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Abstract

The number of families over ground set V is 22|V | and by this fact it is not possible to
represent such a family using a number of bits polynomial in |V |. However, under
some simple conditions, this becomes possible, like in the cases of a symmetric
crossing family and a weakly partitive family, both representable using Θ(|V |) space.

We give a general framework for representing any set family by a tree. It extends in
a natural way the one used for symmetric crossing families in [Cunningham and Ed-
monds, Canadian Journal of Mathematics, 1980]. We show that it also captures the
one used for weakly partitive families in [Chein, Habib, and Maurer, Discrete Math-
ematics, 1981]. We introduce two new classes of families: weakly partitive crossing
families are those closed under the union, the intersection, and the difference of
their crossing members, and union-difference families those closed under the union
and the difference of their overlapping members. Each of the two cases encompasses
symmetric crossing families and weakly partitive families. Applying our framework,
we obtain a linear Θ(|V |) and a quadratic O(|V |2) space representation based on a
tree for them. We introduce the notion of a sesquimodule – one module and half – in
a digraph and in a generalization of digraphs called 2-structure. From our results on
set families, we show for any digraph, resp. 2-structure, a unique decomposition tree
using its sesquimodules. These decompositions generalize strictly the clan decom-
position of a digraph and that of a 2-structure. We give polynomial time algorithms
computing the decomposition tree for both cases of sesquimodular decomposition.
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1 Introduction

Many combinatorial decompositions rely on their connections to well-known families.
An important key for this practice is the seminal bijection between the so-called
cross-free families and unrooted trees [17]. It leads to decomposition framework not
only in graph theory [13,15,22,32,36] and in combinatorial optimization [14,23,41],
but also in phylogeny [42]. Therein, the basic idea is to study the distance of a
given family F ⊆ 2V from a tree structure, namely to find for F a representation
by a (possibly labelled) tree in such a way that we can enumerate all members of
F in O(|F|) time. From this perspective, we address more particularly the space
complexity of a family as that of a tree representing it. Accordingly, at the first
level we find simple hierarchies, a.k.a. laminar families, and cross-free families, both
cases in Θ(|V |) complexity. Extending these we find symmetric crossing and weakly
partitive families: symmetric crossing families are closed under the complementation
of any member and under the intersection of their crossing members; weakly partitive
families are closed under the union, the intersection, and the difference of their
overlapping members. While the latter families are fundamental for the modular – or
clan – decomposition of several discrete structures (see [18] for an extensive survey),
the former families arise in a number of studies related to symmetric submodular
functions (see [41]). We will come back to these two cases with a more specific
discussion below. For now it matters that symmetric crossing families are Θ(|V |)
tree representable [12,15,16], and the same holds for weakly partitive families [10].
All the classes of families we mentioned so far are included in the class of crossing
families, also known as one of the largest classes of polynomial space complexity: a
crossing family is closed under the union and the intersection of its crossing members.
These families arise in the study of directed network flows (see [41]), and for them
only an O(|V |2) representing tree is known [25]. However, this asymptotic bound is
tight [1]: they are Θ(|V |2) tree representable. Contrasting these cases, no polynomial
tree is known for representing a family forming a binary vector space (namely closed
under the symmetric difference), although its complexity is Θ(|V |2): upper bound
obtained by looking at a vectorial basis; lower bound by counting such bases [29].

The study of tree representations of set families can be beneficial to graph decom-
positions from other perspectives too. The minimization of submodular functions is
fundamental in combinatorial optimization (see [41] for an extensive survey). When
the function is also symmetric, e.g., for undirected network flows or robber-and-cops
graph searching, the minimization problem has a faster and very simple solution [39].
The symmetric case draws a particular attention from research in graph decomposi-
tions, as the properties of a symmetric submodular function are exploited in many
ways for proving deep results (computability, well-quasi ordering, etc) related to the
branch decomposition of a connectivity function, the branch-width decomposition
of a graph, and the rank-width decomposition of a graph (see [28,38,40] and the
bibliography therein). Beside this, modular graph decomposition is a classical and
fundamental topic in graph theory. It has a rich history that goes back to the late
40s [46]. Nowadays, one of its most important properties is that the corresponding
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decomposition tree can be computed in linear time [44]. To this aim, considerable
research effort has been put in developing a long list of efficient and clever algo-
rithmic techniques (see [30] for a recent survey). Although classical and very well
studied, techniques for modular decomposition and for submodular function mini-
mization have been developed separately. The situation is similar between modular
decomposition and branch decomposition (resp. its restriction to the branch-width
or rank-width decompositions of graphs). From the perspective of bringing new in-
sights from each case to the other, it could be desirable to ask for a common ground
where these topics intersect.

We answer to such a question positively by looking at the structure of fundamental
set families therein. It is well-known that the family of (non-trivial) minimizers of a
symmetric submodular function is symmetric crossing, while the family of modules
of a graph is (weakly) partitive. In Section 2 we give a framework for representing
any set family by a tree. It captures and actually is a natural extension of the work
presented in [15] on symmetric crossing families. On the other hand, its connection
to weakly partitive families is not obvious. In Section 3 we show how, when restricted
to them, our framework is strictly equivalent to the one used in [10], giving the first
result generalizing both the modular decomposition of a graph and the structural
behaviour of the minimizers of a symmetric submodular function. Deepening the
question on representing set families by a tree, we address in Section 4 two natural
generalizations of symmetric crossing families and weakly partitive families: a family
is weakly partitive crossing if it is closed under the union, the intersection, and the
difference of its crossing members; a family is a union-difference family if it is closed
under the union and the difference of its overlapping members. Straight from defi-
nition, the class of weakly partitive crossing families encompasses weakly partitive
families and symmetric crossing families. Also from definition, union-difference fam-
ilies encompass weakly partitive families. Curiously, they also encompass symmetric
crossing families. Using the framework developed in Section 2 we show for each of
the two new cases a canonical tree representation, resulting in that the complexity of
weakly partitive crossing families is in Θ(|V |), and that of union-difference families
in O(|V |2). The class of union-difference families is incomparable with the class of
crossing families and in this sense our result extends the class of families having a
polynomial space complexity. Furthermore, in Section 5 we show that each of the
two new classes of families implies a new combinatorial decomposition. For this we
introduce the notion of a sesquimodule – one module and half – in a 2-structure.
The formalism includes the case when the 2-structure is a digraph. Sesquimodules
are proper generalizations of the notion of a clan [19] (an excellent introduction to
this topic is [18]). Based on sesquimodules and applying our framework for repre-
senting set families by an one-to-one correspondence with trees, we show uniqueness
decomposition theorems for digraphs and 2-structures. In Sections 6 and 7 we de-
scribe polynomial algorithms to deal with these decompositions. We close the paper
with some open questions and perspectives related to the use of combinatorics of
set families in algorithmic graph decompositions.
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Family name Definition

