulesCon-
tainingAVertex on historical graph data collected from human activities? A
subsequent concern would be to numerically confirm the question with the im-
plementation of those algorithms. In reality we can only answer completely to
the latter problem, and the special case of the former problem when ∆-modules
are of size 2, that are, pairs of ∆-twins. We then use the results computed by
those algorithms in order to give a preprocessing for ∆-Modules. Finally, we
also try to determine whether the runtimes of our implementations remain
reasonable when history length of the temporal graph is big. In particular, the
foci in this paper are: long history (big τ), few vertices (small n) and good
number of recorded edges (medium m). We revisit red-black tree data struc-
ture and devise a computation with runtime logarithmic in the history length
of the input for ∆-Twins, independent of it for EternalModules, and lin-
ear in the history length for a pre-process which could lead to a solution to
∆-Modules. We then confront all implementations to one generated dataset
and three datasets collected from real world data.

All algorithms presented in the work have been implemented in Java. The
source code is available at https://github.com/DaemonFire/deltaModules

along with the datasets used for the experiments and a file compiling all nu-
merical results of those experiments, in order for all readers to be able to use
this code as they see fit.

Contribution. For convenience, we address three more general problems, called
EternalTwins, ∆-Modules and EternalModules, which are defined in
the upcoming Section 2. Their solutions imply solutions for EternalTwin-
sOfAGivenVertex,∆-ModulesContainingAVertex and EternalMod-
ulesContainingAVertex as a byproduct. We have examined partition re-
finement techniques and concluded that the list-based implementations such
as in [9] or in [8, Lemma 10] would depend a lot on history length, adding to
the overall computation a multiplicative factor in τ . We revisit matrix-based
implementation of partition refinement and use red-black tree data structure
in order to devise two variants of an algorithm for ∆-Twins. The two variants
differ in the use of a large matrix in memory, the matrix-less version being the
key to avoid out of RAM problems. Furthermore, the use of red-black trees
allows our algorithm to compute even in the case where input graphs Gt for
t ∈ T are given unordered, mixing parts of one graph to another. This fea-
ture is fault tolerant for batched data which come asynchronously. All in all,
the computation time is O(m× n log τ +N) with a O(n2 × τ) size adjacency
matrix in memory and O(m2 × n log τ + N) without it, where N represents
the size of the output. Using the same core algorithm, we devise a solution

available at https://github.com/DaemonFire/deltatwinsMEI/blob/master/results.csv

and plotted in [1] along with an extensive discussion.

https://github.com/DaemonFire/deltaModules
https://github.com/DaemonFire/deltatwinsMEI/blob/master/results.csv
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to EternalModules with a computation time independent from τ . Using
some properties on modules, we devise a pre-process for ∆-Modules which
could help devise an algorithm solving this problem. This pre-process has a
computation time in O(n×m2 × log τ + n3 × τ).

Numerical experiments. We confront our implementations to generated data
in order to confirm that

– The implementation for ∆-Twins is sound and its runtime is logarithmic
in history length τ .

– The implementation for EternalModules has a runtime independent in
history length τ .

– The implementation of the pre-process for ∆-Modules has a runtime in
O(n×m2 × log τ + n3 × τ).

We then confront it to real world datasets, with two collections from previous
experiments [12,16] and a new one called LesFurets. The runtime of our
algorithm for ∆-Twins averages at 12 seconds for all but one dataset, where
it averages at 70 seconds. Our algorithm for EternalModules has a runtime
of the same order but spacial complexity prove to be too big and Out of RAM
issues happen on datasets on which we were able to compute ∆-Twins.

The paper is organised as follows. The formal framework and definitions in-
volved in EternalTwins,∆-Modules and EternalModules problems are
defined in next Section 2. In Section 3, we define the red-black tree data struc-
ture used in our algorithms to achieve logarithmic runtime in the history length
of the input data for ∆-Twins and a complexity in O(n×m2×log(τ)+n3×τ)
for the pre-processing we designed for ∆-Modules.. In Section 4, we present
our algorithms solving EternalTwins, ∆-Twins, EternalModules prob-
lems and the pre-processing we designed for ∆-Modules. All numerical anal-
ysis of our implementations are presented in Section 5, before we close the
paper with concluding remarks and perspectives for further research.

2 Modules in a historical recording of graphs

Graphs in this paper are simple, undirected, and unweighted. A temporal graph
is a sequence of graphs indexed by integers representing time instants. For
practical use, it can also be formalized as a link stream L = (T, V,E) such that
T ⊆ N is an interval, V is a finite set, and E ⊆ T ×

(
V
2

)
. Usually, E is supposed

to be a lexicographically ordered set, but in this paper, it is not necessarily the
case. The elements of V are called vertices and the elements of E are called
(recorded) edges. For t ∈ T , the subgraph Gt of L induced by t is a graph
over the same vertex set V , with edge set Et = {{u, v} : (t, {u, v}) ∈ E}. It is
polynomial to transform link stream L into its sequence of subgraphs (Gt)t∈T ,
and vice versa. In this paper, we indifferently refer to temporal graphs as link
streams. The adjacency matrix sequence (Mt)t∈T is the sequence of adjacency
matrices of graphs (Gt)t∈T .
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Temporal twin vertices have two variants. A pair of eternal twins {u, v} ∈(
V
2

)
is a pair of vertices for which the neighbourhoods Nt(u) and Nt(v) are

strictly equal in V \ {u, v} for every instant t ∈ T . For an integer ∆, a pair
of ∆-twins {u, v} ∈

(
V
2

)
is a pair of vertices for which the neighbourhoods

Nt(u) and Nt(v) are strictly equal in V \ {u, v} for ∆ consecutive instants
t0 ≤ t ≤ t0 +∆ with Jt0, t0 +∆J⊆ T .

Temporal modules also have two variants. An eternal module A ⊆ V is a
subset of vertices which have strictly equal neighbourhoods in V \A for every
instant t ∈ T . For an integer ∆, a ∆-module A ⊆ V is a subset of vertices
which have strictly equal neighbourhoods in V \A for ∆ consecutive instants
t0 ≤ t ≤ t0 +∆ with Jt0, t0 +∆J⊆ T .