crossing closed under ∪ and ∩ of crossing members

intersecting closed under ∪ and ∩ of overlapping members

weakly partitive crossing crossing & closed under \ of crossing members

partitive crossing weakly partitive crossing & closed under ∆ of crossing members

symmetric crossing crossing & closed under complementation

bipartitive symmetric crossing & closed under ∆ of crossing members

weakly partitive intersecting & closed under \ of overlapping members

partitive weakly partitive & closed under ∆ of overlapping members

cross-free no two members cross

overlap-free (or laminar) no two members overlap

binary vector space closed under ∆

union-difference closed under ∪ and \ of overlapping members

Fig. 1. Glossary of families appearing in this paper. We denote by ∪ , ∩ , \ and ∆ the set
operations union, intersection, difference, and symmetric difference, respectively.

Family name c-∪ c-∩ c-\ c-∆ o-∪ o-∩ o-\ o-∆ symm. ∆

crossing yes yes

intersecting yes yes yes yes

weakly partitive crossing yes yes yes

partitive crossing yes yes yes yes

symmetric crossing yes yes yes yes

bipartitive yes yes yes yes yes

weakly partitive yes yes yes yes yes yes

partitive yes yes yes yes yes yes yes yes

cross-free yes yes yes yes

overlap-free (or laminar) yes yes yes yes yes yes yes yes

binary vector space yes

union-difference yes yes yes yes

Fig. 2. Closure properties. A set operation preceded by letter “c”, resp. “o”, means the
closure applies on crossing, resp. overlapping, members of the family. By “symm.” we
mean the closure under the complementation of any member of the family.
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crossing families

union−difference

families weakly partitive

families

symmetric crossing

families

weakly partitive
crossing families

Fig. 3. Some classes of families. When comparable, the inclusion is strict. The space com-
plexity of weakly partitive, symmetric crossing and weakly partitive crossing families are
all in Θ(|V |) while the complexity of crossing families is in Θ(|V |2). The complexity of
union-difference families is in O(|V |2), but this bound is not known to be tight.

2 A general framework for representing set families

We make the convention that every family F ⊆ 2V in this paper satisfies |V | ≥ 3,
∅ /∈ F , V ∈ F , and {v} ∈ F (for all v ∈ V ), unless we explicitly state otherwise.
Further on in the paper we will need to address graphs and digraphs: graphs will
refer to loopless simple undirected graphs whereas digraphs are pairs of the type
(V,E) where E ⊆ V × V \ {(v, v) : v ∈ V } . In particular, digraphs can have
double-arcs (directed cycles over two vertices).

Let V be an n-element set. Two subsets A ⊆ V and B ⊆ V overlap, noted A©©B ,
if their intersection is not empty and their differences are not empty: A ∩ B 6= ∅ ,
A \ B 6= ∅ , and B \ A 6= ∅ . Two subsets A ⊆ V and B ⊆ V cross if we have
both A©©B and A©©B , where the complement of a subset A ⊆ V is denoted by
A = V \A . We call a family an overlap-free family (resp. cross-free family) if no two
members of the family overlap (resp. cross). Overlap-free families are also known as
laminar families [41].

Ordering the members of an overlap-free family by inclusion will result in a rooted
tree, the hierarchy of the family. A similar result holds for every cross-free family
C ⊆ 2V : for x ∈ V consider the family containing the members of C excluding x
and the complements of the members of C containing x . Remove the empty set,
and obtain an overlap-free family over V \ {x} . Add {x} to the children of the root
of its hierarchy, unroot the resulting tree, and obtain T . For every edge uv in T ,
denote by {Su, Sv} the 2-partition of V induced by the leaves of the two trees we
get by removing uv from T . Clearly, Su ∈ C or Sv ∈ C , or both facts hold. This can
be represented by using an orientation over edge uv in T (double-arcs are allowed).
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Fig. 4. i. A cross-free family ii. Its representation by the Edmonds-Giles tree.

On the other hand, for every member A ∈ C with A 6= V , there exists an edge uv
of T such that A = Su or A = Sv . This is therefore a representation of C by an
unrooted tree (with edge orientations), the Edmonds-Giles tree of C . An example is
drawn in Figure 4. We have revised the proof [41, Theorem 13.21 proof] of a classical
result:

Theorem 1 (Edmonds-Giles [17]) A family is cross-free if and only if it has
an unrooted tree representation, and overlap-free if and only if it has a rooted tree
representation.

Let F ⊆ 2V be a family. We call A ∈ F an overlap-free member (resp. cross-
free member) if there is no B ∈ F such that A and B overlap (resp. cross). The
overlap-free sub-family, or laminar sub-family, L of F is the family containing all
overlap-free members of F . Likewise, we define the cross-free sub-family C of F
as the family containing all cross-free members of F . Clearly, L is an overlap-free
family, C is a cross-free family, and L ⊆ C . In F we define two types of structural
hierarchy, that we call decomposition trees of the family:

Definition 1 (Decomposition trees) Any family F ⊆ 2V can be associated with
the Edmonds-Giles tree of its cross-free sub-family, that we call the cross-free de-
composition tree TC of F . Likewise, F can be associated with the hierarchy of its
overlap-free sub-family, that we call the overlap-free decomposition tree, or laminar
decomposition tree, TL of F .