A vertex u ∈ V is called a splitter of the pair of vertices {v, w} ∈
(
V
2

)
at

time instant t ∈ T if either
- (u, v, t) ∈ E and (u,w, t) /∈ E
or
- (u,w, t) ∈ E and (u, v, t) /∈ E.
Such a notion is important in our paper as if u is a splitter of (v, w) at

the time instant t, (v, w) can’t be a pair of twins at this instant. Indeed, if u
is a splitter of (v, w) at instant t, N(v), the neighbourhood of v, and N(w)
the neighbourhood of w are not identical at instant t. Likewise, if u /∈ A is a
splitter of (v, w) ∈

(
A
2

)
at time instant t, A is not a module at this instant.

Indeed if u /∈ A is a splitter of (v, w) ∈
(
A
2

)
, N(v) \ A is not identical to

N(w) \A at instant t and then A is not a module at t.
Our paper addresses the following problems.

EternalTwins
Input : A link stream L.
Output : A list of all pairs of eternal twins in L.

∆-Twins
Input : A link stream L and an integer ∆.
Output : A list of all pairs of ∆-twins in L.

EternalModules
Input : A link stream L.
Output : A list of all eternal modules in L.

∆-Modules
Input : A link stream L and an integer ∆.
Output : A list of all ∆-modules in L.

3 Time tree data structure

All problems addressed in this paper boil down to the problem of finding split-
ters for pairs of vertices. We need to store all splitters for all pairs of vertices
and the instants associated in an efficient way in terms of data consumption.
Rather than storing lists of time instants and associated splitters, which would
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0 6 9 16[a, b, c]

0 3 3 5[a, b] 10 12 13 16[a]

Fig. 5 Time-tree covering [0, 16] where a is
splitter for time instants 3, 6, 7, 8, 9, 12, 13, b
is splitter for time instants 3, 6, 7, 8, 9 and c
is splitter for time instants 6, 7, 8, 9

0 3 3 16[a, b]

0 2 4 12 13 16[a]

4 6 911[a, b, c] 14 16

Fig. 6 This tree represents the same split-
ter list as the one in Fig. 5 but is one level
deeper and therefore requires more opera-
tions and a greater computation time to add
a new splitter.

amount to a worst case spacial complexity in O(n× τ) where n is the number
of vertices and τ the history length, for each pair of vertices (which would lead
to a total worst case spacial complexity in O(n3×τ)), we designed a tree-based
data structure inspired from red-black trees.

Each node covers a time range P ⊆ T and contains a list of vertices A ⊆ V
and the time range D ⊆ P of consecutive instants for which A is the exact
list of splitters of the considered pair of vertices. The 2 sons of this node cover
time ranges Q ⊆ P and R ⊆ P with ∀t1 ∈ Q, ∀t2 ∈ D, ∀t3 ∈ R, t1 < t2 < t3.

Each node is characterized by :

– First instant ti of P . (For the root of Fig. 5, 0)
– Last instant tf of P . (For the root of Fig. 5, 16)
– First instant of D. (For the root of Fig. 5, 6)
– Last instant of D. (For the root of Fig. 5, 9)
– List of vertices A. (For the root of Fig. 5, [a, b, c])

for a worst case spacial complexity by node of n, where n is the number of
vertices in V . Used for storing splitters of a given pair of vertices, one time-tree
will have a number of node equal to the number of time ranges for which list of
splitter is constant and not empty. In Fig. 6, we represented nodes that didn’t
contain a list of vertices but in terms of implementation, those can be left
uninitialized and only initialized whenever data has to be stored in them. This
means that at all time, a time-tree will have a number a of nodes such that
a ≤ τ , where τ = ‖T‖ leading to a worst case spacial complexity in O(n× τ).
As we use a time-tree for each pair of vertices of the temporal graph, our total
worst case space complexity will be in O(n3× τ) but note that this worst case
is unlikely as it would require the splitter list to change at each instant while
being of a size close to the total size of the vertex set V . As we focus on sparse
graphs, we are more likely to find large time span for which list of splitters of
a given pair of vertices remains unchanged.

This type of tree can be balanced in order to minimize computation time
of operations. But this balancing comes at a price. It requires computation of
the depth of each sub-tree and to recursively balance each node.
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Balancing operation of a node: if depth(left son)− depth(right son) > 2,
then we can rotate left:

tf (father)← ti(right son)− 1;
ti(right son)← ti(father);
(right son(father))← left son(right son);
left son(right son)← father;
father ← right son;

A rotation of a node loses no information. Indeed, both trees in Fig. 5
and Fig. 6 represent the same data, the only difference being the depth of the
tree. This means that all sub-trees can be balanced, ensuring a depth in log(p)
where p is the number of time ranges for which the list of splitters is constant
and not empty. That means that the depth of those trees would be inferior at
all time to log(τ) where τ is the history length of the input link stream.

One rotation of a node is done in constant time, provided that the depth
of the sub-tree rooted on each node is stored and updated accordingly.

Adding a splitter u ∈ V for time instant t ∈ T (see pseudo code in Alg. 1)
:

– Node initialization If this node contains an empty list of vertices A,
A ← [u], D ← [t, t] and we create both sons of this node, which cover
{a ∈ T, a < t} and {a ∈ T, a > t}.

– Splitter insertion If this node contains a list of vertices A and D = [t, t],
we add u to A.

– Node split If this node contains a list of vertices A, u /∈ A and t ∈ D,
we create a node N1 and a node N2 covering T1 ⊂ P (resp. T2 ⊂ P ),
such that ∀t1 ∈ T1,∀t2 ∈ D, t1 < t2 (resp. ∀t1 ∈ T2,∀t2 ∈ D, t1 > t2).
N1 contains a list of vertices equal to A and a time range D1 such that
∀t1 ∈ D1, t1 ∈ D & t1 < t (resp. ∀t1 ∈ D2, t1 ∈ D & t1 > t). N1’s
left son is the left son of the original node (resp. N2’s right son is the right
son of the original node) and N1 becomes the left son of the original node
(resp. N2 becomes the right son of the original node). Then A ← [u] and
D ← [t, t].

– Node expansion If this node contains a list of vertices A with ‖A‖ =
1 & u ∈ A, and if ∃t0 ∈ D, such that t0 − 1 = t (resp. t0 + 1 = t), we add
t to D.

– Recursion If t ∈ Q, we add splitter u at instant t in the left son of the
node. Respectively, if t ∈ R, we add splitter u at instant t in the right son
of the node.

After an addition of splitter in a node N , we use a consolidation operation
that allows nodes to fuse together if their lists of splitter are the same and the
times ranges concerned by those lists are adjacent cf. Algorithm 2. We dive to
the rightest leaf of the sub-tree rooted on its left son and to the leftest leaf of
the sub-tree rooted on its right son, which are the two nodes whose time ranges
D are closest. If one of those nodes have the same list of vertices as N and its
time range D(leaf) is adjacent to D(N), which means if D(leaf) ∪ D(N) is
continuous, then D(N)← D(leaf) ∪D(N) and we destroy the leaf.
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Data: A time tree T , and a splitter u for the time instant t to be listed in T
if t ∈ T.dataRangeDeleted then

if u /∈ T.splitters then
Create node newT ;
Add all splitters from T.splitters to newT.splitters;
Add u to newT.splitters;
T.dataRangeDeleted← [t, t];
Create node newLeftSon;
Create node newRightSon;
Add all splitters from T.splitters to newLeftSon.splitters and
newRightSon.splitters;
newLeftSton.dataRangeDeleted← [T.startInstant, t− 1];
newRightSon.dataRangeDeleted← [t+ 1, T.endInstant];
newLeftSon.leftSon← T.leftSon;
newRightSon.rightSon← T.rightSon;
newT.leftSon← newLeftSon;
newT.rightson← newRightSon;

end

end
if t ≤ T.startInstant then

if T.leftSon exists then
T.leftSon.addSplitter(u, t);

end
T.leftSon← newLeftSon;
newLeftSon.dataRangeDeleted← [t, t];
newLeftSon.splitters.add(u);

end
if t ≥ T.endInstant then

if T.rightSon exists then
T.rightSon.addSplitter(u, t);

end
T.rightSon← newRightSon;
newRightSon.dataRangeDeleted← [t, t];
newRightSon.splitters.add(u);

end

Algorithm 1: Adding a splitter operation

Data: A time-tree T
Dive to the rightest son D of T.leftson;
if D.endInstant+ 1 = T.startInstant D.splitters = T.splitters then

T.startInstant← D.startInstant;
Destroy D;

end
Dive to the leftest son D of T.rightson;
if D.startInstant− 1 = T.endInstant D.splitters = T.splitters then

T.endInstant← D.endInstant;
Destroy D;

end

Algorithm 2: Consolidation operation
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Once the correct node is found, consolidation operation is done in constant
time. The complexity comes from the dive which will at all time be inferior to
O(log(τ)).

When the correct node is found for addition of the splitter, the operation
is done in constant time. If we balance our nodes at each addition of splitter,
we only have to recursively balance nodes that have been modified by the
operation, which means the node on which we finally added the splitter and
his fathers. Balancing the tree after a splitter addition and consolidation of the
tree then requires O(log(d)) operations, which means that adding a splitter in
a balanced tree and re-balancing it afterwards comes with a total complexity
in O(log(τ)).

4 Matrix and matrix-less algorithms for enumerating temporal
twins and modules

In many cases, an input link stream L = (T, V,E) is not given by its adjacency
matrix sequence (Mt)t∈T , but rather by a list of its recorded edges E. The
main idea of our algorithms is to iterate on this list of edges, allowing those
algorithms to be used in real-time, as new edges are registered by the system.
For each new edge in our link stream, we want to see if this edge introduces a
new splitter for a pair of vertices.

Eternal-twins listing algorithm based on edges iteration (MEI and MLEI)
Computing EternalTwins in time independent from history length τ can
be done by using the triangular structure of splitters, as in Algorithm 3. If
a pair (u, v) ∈ V 2 has a splitter at any given time instant t, Nt(u) 6= Nt(v)
with Nt(u) the neighbourhood of u at instant t. Therefore, u and v are not
eternal-twins. We start by initializing a matrix of size n2 that will store a
boolean (initialized at true) for each pair of vertices. Then, we iterate on the
edge set and for each edge (u, v, t), we scan V for a w such that (u,w, t) /∈ E
(resp. (w, v, t) /∈ E) which would mean that w is a splitter of (u, v) at time
instant t.

It is a standard exercise to prove the correctness of Algorithm 3, e.g. by
an induction on |E|. The overall complexity of the algorithm is O(m×n+n2)
if (Mt)t∈T is also given as input, allowing us to test (u,w, t) /∈ E in constant
time. This is the matrix version or Matrix Edge Iteration algorithm (MEI).
But when (Mt)t∈T is part of the input, O(n2×τ) space complexity at runtime
is required, which usually causes out of RAM problems for big τ . Temporal
complexity is in O(m2 × n+ n2) otherwise, since scanning (u,w, t) /∈ E could
take O(m) especially if E is given unordered by t ∈ T . This is the matrix-
less version or Matrix-less Edge Iteration algorithm (MLEI). We note that in
practice the latter O(m) factor is small, especially when E is chronologically
ordered, by dichotomy search. Additionally, we create a HashMap storing all
edges in sets indexed by their t. This way, we do not have to scan all E to find
out if an edge (t, {u,w}) /∈ E but only the set of Et, the edges at time instant
t, reducing time complexity. We have proven the following property.
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Data: Linkstream L : (T, V,E)
Result: List of all eternal-twins of L
for vertex u do

for vertex v 6= u do
Initialize Tw(u, v) = true;

end

end
for recorded edge (t, {u, v}) ∈ E do

for vertex w ∈ V \ {u, v} do
if (t, {u,w}) /∈ E then

Tw(v, w) = false; // u is a splitter of {v, w}
end

end

end
return every entry u 6= v of table Tw where Tw(u, v) = true.