Remark 1 Suppose that we are given a family that is already overlap-free (and
hence cross-free as well). Then, either its cross-free decomposition tree has one and
only one source, or there is in that tree a unique double-arc and subdividing the
double-arc by setting a source in between will result in a tree with one and only one
source. In both cases, inverting the orientations defines a rooted tree which turns out
to be isomorphic to the overlap-free decomposition tree of the initial family.

As previously mentioned, an overlap-free member of a family is also a cross-free
member of the family, however, note that the converse in not always true. We say
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that TC is a proper “refinement” of TL . Basically, a decomposition tree is a (possibly
trivial) sub-family of the initial family. We will now divide the rest into another type
of sub-families that we call quotients.

Definition 2 (Quotient family) Let F ⊆ 2V be a set family, and TC , TL the
cross-free and overlap-free decomposition trees of F , respectively. Let u be an inter-
nal node of TC having neighbours a1, a2, . . . , ak . Note that k ≥ 3. Let V1, V2, . . . , Vk

be the subsets of V induced by the leaves of the trees containing a1, a2, . . . , ak when
removing node u from TC , respectively. We consider W = {V1, V2, . . . , Vk} as a
ground set and define the quotient family Q(u) ⊆ 2W of node u in TC as

Q(u) =

{
Q : ∃I ⊆ J1, kK, Q = {Vi : i ∈ I} ∧

(
|I| = 1 ∨ ⋃

i∈I

Vi ∈ F
) }

.

Let u be an internal node of TL having children a1, a2, . . . , ak . Let V1, V2, . . . , Vk be
the subsets of V induced by the leaves of the subtrees of TL rooted at a1, a2, . . . , ak ,
respectively. We consider W = {V1, V2, . . . , Vk} as a ground set (here we deviate
from the convention of this paper, when k = 2). The quotient family Q(u) ⊆ 2W of
node u in TL is defined as

Q(u) =

{
Q : ∃I ⊆ J1, kK, Q = {Vi : i ∈ I} ∧ ⋃

i∈I

Vi ∈ F
}

.

For representation purposes, the main idea is that F can be obtained by, roughly,
taking the union of all quotient families in TC (resp. TL ). We will now state and prove
this formally for TC : the argument for TL is analogous. Let f be the function map-
ping every set family to its cross-free decomposition tree. Then, given an arbitrary
set family F , the function gF over the domain {u : u is an internal node of f(F)}
which maps every node u of f(F) to its quotient family gF(u), is well-defined.
Therefore, the function h mapping a set family F to the pair h(F) = (f(F), gF) is
well-defined. We want to prove that h is injective. This way, h will be a bijection
mapping the set of all set families to the image of h , in other words, h(F) will be a
representation for every set family F . The following property appears frequently in
literature related to the representation of set families, and is relatively well-known.

Proposition 1 Let A be a member of a family F ⊆ 2V that is not cross-free.
There exists one and only one node x in the cross-free decomposition tree TC of F
such that A corresponds to some member Q of the quotient family Q(x) of node x,
namely A =

⋃
Vi∈Q Vi .

Proof: There are many proofs for this property. A graphical one, extending the
ideas of [37, proof of Lemma 1], is as follows. With respect to A , we will define a
special orientation over every edge uv of TC . Let Su and Sv be the 2-partition of V
induced by the leaves of the two trees we get by removing uv fromTC . Note that if
A crosses one among Su and Sv , then A crosses both. Since at least one among Su

and Sv is a cross-free member of F , A does not cross any of them. Besides, A 6= Su

and A 6= Sv since otherwise A would be a cross-free member of F . Hence, there are
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only two cases, which are self-exclusive:

• A is strictly included in either Su or Sv (the or is exclusive): w.l.o.g. suppose it
was Su , then the special orientation is defined to be from v to u .

• either Su or Sv (the or is exclusive) is strictly included in A : w.l.o.g. suppose it
was Su , then the special orientation is defined to be from u to v .

It is a straightforward exercise to check that the special orientation has one and
only one sink: for any edge uv of TC where the special orientation is from u to v ,
for every edge st belonging to the connected component which contains u when we
remove uv from TC , it suffices to prove – e.g. by case analysis – that the special
orientation is from the farther node s (w.r.t. u) to the nearer node t (w.r.t. u).

Let x be the (one and only one) sink defined by the special orientation of TC . Let
{V1, V2, . . . , Vk} be the ground set of the quotient family Q(x) of node x . Here,
A cannot be included in some Vi since otherwise the special orientation from the
component containing Vi to the sink x would be reversed. By elimination, every Vi

is either included in A or included in the complement of A . We can then conclude
by applying Definition 2 on Q(x). 2

Corollary 1 The above defined function h is injective.

Proof: Let F and G be such that h(F) = h(G). By symmetry it suffices to prove
that F ⊆ G . Let A ∈ F . If A is a cross-free member of F then we can conclude by
using f(F) = f(G). Otherwise, from Proposition 1, there exists an internal node u
of f(F) = f(G) such that there exists a member Q ∈ gF(u) such that A =

⋃
Vi∈Q Vi

and |Q| 6= 1. Now, from h(F) = h(G) we also have gF = gG . Hence: u is an internal
node of f(G), Q ∈ gG(u), A =

⋃
Vi∈Q Vi , and |Q| 6= 1. This, by Definition 2, implies

A ∈ G . 2

A stronger claim than that of Corollary 1 is as follows. Its proof is straightforward.

Remark 2 If one can represent exactly the quotient family Q(u) of every node u
of the cross-free decomposition tree TC of F , then one can represent exactly F .

Similar propositions can be made for the overlap-free decomposition tree TL with
minor modifications (replacing “cross” with “overlap”). Accordingly, we say that TC
and TL , when equipped with their quotient families, are the cross-free representation
and the overlap-free representation of F , respectively. Further details can be found
in [3]. Cross-free and overlap-free representations can benefit from data-structures
called PC and PQ trees with minor modifications, respectively [2,43].

Definition 3 (Cross-free and overlap-free representations) For any set fam-
ily we say that the cross-free decomposition tree, together with the quotient families
of its internal nodes, is the cross-free representation of the family. The overlap-free
representation of the family is its overlap-free decomposition tree, together with the
quotient families of the internal nodes.
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3 Revisiting the representation of a weakly partitive family and unifying
it with the representation of a symmetric crossing family

This section focuses on two classical results in the topic of representing set families,
about the so-called weakly partitive families and symmetric crossing families. The
formal definitions will follow next, but let us first specify how the formalism given in
the previous section will help in giving a link between modular decomposition and
submodular function minimization, and what exactly we are trying to prove.

A set function f : 2V → R is submodular if f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B)
for every A ⊆ V and every B ⊆ V . It is symmetric if f(A) = f(A) for every
A ⊆ V . The family of non-trivial minimizers – those different from ∅ and V – of
a symmetric submodular function is symmetric crossing, namely it is closed under
the complementation of any member (except for V ) and under the intersection
of its crossing members 1 . The formal definition of a graph module will be given
in Section 5. For now it matters that the family of modules of a graph is weakly
partitive, namely it is closed under the union, the intersection, and the difference
of its overlapping members. Any symmetric crossing family F ⊆ 2V has a Θ(|V |)
space representation [12,15,16], and the same holds for weakly partitive families [10].
The representation given in [15] is built on the Edmonds-Giles tree of the cross-free
decomposition tree of the input symmetric crossing family. In this sense, we say that
the cross-free representation of an arbitrary set family (as in Definition 3) is a natural
extension of the work presented in [15]. Likewise, the overlap-free representation is
a natural extension of the work presented in [10]. A particular case of [10] addresses
the modular decomposition tree of a graph, which is nothing more than the overlap-
free decomposition tree (as in Definition 1) of the family of modules of the graph,
plus a classification of the internal nodes into three categories (via quotient families
and something else). The connection between the two representations in Definition 3
is not obvious, even when restricted to weakly partitive families. In this section, we
will give such a connection by showing that the cross-free representation of a weakly
partitive family turns out to be exactly its overlap-free representation. The cross-
free representation will then be a framework that unifies both [15] and [10], hence
generalizes both the modular decomposition of a graph and the structural behaviour
of the minimizers of a symmetric submodular function.

A partitive family is a weakly partitive family that is also closed under the symmetric
difference of its overlapping members.

Theorem 2 (Chein, Habib, and Maurer [10]) There is a Θ(|V |) space repre-
sentation of any weakly partitive family over V . The representation can be based on
the overlap-free decomposition tree of the family: a quotient family Q ⊆ 2W in the
overlap-free decomposition tree TL of a weakly partitive family F ⊆ 2V can be of
only three types: Q = {W} ∪ {{w} : w ∈ W}; or Q = 2W \ {∅}; or there is an

1 By convention, we still assume for a symmetric crossing family F that ∅ /∈ F and
V ∈ F , and assume that the closure under complementation does not apply on V .
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ordering of the elements of W such that a subset of W belongs to Q if and only
if the subset is also an interval of the ordering. Moreover, if the family is partitive
then the last case can not occur.

We will denote these three types by prime, complete, and linear, respectively. Such a
classification leads directly to a representation in O(|V |) space of TL and its quotient
families. Therefore, it also gives a representation in Θ(|V |) of any weakly partitive
family over V .

As previously said, a family is symmetric crossing if it is closed under the comple-
mentation of any member (except for V ) and under the intersection of its crossing
members. Note that such a family is also closed under the union and the difference
of its crossing members. The overlap-free decomposition tree TL of F is trivial,
namely it is a star having F as unique quotient family. A bipartitive family is a
symmetric crossing family that is also closed under the symmetric difference of its
crossing members.

Theorem 3 (Cunningham and Edmonds [15]) There is a Θ(|V |) space repre-
sentation of any symmetric crossing family over V . The representation can be based
on the cross-free decomposition tree of the family: a quotient family Q ⊆ 2W in
the cross-free decomposition tree TC of a symmetric crossing family F ⊆ 2V can
be of only three types: Q = {W} ∪ {{w} : w ∈ W} ∪ {W \ {w} : w ∈ W}; or
Q = 2W \ {∅}; or there is a circular ordering of the elements of W such that a
subset of W belongs to Q if and only if the subset is also a circular interval of the
ordering. Moreover, if the family is bipartitive then the last case can not occur.

We will denote these three types by prime, complete, and circular, respectively.
Surprisingly, the easiest way to retrieve this result is to make a detour using the
overlap-free paradigm (of a sub-family of F ): roughly, if |V | = 3 then the family is
complete, otherwise pick x ∈ V , consider the family F ′ of members of F exclud-
ing x , check that F ′ is weakly partitive, apply Theorem 2, add x to the root of
the resulting decomposition tree, unroot the tree, and classify the quotient families
accordingly.

As mentioned before, while the cross-free representation can be seen as a natural
extension of Theorem 3, the overlap-free representation can be seen as a natural
extension of Theorem 2. We now unify these two viewpoints for weakly partitive
families. Let F ⊆ 2V be a weakly partitive family, and TL (resp. TC ) its overlap-free
(resp. cross-free) decomposition tree. We have remarked in the previous section that
in general TL can be obtained from TC by contracting some edges, but the converse
is not always true. However, we claim that the converse is true when F is weakly
partitive. Actually, we show this for a larger class of families:

Lemma 1 If a family F ⊆ 2V is closed under the intersection and the difference of
its overlapping members, then every cross-free member A ∈ F is either an overlap-
free member or the complement of an overlap-free member.