Algorithm 3: Edge Iteration algorithm for eternal-twins listing

Property 1 EternalTwins can be solved in time independent from history
length.

∆-twins listing algorithm based on edges iteration (MEI and MLEI). We
now adapt the algorithm solving the eternal-twins problem to our ∆-twins
listing problem, as in Algorithm 4. For this problem, it doesn’t suffice to know
that (u, v) ∈ V 2 have a splitter, we have to store in memory the time instant
t at which the vertex w is a splitter. We use our time-tree data structure
introduced in Section 3. But for the problem of ∆-twins, we don’t care to
store in our trees the vertices that are splitters of the pair but only the time
instant t for which there exists at least one splitter. We can then discard the
list of splitter A of each node of our trees and replace it by a boolean, false
if the list of splitter is empty, true else, disminishing spacial complexity to a
worst case O(τ) by tree. We will need O(n2) of them for a total worst case
spacial complexity’s upper bound in O(n2 × τ).

If (Mt)t∈T is given, the overall complexity of this Matrix Edge Iteration
algorithm (MEI) is O(m× n log τ +N) with n the number of vertices, m the
number of recorded edges, τ the history length and N the number of pairs of
∆-twins. If (Mt)t∈T is not given, complexity is O(m2×n log τ+N). This is the
Matrix-less Edge Iteration algorithm (MLEI). The overall space complexity of
algorithm MLEI is O(n2× τ), due to the use of Tw. But it is really unlikely to
reach this upper bound as it would require each pair of vertices to have at least
one splitter each 2 time instants. Size of the data wasn’t monitored during our
experiments but the fact that the MLEI didn’t encounter out of RAM issues
where MEI did convinces us that at least on the focus of this paper (sparse
graphs of few vertices on big time ranges), this space complexity remains
reasonable. Furthermore, little optimizations can be done, like systematically
turning the boolean to true for time ranges of size inferior to ∆ between two
time instants for which the boolean is true because the pair of vertices can’t
be a pair of ∆-twins on those time ranges, which, by collapsing node, will
reduce the number of nodes and the size of the tree.
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Data: A linkstream L : (T, V,E) and an integer ∆
Result: A list of all ∆-twins of L
We initialize for each pair of vertices Tw(u, v) = Tree(T );
Initialize a list R of all entries in Tw;
for recorded edge (t, {u, v}) of E do

for vertex w do
if (t, {u,w}) /∈ E then

Add the instant t as an instant at which a splitter exists in Tw(v, w);
if an instant insertion exhausts the time instants in Tw(v, w) then

remove entry (v, w) from R;
end

end

end

end
for (u, v) left in R do

scan all time ranges of at least ∆ consecutive instants for which A = false in
Tw(u, v) and add all ranges to output

end
return output

Algorithm 4: Edge Iteration Algorithm for ∆-twins listing

Theorem 1 On input a link stream with n vertices, m recorded edges, τ his-
tory length, and N pairs of ∆-twins, ∆-twins can be solved in time O(m ×
n log τ +N) with O(n2 × τ) space complexity, or in time O(m2 × n log τ +N)
with a lesser space complexity.

Eternal Modules listing using edge iteration We define the notion of mini-
mal module containing a pair of vertices {u, v}.

Definition 1 In a static graph G, we refer to minimal module containing a
pair of vertices {u, v} of G as the module of G containing u and v of minimal
size.

If {u, v} is a pair of twins, then, the minimal module containing {u, v}
is {u, v}. If they are not twins, there exists a splitter w of {u, v} in G. If A
is a module of G containing u and v, then w ∈ A, otherwise A cannot be
a module. We describe then this naive algorithm for computing the minimal
module containing {u, v}

One iteration of the main loop of this algorithm has a worst case complexity
in O(n3) where n is the number of vertices. If this worst case is reached, it’s
because A = V and that’s the last iteration of the loop as V is a module. We
can then conclude that the worst case complexity of the whole algorithm is in
O(n3). The following property can be seen as part of [10, Theorem 1]. However,
since [10] only deals with modules of the so-called permutation graphs, we
also give a short proof for our case. Two sets A and B overlap if: A \ B 6= ∅,
B \A 6= ∅, and A ∩B 6= ∅.

Property 2 ([10]) All modules in a graph G are either singletons or unions of
overlapping minimal modules.

Proof Let A be a module of size at least 2 which is not a minimal module. For
every distinct vertices u ∈ A and v ∈ A, we claim that the minimal module



14 Binh-Minh Bui-Xuan et al.

Data: Static graph G(V,E), a pair of vertices {u, v} ∈ V
Result: The minimal module A containing {u, v} in G
A← {u, v};
while A not a module do

for vertex x ∈ A do
for vertex y ∈ A with x 6= y do

if splitters(u, v) \A not empty then
A is still not a module;
for vertex w ∈ splitter(u, v) \A do

Add w to A ;
end

end

end

end

end
return A.

of {u, v} is a subset of A. Indeed, since A is a module containing u and v,
the latter cannot be a super set of A, which would contradict its minimality.
Now, if it overlaps A then, by intersection closure of overlapping modules, see
e.g. [5,8,15], its intersection with A would contradict its minimality. Hence,
every minimal modules of pairs of vertices of A is a subset of A.

If every pair of distinct vertices of A is a module then A is the union of
overlapping minimal modules. We suppose there are pairs of distinct vertices
in A whose minimal modules have size at least 3. Among the said pairs, we
chose u and v be two distinct vertices whose minimal module, when combining
with other minimal modules of A in an overlapping way, yields a union M of
overlapping minimal modules with k = |M | maximum. Since every minimal
modules of vertices in A is a subset of A, we have that M ⊆ A. If M = A,
then A is the union of overlapping minimal modules. Let’s consider M 6= A
and k < |A| and find a contradiction to the maximality of k.