Proof: Assume that A is not overlap-free, and let B ∈ F be such that A©©B .
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Since they do not cross we have A∪B = V , and hence B \A = A . By the difference
closure, A ∈ F . If |A| = 1 then A is clearly overlap-free and we can conclude.
Otherwise, suppose that A is not overlap-free, and let C ∈ F be such that A©©C .
But they do not cross (otherwise A is not cross-free), and therefore A ∪ C = V .
Then, B and C overlap. Hence, B ∩ C ∈ F by the intersection closure. We now
deduce that A and B ∩ C cross. Contradiction. 2

Therefore, TL and TC have the same underlying graph (upto isomorphism). But
retrieving the root of TL is tricky. Luckily, and somewhat unexpectedly, a notion
arising from [4], then only developed for classifying some quotient families, will help
here. We say that A ∈ F is quasi-trivial if |A| = |V | − 1.

Definition 4 (Simply-linked family and guard) A family F ⊆ 2V is simply-
linked if no quasi-trivial members of F are overlap-free members of F . If F is not
simply-linked, then there is one and only one element v ∈ V , so-called the guard of
F , such that G = F \ {V, {v}} is a family over W = V \ {v} .

Definition 5 Let Q(u) ⊆ 2W be the quotient family of a node u of the cross-free
decomposition tree TC of a family F ⊆ 2V . Suppose that Q(u) is not simply-linked.
Then, the guard of Q(u) corresponds to a unique neighbour v of u in TC . We say
that v is the guarding parent of u in TC .

Lemma 2 Let F ⊆ 2V be a weakly partitive family. There is at most one simply-
linked quotient family in the cross-free decomposition tree TC of F .

Proof: (by contradiction). Suppose there are two internal nodes u, v in TC such
that the quotient family of each node is simply-linked. For convenience, we make
use of abuse of terminology, and also denote the underlying graph of TC by TC . Let
(u = u1, u2, . . . , up = v) be the path linking u to v in TC . Let A be the leaf set of
the connected component containing u that we get when removing the edge between
up−1 and v in TC . Let B be the leaf set of the connected component containing v
that we get when removing the edge between u and u2 in TC .

We first prove that both A and B are members of F in two steps.

• If u and v are neighbours in TC , then A and B are complementary. From the
definition of a cross-free decomposition tree, either A or its complement B is a
member of F . W.l.o.g. suppose that A is a member of F . Let us examine the
quotient family Q(u) of u . There, B corresponds to an element of the ground
set of Q(u), and the complement of the singleton {B} belongs to Q(u) since
A = V \ B belongs to F . Since Q(u) is not simply-linked, Q(u) can only be
complete or linear according to Lemma 3 below. In both cases, there exists an
element C of the ground set of Q(u) holding both C ( V \B and {B, C} belongs
to Q(u) (C 6= V \ B because the ground set of Q(u) has at least 3 elements).
One consequence is that B ∪C is a member of F . This member overlaps A , and
the difference closure of F implies B = (B ∪ C) \ A is a member of F .

• If u and v are not neighbours in TC , then A and B overlap. From the definition
of a cross-free decomposition tree, either B or its complement V \B is a member
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of F . Let us prove that B is always a member of F . For this, it suffices to prove
that if V \ B is a member of F , then so is B . We proceed exactly as before:
B corresponds to an element of the ground set of Q(u), and the complement of
the singleton {B} belongs to Q(u) since V \B belongs to F . Since Q(u) is not
simply-linked, Q(u) can only be complete or linear according to Lemma 3 below.
In both cases, there exists an element C of the ground set of Q(u) holding both
C ( V \ B and {B, C} belongs to Q(u). One consequence is that B ∪ C is a
member of F . Since B∪C and V \B overlap, their difference (B∪C)\(V \B) = B
is a member of F by the difference closure of F . By a similar argument, we can
also prove that A is a member of F .

Hence, both A and B are members of F . But then, we can also obtain that their
respective complements are members of F : if u and v are neighbours, then it is
trivial; otherwise, just notice that A©©B and V \B = A\B , then use the difference
closure. Here again, since V \B is a member of F , all arguments in the last paragraph
applies: there exists C ( V \ B such that B ∪ C is a member of F . By a similar
argument on A and the quotient family of v , we can also obtain that there exists
D ( V \A such that A ∪D is a member of F . But then C ∩D is a member of F
which crosses both A and V \A (it also crosses both B and its complement). This
would mean that the edge between up−1 and v cannot be an edge of the cross-free
decomposition tree TC . Contradiction. 2

Theorem 4 Let F ⊆ 2V be a weakly partitive family and TC its cross-free decom-

position tree. Let
−→T be the oriented tree having the same underlying graph as TC ,

but the orientation of
−→T is defined by the guarding parents as in Definition 5. Then,

either
−→T has one and only one sink: it is a rooted tree, noted T̂ ; or

−→T has one
and only one double-arc uv , and subdividing uv by adding a new guarding parent
of both u and v will result in a rooted tree, noted T̂ . Moreover, T̂ in both cases is
isomorphic to the overlap-free decomposition tree TL of F .

Proof: The fact that, in both cases, T̂ and TL are isomorphic is straightforward
from Lemma 1 and Definition 5. We only need to prove the other claims of the
theorem. From Lemma 2, we have two pairwise exclusive configurations. Before
continuing we highlight that one of the important facts in the following is that the
ground set of a quotient family in TC always has at least 3 elements.

In one configuration of Lemma 2, TC has exactly one internal node u s.t. the quotient

family Q(u) of u is simply-linked. Let us prove that u is the unique sink of
−→T .