There exists w ∈ A \ M . Let N be the minimal module of {u,w}. As
explained above, N ( A. By maximality of k, |N | ≤ k and therefore we
cannot have N ) M . Since w /∈M , u ∈ N ∩M and we cannot have N ) M ,
the only way left for N and M is to overlap. But then N ∪M contradicts the
maximality of k. ut

Using the property, we can compute all modules of a graph G recursively
from a list of all minimal modules containing each pair of vertices of the graph,
using this algorithm.

Complexity for this algorithm is in O(M) where M is the number of mod-
ules in G. Now that we have defined those notions for static graphs, we adapt
them to the EternalModules problem on linkstreams.

Definition 2 A minimal eternal-moduleA containing {u, v} in L is the eternal-
module of L containing u and v of minimal size.

Property 3 All eternal-modules of L are either singletons or unions of over-
lapping minimal eternal-modules.
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Data: Static graph G(V,E), a list of all minimal modules containing all pairs of
vertices

Result: The list MODULES of all modules of G
MODULES ← list of all minimal modules containing all pairs of vertices;
while new modules are found in this iteration do

for module A ∈MODULES do
for module B ∈MODULES do

if A ∩B not empty then
if A ∪B /∈MODULES then

Add A ∪B to MODULES;
end

end

end

end

end
return MODULES.

Proof The proof follows the same arguments as with Property 2, since eternal
modules are very similar to modules. ut

Both our algorithm for computing minimal modules for a given pair of
vertices and our algorithm listing all modules of G when given the list of all
minimal modules can be used as such to compute eternal modules as a subset
A ⊆ V is an eternal module if and only if there is no splitter outside of A for
each pair of vertices u ∈ A and v ∈ A at no instant t ∈ T . What remains to
define to be able to compute all eternal modules of a linkstream L is a means
to compute all splitters for all pair of vertices of V . This can be accomplished
thanks to our MEI, MLEI algorithms.

Listing all splitters for all pairs of vertices is accomplished by the Edge
Iteration Algorithm in O(n×m2) where n is the number of vertices and m the
number of edges. From those lists of splitters, we compute minimal modules for
all pair of vertices in O(n3) as previously established for the static version of
the algorithm. The last step of our algorithm, the computation of all modules
from those minimal modules has a complexity in O(M) where M is the number
of eternal-modules of L. This adds up to a complexity in O(n3 +n×m2 +M).

This complexity is independent in the history length τ of L, which is our
goal, as the graphs we deal with present a large τ while n and m are smaller.
Algorithm 5 sums up the above mentioned steps.

Pre-processing of ∆-modules
Now that we have presented methods of computation for ∆-twins and

EternalModules problems, we need to tailor a solution for the ∆-modules
problem combining those approaches.

Definition 3 A minimal instantaneous modules containing a pair of vertices
{u, v} for an instant t is the module in the static graph Gt representing the
linkstream L at the instant t, containing u and v, of minimal size.

We can use the Edge Iteration Algorithm to compute splitters of each pair
of vertices for each instant and use those to compute minimal instantaneous
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Data: A linkstream L : (T, V,E)
Result: A list of all eternal-modules of L
We initialize for each pair of vertices Tw(u, v) = ∅;
for recorded edge (t, {u, v}) of E do

for vertex w do
if (t, {u,w}) /∈ E then

Add vertex u in Tw(v, w);
end

end

end
We initialize a list output of eternal-modules containing all singletons constituted

of all vertices of V ;
for pair of vertices {u, v} ∈ V do

MinimalModule{u, v} ← {u, v};
while there is change happening do

for pair of vertices {x, y} ∈MinimalModule{u, v} do
if Tw(x, y) \MinimalModule{u, v} 6= ∅ then

Add all vertices of Tw(x, y) \MinimalModule{u, v} to
MinimalModule{u, v};

end

end

end
Add MinimalModule{u, v} to output;

end
while there is change happening do

for pair of modules (A,B) ∈ output2 do
if A ∩B 6= ∅ then

if A ∪B /∈ output then
Add A ∪B to output;

end

end

end

end
return output
Algorithm 5: Edge Iteration Algorithm for Eternal-modules listing

modules for each pair of vertices, using the same method as for computation
of minimal modules in static graphs.

In the interest of saving computation time, we compute those minimal in-
stantaneous modules on time ranges. After computing all splitters for each
pair of vertices for each instant, for each pair of vertices (u, v), for each node
N of the time-tree listing their splitters, we create the minimal module con-
taining (u, v) on time range N.timerange and initiate it by adding (u, v)
to Module.vertexset. Then, as long as there is change happening, we look
up, pair of vertices (x, y) by pair of vertices in Module.vertexset. We ac-
cess the time-tree representing splitters of (x, y) and check if N.timerange
is covered by a single node N2 of this tree. If this is the case, we add all
vertices of N2.splitters to Module.vertexset. Else, we need to divide the
Module we’re currently building. For each node N2 of the time-tree repre-
senting splitters of (x, y) for which N2.timerange∩N.timerange 6= ∅, we cre-
ate Module2(u, v,N2.timerange ∩ N.timerange) with Module2.vertexset =
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Module.vertexset∪N2.splitters. And we iterate until nothing is changing for
either of those modules.

Data: A linkstream L : (T, V,E)
Result: A list of all minimal instantenous modules for each pair of vertices of L
We initialize for each pair of vertices Tw(u, v) = Tree(T );
for recorded edge (t, {u, v}) of E do

for vertex w do
if (t, {u,w}) /∈ E then

Add splitter u for instant t in Tw(v, w);
end

end

end
We initialize a list output of minimal instantaneous modules containing all

singletons constituted of all vertices of V on a time range equal to T ;
for pair of vertices {u, v} ∈ V do

for TimeTreeNode N ∈ Tw(u, v) do
Add MinimalModule{u, v,N.timeRange} to output;
MinimalModule{u, v,N.timeRange} ← {u, v};

end
while there is change happening do

for pair of vertices {x, y} ∈MinimalModule{u, v,N.timeRange} do
Put in a list NL all N2 ∈ Tw(x, y), N2.timerange ∩N.timerange 6= ∅;
if ‖NL‖ = 1 then