Here it suffices to prove that, for every pair of neighbours s, t in TC , the nearer node
t (w.r.t. u) is the guarding parent of the farther node s (w.r.t. u). We will proceed
by contradiction. Suppose that there exists a neighbour w of s such that w 6= t and
w is the guarding parent of s . Notice that t might coincide with u but s 6= u and
w 6= u . Let (s = u1, t = u2, u3, . . . , up = u) be the path linking s to u in TC . Let Z
be the leaf set of the connected component containing up−1 we get when removing
the edge between up−1 and u in TC . We claim that Z is a member of F . Indeed,
by definition of the cross-free decomposition tree either Z or Z is a member of F .
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Moreover, if Z is a member of F then we can proceed by a similar argument as in
the proof of Lemma 2 as follows. Z corresponds to an element of the ground set of
Q(u). Since Z is a member of F , by Lemma 3 (below) Q(u) is not prime. Besides,
all cases lead to the existence of another element Y of the ground set of Q(u) s.t.
Y ( Z and {Y, Z} belongs to Q(u). But then Y ∪ Z is a member of F which
overlaps the member Z of F . By difference closure, Z = (Y ∪Z)\Z is a member of
F . We will now use the membership of Z in order to exhibit a contradiction. Let A
be the leaf set of the connected component containing w we get when removing node
s from TC . By definition of a guarding parent, A corresponds to the guard of the
quotient family Q(s) of node s . Let B be the leaf set of the connected component
containing s we get when removing the edge between s and t in TC . Note that B
corresponds to an element of the ground set of Q(s). Clearly B and A overlap.
We claim that B is a member of F . Indeed, if t = u then B = Z and we have
just proved that Z is a member of F . Otherwise, by definition of the cross-free
decomposition tree either B or B is a member of F . Moreover, if B is a member
of F then it overlaps the member Z of F , and B = Z \ B will also be a member
of F . But then in Q(s), the membership of B in F would lead to the existence of
a (quasi-trivial) member of Q(s) which overlaps the complement of the guard A .
This contradicts with the definition of a guard.

In the other configuration of Lemma 2, every internal node u of TC is such that the
quotient family of u is not simply-linked. The crucial point is the following. Let u
and v be two nodes of TC such that v is the guarding parent of u . Let st be an
edge of the connected component containing u when removing the edge uv from
TC , with t being the nearer node (w.r.t. u) and s being the farther node (w.r.t. u).
Then, we claim that t is the guarding parent of s . Indeed, suppose by contradiction
that there exists a neighbour w of s such that w 6= t and w is the guarding parent
of s . Notice that t might coincide with u but s 6= u and w 6= u . Let A be the
leaf set of the connected component containing w we get when removing the edge
between s and w in TC . By definition of a guarding parent, A corresponds to the
guard of the quotient family Q(s) of node s . Let Z be the leaf set of the connected
component containing s we get when removing the edge between s and t in TC .
Note that Z corresponds to an element of the ground set of Q(s). Clearly Z and
A overlap. Then Z cannot be a member of F since this would contradict the fact
A is the guard of Q(s). However, either Z or its complement is a member of F .
Besides, let B be the leaf set of the connected component containing u we get when
removing the edge between u and v in TC . Clearly, B is a member of F for v is
the guarding parent of u . Now, if Z is a member of F then it would overlap B
and Z = B \ Z would also be a member of F . Contradiction. We conclude that

either
−→T has one sink then the sink is unique, or there exist in

−→T one and only one
double-arc between u and v and then it is straightforward to conclude. 2

We now focus on the quotient families in TL and TC . The proof of Chein-Habib-
Maurer Theorem 2 can be adapted in a straightforward manner in order to obtain
the following property (more details can be found in [3, Theorems 2.2 and 2.3]).
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Lemma 3 Let F ⊆ 2V be a weakly partitive family. Let Q ⊆ 2W be a quotient
family in the cross-free decomposition tree TC of F . If Q is simply-linked, then,
either Q is prime, namely Q = {W} ∪ {{w} : w ∈ W}; or Q is complete,
namely Q = 2W \ {∅}; or Q is linear, namely there is an ordering of the elements
of W such that a subset of W belongs to Q if and only if the subset is also an
interval of the ordering. If Q is not simply-linked, let w ∈ W be the guard of
Q, let P = Q \ {W, {w}} and X = W \ {w}. Then, either P is prime, namely
P = {X}∪{{x} : x ∈ X}; or P is complete, namely P = 2X \{∅}; or P is linear,
namely there is an ordering of the elements of X such that a subset of X belongs
to P if and only if the subset is also an interval of the ordering.

After this, a straightforward case analysis shows that the corresponding labelled TL
and TC (with prime, complete, and linear labels) are isomorphic.

Remark 3 The isomorphism in Theorem 4 is label-preserving when using quotient
families as labels for the two kinds of decomposition trees, in the way described
in Theorem 2 for the overlap-free representation and Lemma 3 for the cross-free
representation.

4 Weakly partitive crossing families and union-difference families

The family of minimizers over 2V \{∅, V } of a submodular function over ground set
V is a crossing family, meaning that it is closed under the union and the intersection
of its crossing members. For crossing families only a representation tree in O(|V |2)
space is known [25], and moreover this asymptotic bound is essentially tight [1]:
they have Θ(|V |2) complexity. As previously mentioned, the family of (non-trivial)
minimizers of a symmetric submodular function is a symmetric crossing family, a.k.a.
a crossing family that is also symmetric. We have seen that symmetric crossing
families have Θ(|V |) complexity. In this section we focus on two generalizations of
symmetric crossing families: weakly partitive crossing families and union-difference
families. One of them is a particular case of crossing families while the other is
incomparable with crossing families (see Figure 3). A natural question then is to
decide the complexity of the two new classes. We in fact show that weakly partitive
crossing families have Θ(|V |) space complexity, witnessed by a representation built
on a tree: the cross-free representation as in Definition 3. On the other hand, we
show that the cross-free representation of union-difference families has O(|V |2) space
complexity, but leave open the question whether this is tight.

A family F ⊆ 2V is weakly partitive crossing if it is closed under the union, the
intersection, and the difference of its crossing members. A partitive crossing family is
a weakly partitive crossing family that is also closed under the symmetric difference
of its crossing members. It is clear from definition that weakly partitive crossing
families contain at the same time symmetric crossing families and weakly partitive
families. Also, since the class of symmetric crossing families and the class of weakly
partitive families are incomparable, the previous inclusion is strict. Finally, it is
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straightforward to build weakly partitive crossing families that are neither symmetric
crossing nor weakly partitive.