MinimalModule{u, v,N.timeRange}.add(NL[0].splitters);
end
else

for N2 ∈ NL do
Add MinimalModule{u, v,N.timeRange∩N2.timeRange} to

output ;
MinimalModule{u, v,N.timeRange ∩N2.timeRange} ←
MinimalModule{u, v,N.timeRange} ∪N2.splitters;

end
Remove MinimalModule{u, v,N.timeRange} from output;

end

end

end

end
return output

Algorithm 6: Edge Iteration Algorithm for pre-process of ∆-modules

As we showed that our splitter addition operation was done in O(log(τ)),
the splitter listing operation of this algorithm is done in O(n×m2 × log(τ)).
From those splitters, the computation of all minimal instantaneous modules is
done in O(n3× τ) as we iterate on pair of vertices, and for each pair, we build
a module of maximal size n, and at each addition of splitters, we search a tree,
for a complexity in τ , the worst case number of nodes in one tree. We then
reach an overall complexity for this pre-process in O(n×m2× log(τ) +n3× τ)
with a spacial complexity in O(n3 × τ). While being far from ideal, this pre-
process could allow us to compute ∆-modules by the following property, whose
proof is straightforward.
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Problem Complexity of partition refinment Complexity of MEI Complexity of MLEI
EternalTwins O(n3 × τ) O(m× n+ n2) O(m2 × n+ n2)
∆− Twins O(n3 × τ ×∆) O(m× n log τ +N) O(m2 × n log τ +N)

EternalModules O(2n × n× τ) O(n3 +m× n+M) O(n3 +m2 × n+M)
∆−Modules O(2n × n× τ ×∆) O(m× n log τ + n3 × τ) O(m2 × n log τ + n3 × τ)

Table 1 Comparative table of complexities of algorithms solving our problems

Property 4 Given a time range of at least ∆ time instants, for a subset A
of vertices to be a ∆-module on this time range, all minimal instantaneous
modules containing each pair of vertices {u, v} ∈ A2 for all time instants of
the time range must be subsets of A.

Thus, this is our belief that a method to compute all ∆-modules of L could
be designed from this listing of minimal instantaneous modules. But to con-
ceive this method would require a more thorough work on the subject.

Comparison with other techniques. In order to confirm the relevance of
our contribution, we compared the complexity of our algorithm to other ap-
proaches already present in the literature. But we didn’t manage to find al-
gorithms treating those precise problems. So we used approaches used of the
static versions of those problems and adapted them to our temporal problems.

The matrix based technique for partition refinement, used to solve the
EternalTwins problem, is defined as follows. Assume initially that all pair
of vertices are eternal twins: Tw(u, v) = true for all u 6= v. For every pair of
vertices u 6= v, time instant t ∈ T , and vertex w ∈ V \ {u, v}, if Mt(w, u) 6=
Mt(w, v), then Tw(u, v) = false. At the end of the process, output every entry
u 6= v of table Tw where Tw(u, v) = true. This results in a naive O(n3 × τ)
solution for EternalTwins.

A similar process repeated ∆ times using ∆ different tables Tw allows to
solve ∆-Twins in time O(n3 × τ ×∆).

To use such an algorithm to solve module problems, we would need to check
for all subsets A ⊆ V if we can find a pair of vertices (u, v) ∈ A2 who has a
splitter outside of A. There are 2n subsets in the graph, with |A| at worst case
equal to n which would result, for EternalModule in a complexity in time
O(2n×n× τ) and for ∆-Module in a complexity in time O(2n×n× τ ×∆),
which are both unpractical.

5 Numerical Analysis

All the algorithms listed in the previous sections have been implemented
in Java3 and run on a standard laptop clocking at 2.7 Ghz. Since the use
of EternalTwins is practically somewhat limited, plus the fact the algo-
rithm is independent from history length, we only present numerical results
for ∆-Twins and EternalModules. Experiments on the pre-process for
∆-Modules faced Out of RAM issues as spacial complexity was too big.

3 Source code at https://github.com/DaemonFire/deltaModules.

https://github.com/DaemonFire/deltaModules
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This setback points the need to find a more economic method to compute
∆-module, the solution presented in this article being theoretically interesting
but proving ineffective on the datasets we are working on.

Basically, for the correctness of the various implementations of twins com-
putation, our methodology is unit-testing. The control groups are obtained
from running an implementation of the naive partition refinement algorithm
in O(n3 × τ ×∆) described in Section 4. Due to the high time complexity of
the naive algorithm, we only test for instances where the naive computation
do not exceed 45 minutes. This covers ≈ 33% instances of all our experiments
on twins in both below Section 5.2 and Section 5.3. Results are positive on
all these samples. For modules problem, we could not assert correctness of
the implementations as naive algorithms computing modules are too complex
to be used on our datasets. We asserted that our algorithm solving Eter-
nalModules problem proved to be correct by comparing its result to the
results of the algorithm solving EternalTwins. LesFurets dataset being a
bi-partite graph, eternal-modules are either singletons, the entire vertex set V
or are composed of vertices that are pairwise eternal-twins, as either vertices
of the module are from different halves of the graph and for parts of their
neighbourhood to be equal, the neighbourhoods must be empty, making them
eternal-twins, or the module is contained in one of the half of the graph and
then no edge can exist between vertices of the module, while they have the
same neighbourhood in the other half, which means that all pairs of vertices
of the module are pairs of eternal-twins. In our experiments, no eternal-twins
existed, while our algorithm solving EternalModules found exactly n + 1
eternal-modules, where n is the number of vertices, which is what the solution
should be. In what follows we will totally skip the discussion about correct-
ness, and focus only on computation time. We first present the datasets on
which we are going to experiment in Section 5.1. Then we stress-test the im-
plementation of our ∆-twins algorithm on big values of history length with a
generated dataset, in Section 5.2. We continue our study by confronting this
implementation to three different datasets collected from real world data, in
Section 5.3. Then we finish by following the same steps on our eternal-module
algorithm in Section 5.4 Our overall experiments run for more than 8000 (eight
thousand) hours CPU time.