A family F ⊆ 2V is a union-difference family if it is closed under the union and the
difference of its overlapping members. It is clear from definition that union-difference
families contain weakly partitive families. It is less obvious, but an easy exercise to
check that they also contain symmetric crossing families. Here again, the inclusions
are strict (by the same argument as before). Also, it is straightforward to build
union-difference families that are neither symmetric crossing nor weakly partitive.
Finally, note that if a union-difference family is also closed under the symmetric
difference of its overlapping members, then it is also closed under the intersection of
its overlapping members, or, in other words, the family becomes a partitive family.

From Remark 2, in order to obtain a representation theorem for weakly partitive
crossing, resp. union-difference, families, it suffices to prove there are a constant
number of simple types of quotient families in a cross-free decomposition tree of a
weakly partitive crossing, resp. union-difference, family. For a family F ⊆ 2V we
say that A ∈ F is trivial if either |A| = 1 or A = V , and recall that A ∈ F is
quasi-trivial if |A| = |V | − 1. For a member that is neither trivial nor quasi-trivial,
we say that it is a regular member.

Remark 4 Let Q be a quotient family in the cross-free decomposition tree of a set
family F . Let Q be a quasi-trivial member of Q. Then, the member of F which
corresponds to Q, namely A =

⋃
Vi∈Q Vi , is a cross-free member of F . A consequence

is that the fact that A belongs to F can be known by reading the edge orientations
in the cross-free decomposition tree of F .

Basically, the crucial point is to have control over the regular members. For instance,
we say that a family is prime if it has no regular members, and from Remark 4,
if Q is prime, there is nothing to do in order to represent the members of F in
correspondence with Q . Otherwise let us inspect the regular members of Q , and
argue that, if exist, cross-free members of Q are nasty cases. (In fact we will see that
Q does not contain any such member.) Roughly, if there is some regular member X
of Q that is also a cross-free member of Q , then X would divide the family into four
fractions: those included in X , those included in X , and the complement of these
two fractions. Such a division would make the family, in some sense, less compact
and hard to describe. Let alone if the family has more cross-free members among
its regular members. Typically, we would rather end up in a situation similar to the
one in Theorem 3: either the family consists of very isolated individuals (prime), or
it is quite close-knit (complete and circular). A naive way to get rid of the cross-
free members consists in removing them from the family. However, such a practice
could destroy some important structural property of the family, such as some closure
axioms (if A and B cross and A ∩ B is cross-free, then removing A ∩ B results in
a family that is not closed under the intersection of its crossing members). In fact
the main purpose of Definition 2 is to eliminate the cross-free members among the
regular members without much noise: we stay with the same type of family.
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Remark 5 In a cross-free decomposition tree of any set family F , no regular mem-
ber of a quotient family Q can be a cross-free member of Q. Moreover, if F is a
weakly partitive crossing family, resp. union-difference family, then so is Q.

Typically, for weakly partitive crossing families we would like to prove Lemma 5
below. However, we begin by showing a useful tool. A family F ⊆ 2V can also be
seen as an undirected hypergraph over vertex set V . Let us define the 2-graph of F
as its restriction to size 2 hyperedges: GF = (V, E) with E = {A ∈ F and |A| = 2} .

Lemma 4 Let F be a weakly partitive crossing family and let Q be a quotient
family in the cross-free decomposition tree of F . Let X be a regular member of Q.
Then, every x ∈ X has a neighbour in the 2-graph GQ of Q.

Proof: Among the regular members of Q which contain x (for instance X is one
such), let A be one with minimum size. If |A| = 2, then A is an edge in GQ , and
there is nothing to show. Otherwise we will exhibit a contradiction. From Remark 5,
there is a member of Q crossing A (which besides has to be a regular member).

Suppose there is a member of Q which crosses A and contains x . Let B ∈ Q be
such a member with minimum size. By the intersection closure A ∩ B ∈ Q . Then,
by minimality of A , we have A ∩ B = {x} . By the difference closure, B \ A is a
member of Q . Moreover, B \ A is a regular member of Q since |B| ≥ |A| > 2.
Therefore, there is a member C ∈ Q which crosses B \ A . If A ∩ C = ∅ , then B
and C cross, and hence B \ C ∈ Q . Moreover, B \ C and A still cross, B \ C still
contains x , yet B \C is of size strictly smaller than B : this is a contradiction to the
minimality of B . Hence, A ∩ C 6= ∅ . If x /∈ C , then B \ C belongs to Q , contains
x , and crosses A : contradiction by minimality of B . If x ∈ C then B ∩ C belongs
to Q , contains x , and crosses A : contradiction by minimality of B .

Therefore, every B ∈ Q crossing A will exclude x . Moreover A \ B = {x} by
the difference closure and the minimality of A . It is easy to check that A ∩ B is a
regular member of Q , and hence there exists C ∈ Q crossing A ∩ B (then C has
to be regular). If C ⊆ A then x ∈ C , contradicting the minimality of A . If C 6⊆ A
and A ∪ C 6= V , then A and C cross, and hence A \ C is a regular member of Q
containing x , contradicting the minimality of A . Finally, C 6⊆ A and A ∪ C = V .
But then C \B 6= ∅ , and in particular B and C cross. Hence B ∩C ∈ Q , but this
member B ∩ C crosses A , and contradicts the minimality of B . 2

We denote the complete graph over n vertices by Kn , the path over n vertices by
Pn , and the cycle over n vertices by Cn . For any graph G over vertex set V (G),
and for any new vertex v /∈ V (G), we denote by G + v the disjoint union of G and
the one vertex graph made by v .