5.1 Datasets used in the study

Timeprogression : Our first dataset was generated in order to monitor history
length’s influence on computation time of the different algorithms while main-
taining constant numbers of vertices and edges. Number of vertices was set to
50 and number of edges to 105, ascertaining that both dimensions are small
enough so that history length’s influence on algorithm’s computation time
would not be prone to be negligible. There are 199 instances, with history
length varying from 5000 to 106 time instants. Those graphs are not ordered
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by time instants, allowing us to test that our algorithms run on batched data
that comes asynchronously.

Rollernet dataset [16] has been collected from rollerbladers touring Paris.
Links will be recorded at instant t whenever two rollerbladers are close enough
during a given period. This is the denser of our linkstreams, ranging on a
shorter history length, allowing us to test the limits of our algorithms which are
designed for sparse graphs with great history length. This geometrical dataset
is more likely to present a relatively greater number of ∆-twins and ∆-modules
than the two other datasets as rollerbladers cruising together for a period of
time will have similar neighbourhoods, it being based on their closeness to
others. We run our experiments on the following seven batches of extracts,
each batch containing 100 extracts. Two first batches contain link streams
induced by n1 = 40, resp. n2 = 50, vertices of the raw Rollernet dataset.
Three batches contain link streams induced by m1 = 105, m2 = 2 · 105, and
m3 = 3 · 105, recorded edges of the raw dataset. Two last batches contain link
streams induced by τ1 = 5000, resp. τ2 = 8000, successive time instants of the
raw dataset.

Enron dataset [12] is parsed from the log of e-mail exchanges between
employees of a same company over a period of 3 years. ∆-modules would
emerge from this link stream as people from the same service are sent the
same e-mails for a certain period of time while having a uniform response to
the outside (it being null or agreed upon inside the service). This link stream
is very sparse and is the biggest of our study, with a huge history length and
the greatest number of vertices and edges. We do the following seven batches
of 100 extracts each, similarly as for Rollernet, with n1 = 50, n2 = 100,
m1 = 5000, m2 = 10000, m3 = 20000, τ1 = 107, and τ2 = 5 · 107.

LesFurets dataset is parsed from the log of user behaviour on the lesfurets
e-trade website’s funnel, some vertices representing the various users and the
others representing events on the funnel. This link stream is therefore a bi-
partite link stream. This dataset is not ordered by time instants. The latter
feature also provides a way to test the robustness of our approach, in the sense
of fault tolerance. In this context, ∆-modules would model groups of users in-
teracting similarly with a portion of the funnel, having similar reaction times
and realizing operations in the same order. We hope that with the best param-
eters, those ∆-modules would regroup peoples of similar behaviours, allowing
the website to identify population that are not going to perform a purchase so
that the system could take positive action to change this outcome. We do the
following seven batches of 100 extracts each, similarly as the other datasets,
with n1 = 300, n2 = 600, m1 = 3000, m2 = 6000, m3 = 8000, τ1 = 10000, and
τ2 = 13000.
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Dataset ‖V ‖ ‖E‖ τ
Timeprogression (generated) 50 105 5000 to 106

Rollernet 40 to 62 105 to 4 · 105 5000 to 104

Enron 50 to 150 5000 to 25000 107 to 108

LesFurets 300 to 1000 3000 to 10000 105 to 1.5 · 105

Table 2 Datasets used in this study and their characteristics

Fig. 7 Computation time of MLEI algorithm solving the ∆-Twins listing problem in func-
tion of history length on the Timeprogression datasets. We do not have consistent results
for MEI due to out of RAM.

5.2 Logarithmic dependency in history length for ∆-twins’s runtime

Theoretically, our algorithms compute twin vertices in time logarithmic in the
history length of the input temporal graph. We would like to confirm this on
runtime of their implementation.

Hypothesis 1. The computation time of MLEI algorithm solving ∆-twins
problem is logarithmic in the history length of the input temporal graph.

Experimental results.
Results are presented in Figure 7.

Discussion: confirmation of Hypothesis 1. Progression of computing time
is logarithmic, with few jumps (2 cases) probably due to some noisy use of the
PC during computation.

5.3 Runtime on real world datasets

We confront our implementations to real world datasets, and would like to
experiment both hypothesis below.

Hypothesis 2. ∆-twins can be enumerated in reasonable time.

Hypothesis 3. Algorithm MLEI is able to solve ∆-twins problem on link
streams that cause exhaustion of memory for the MEI version.

Datasets and experiment result. Our methodology is to confront the im-
plementations on three different datasets collected from real world data. We
focus on ∆-Twins with ∆ = 102. In the sequel, we describe our sampling
method over the three datasets. Then, a global view of all computation time
is captured in Figure 8. We develop with detailed views on each of the three
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Fig. 8 Overview of computation time of all experiments.

Fig. 9 Computation time of MLEI and MEI algorithms solving the ∆-twins listing problem
in function of the number of edges in the link stream on the Rollernet datasets.

Fig. 10 Computation time of MLEI algorithm solving the ∆-twins listing problem in func-
tion of the number of edges in the link stream on the Enron datasets.

Fig. 11 Computation time of MLEI algorithm solving the ∆-twins listing problem in func-
tion of the number of edges in the link stream on the Lesfurets datasets.

datasets, in Figures 9, 10, and 11, respectively. We leave all discussions for the
corresponding paragraph at the end of this section.

Discussion: slight confirmation of Hypothesis 2; confirmation of Hypothe-
sis 3. Our experiments on the Rollernet datasets are where naive algorithm
computes in reasonable time, allowing us to ascertain that MEI and MLEI
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algorithms compute ∆-twins correctly, cf. Figure 9. Naive algorithms com-
putation time is not represented on those figures as it is far greater than
computation time of both MEI and MLEI and it would have messed with the
figure scale. It is also the only dataset we treated on which MEI does not
encounter out of RAM issues, where we observe that MEI tends to be a bit
more quicker to compute than MLEI. According to the heat-map, |T | seems
to have a minor impact on computation time as many datasets with large |T |
compute faster than datasets with small |T |. The overall tendency towards
greater computation time being due to the increase of the number of vertices
and of edges more than history length.

As soon as we reach Enron and LesFurets datasets, |V | gets too big and
naive algorithm computation time grows unreasonably. |T | also grows to a
large number and MEI, as expected, starts to face memory issues. Hypothesis
2 seems to be strained on Enron dataset. But we can still use those datasets
to experiment on MLEI algorithm. For Enron, the left hand side of Figure 10
allows us to confirm our theoretical complexity regarding |E| as our exper-
imental curve of computation time in function of number of edges seems to
describe a second degree polynomial function. The heat-map once again allows
us to picture that history length’s influence on complexity seems not to be so
clear, indicating that the number of edges has a greater impact on computa-
tion time than history length of the link stream. On the other hand, the right
hand side of Figure 10, where the heat-map correspond to number of vertices
shows us what can be expected of a heat-map about an important complexity
factor as darker points correspond to greater computation time than lighter
ones. We proceed similarly for the results on LesFurets datasets, cf. Figure 11.
They confirm the same tendencies as with Enron.

We conclude from our experiments that Hypothesis 2 is strained on Enron
dataset, whereas Hypothesis 3 is confirmed. All in all, twin vertices can be
computed within some minutes, even on Enron dataset.

5.4 Experimental study of Eternal-Modules algorithm

Theoretically, our algorithms compute eternal twins in time independent on
history length of the input temporal graph. We would like to confirm this on
runtime of their implementation. We use the same datasets as for ∆-twins and
try to validate our hypothesis.

Hypothesis 4. The computation time of MLEI solving eternal-modules
problem is independent in the history length of the input temporal graph.

For this, we use the TimeProgression dataset and analyse the results.

Our hypothesis seems to be a bit strained as computation time of MLEI on
those datasets seems to describe an exponential curve, albeit highly cushioned
for small history length. As numbers of vertices and edges are constant, the
only factor in our theoretical complexity that could vary with history length
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Fig. 12 Computation time of MLEI algorithm solving the EternalModules listing prob-
lem in function of history length on the Timeprogression datasets. We do not have consistent
results for MEI due to out of RAM.

is the size of the solution, the number of eternal-modules in the input graph.
But the number of eternal-modules is constant. It seems then, that some factor
in history length has been disregarded in the theoretical analysis of the com-
plexity of this algorithm. This curve also allows us to determine that spacial
complexity seems to be an issue, with Out of RAM issues occurring as history
length goes past 600 000 time instants. Once again, this issue of spacial com-
plexity seems to point at a factor in history length for the spacial complexity
of this algorithm.

Hypothesis 5. Eternal modules can be enumerated in reasonable time.

Hypothesis 6. Algorithm MLEI solving eternal-modules problem is able to
compute link streams that cause exhaustion of memory for the MEI version.

Hypothesis 5 is again strained as our algorithm for listing eternal-modules
present a complexity quadratic in the number of edges and cubic in the number
of vertices. This was foreseen in our theoretical analysis but numerical exper-
iments stress the fact that this high dependency remains a problem, even if
our graphs are sparse with a small number of vertices. Furthermore, it is to
be noted that as the number of vertices grows larger, number of eternal mod-
ules gets larger too, as each vertex is part of an eternal module. Therefore,
as vertices increase, so does the amount of memory used to store the result,
resulting in out of RAM issues due to the size of the solution itself. On Enron

datasets, our algorithm runs out of memory as the number of vertices gets too
big.

As for Hypothesis 6, this is partly confirmed by our experiments as MEI
is able to compute only on Rollernet datasets. This is due, like for ∆-twins,
to the use of adjacency matrices stored in memory. MLEI is able to compute
on extracts of LesFurets and TimeProgression datasets on which MEI is
unable to compute. But MLEI is way more limited on this problem than on
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Fig. 13 Computation time of MLEI and MEI algorithms solving the Eternal-modules listing
problem in function of the number of vertices in the link stream on the Rollernet datasets.

Fig. 14 Computation time of MLEI algorithm solving the Eternal-modules listing problem
in function of the number of vertices on the left and of edges on the right on the Lesfurets
datasets.

∆-twins as we explained earlier that Out of RAM issues occured as history
length or number of vertices reached a threshold.

Discussion: slight confirmation of Hypothesis 6; . Our experiments on
Rollernet and LesFurets datasets allowed us to confirm that MLEI was able to
compute datasets too large to be computed by MEI while MEI computed faster
on the datasets it could compute on. But MLEI reaches its limits too as num-
ber of vertices and history length reach a threshold and begin experiencing Out
of RAM issues due to its spacial complexity. Experiments run on LesFurets

also proved the high dependency of MLEI on number of vertices and of edges,
denying the Hypothesis 5 with a runtime growing too large. As for our Hy-
pothesis 4, it was proven wrong by our experiments on TimeProgression,
which displayed a dependency of the computation time on history length that
seemed exponential, albeit highly cushioned below a threshold. Overall, while
interesting theoretically and putting some grounds which could be used for
further works, those algorithms proved not to be entirely convincing.

6 Conclusion and perspectives

We introduced two variants of modules in a historical collection of graphs and
two specific cases when modules were twins. The corresponding algorithmic
problems of enumerating all such modules are polynomial. We addressed the
problem of solving them in time depending the least in the history length. Re-
visiting partition refinement techniques along with red-black tree data struc-
tures, we devise a logarithmic solution for ∆-twins and a solution for eternal-
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modules listing highly cushioned in function of history length. All algorithms
are subject to two sub-variants: with or without the use of adjacency matrices
in runtime memory. Confronting to datasets collected from real world data,
our solutions for twins scales up to 108 history length while eternal-module
listing scales up to 6 × 105. The pre-process we designed for ∆-modules does
not scale on the datasets we used but proved theoretically interesting. While
twins listing algorithms presented in this paper are functional for use on real
world data, our algorithms on modules are interesting theoretically speaking
but would require some tailoring to be able to compute on huge datasets. An
interesting development of this work could be the replacement of all matrix
data by hash-maps or sorted arrays. Then, extensive numerical analysis should
be made in order to compare these three approaches (matrix, hash-maps and
sorted arrays).
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