Lemma 5 Let F be a weakly partitive crossing family and let Q be a quotient family
in the cross-free decomposition tree of F . Suppose that Q is not prime and that the
ground set W of Q has at least 5 elements. Then, GQ is either Kn , Kn−1 +v , Pn ,
Pn−1 + v , or Cn . Moreover, if F is a partitive crossing family, then the three last
cases (Pn , Pn−1 + v , and Cn ) can not occur.
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Proof: Since Q is not prime, we deduce from Lemma 4 that GQ has an edge. Let X
be a connected component of GQ of size at least 2. We first prove that |X| ≥ |W |−1.
Assume this is not the case. Clearly, we have X ∈ Q (union closure) and moreover
it is a regular member by the assumption. Let A be a member of Q crossing X ,
and minimum by size (exists by Remark 5). We would like to inspect A \X , which
is a member of Q by the difference closure. Clearly, |A| > 2 (maximality of X ). Let
uv be an edge in GQ[X] with u /∈ A and v ∈ A (exists by connectivity of GQ[X]
and the fact A and X cross). Then, {u, v} and A are crossing members of Q and
hence A\{v} is a member of Q (difference closure). By maximality of A , we deduce
that A∩X = {v} . With a size check we deduce that A \X is a regular member of
Q , and so there exists B ∈ Q crossing A \X . If moreover B crosses A then both
A \ B and A ∩ B belong to Q , and one of them would contradict the minimality
of A . Therefore, A ∪ B = W . We claim that v /∈ B since otherwise we would have
(A \X) ∪B = (A \X) ∪ (A ∩X) ∪B = A ∪B = W and that would mean B does
not cross A \X . But now we can check that {u, v} and B are crossing members of
Q , and hence B \ {u} is a member of Q crossing A , and finally A \ (B \ {u}) is a
member of Q contradicting the minimality of A . Whence, |X| ≥ |W | − 1.

To conclude we use a similar technique as the one used in [18, Proof of Lemma
5.4]. Suppose there is in GQ a vertex v adjacent to at least 3 vertices a , b and c .
Clearly, {a, v, b} and {v, c} are members of Q (union closure). Since |W | ≥ 5, these
two cross, and hence {a, b} is a member of Q (difference closure). By symmetry,
{v, a, b, c} induces a clique in GQ , and besides, it is included in X (size argument).
Let K be a maximal clique in GQ[X] and suppose that K 6= X . In particular
|K| ≥ 4 because of the clique {v, a, b, c} . By connectivity there exists a vertex
x ∈ X \ K adjacent to a vertex y ∈ K . This y has at least two neighbours (e.g.,
in K ) and so with a similar argument as before, we can prove that x is adjacent to
every neighbour of y , contradicting the maximality of K .

Hence X either induces a complete graph, or a graph with max degree 2, i.e. a path
or a cycle. Now suppose that |X| = |W | − 1 ≥ 4 and that X induce a cycle. In
GQ let s be the isolated vertex and let x be adjacent to y and z . Then {x, y} and
{x, z} are crossing members of Q (also because s exists), and hence {x, y, z} is a
member of Q . But X \ {x} is also a member of Q (by union closure on the edges
of GQ that are neither xy nor xz ). Since {x, y, z} and X \ {x} cross, {y, z} is a
member of Q , contradicting the fact GQ[X] is a cycle of length at least 4.

Finally, suppose that Q is also partitive crossing, and there is in GQ a vertex x
adjacent to y and z . Then yz is an edge of GQ (symmetric difference closure). 2

Recall from Remark 4 that quasi-trivial members of Q in fact correspond to cross-
free members of F and are already encoded by the cross-free decomposition tree of
F : the crucial point is to represent the regular members. Let W denote the ground
set of Q . By the union closure, GQ is Kn if and only if Q = 2W \ {∅} . If GQ is
Kn−1 + v then Q and 2W\{v} ∪ {v} have exactly the same regular members, since
from Lemma 4 no regular member of Q can contain the isolated vertex v . If GQ is
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a path (v1, . . . vn) of size n ≥ 5, then all intervals {vi, . . . , vj} (1 ≤ i ≤ j ≤ n) of
the path belong to Q by the union closure. On the other hand, it is straightforward
to check that Q has no other members than these intervals. Similarly, if GQ is the
disjoint union of a path and an isolated vertex, then the regular members of Q are
exactly the intervals of the path having the right size. Finally, if GQ is a cycle, then
it is straightforward to check that Q is exactly the family of all circular intervals of
the cycle. We have proved that

Theorem 5 There is a Θ(|V |) space representation of any weakly partitive crossing
family over V . The representation can be based on the cross-free decomposition tree
of the family: a quotient family Q ⊆ 2W in the cross-free decomposition tree TC of a
weakly partitive crossing family F ⊆ 2V satisfies one and only one of the following

• basic: W ≤ 4;
• prime: W ≥ 5 and Q has no regular members;
• complete: W ≥ 5 and either Q = 2W \ {∅} or there is v ∈ W such that Q and

2W\{v} ∪ {v} have exactly the same regular members;
• linear: W ≥ 5 and either there is a linear ordering of W such that the members

of Q are exactly the intervals of the ordering, or there is v ∈ W and a linear
ordering of W \ {v} such that Q and the family over W containing all intervals
of the ordering have exactly the same regular members;

• circular: W ≥ 5 and there is a circular ordering of W such that the members of
Q are exactly the circular intervals of the ordering.

Moreover, if F is a partitive crossing family, then Q can not be linear nor it can
be circular.

We now focus on union-difference families. Ideally, we would like to prove similar
statements as in Lemma 5: if a quotient family is not prime then its 2-graph has
to be of simple types, such as a clique, a path, a cycle, etc. Unfortunately, the
crucial Lemma 4 does not seem to hold for union-difference families, making such an
approach a priori difficult. Instead, we will use another approach here. As mentioned
before, the main purpose of Definition 4 (first appeared in [4]) was not to study
weakly partitive families as what was done in Section 3. Rather than that, simply-
linkedness was introduced to help classifying the quotient families in the cross-free
decomposition tree of a union-difference family:

Theorem 6 There is a O(|V |2) space representation of any union-difference family
over V . The representation can be based on the cross-free decomposition tree of the
family: a quotient family Q ⊆ 2W in the cross-free decomposition tree TC of a union-
difference family F ⊆ 2V satisfies one and only one of the following

• prime: Q is simply-linked and has no regular members;
• complete: Q = 2W \ {∅};
• linear: there is a linear ordering of W such that the members of Q are exactly

the intervals of the ordering;
• circular: there is a circular ordering of W such that the members of Q are exactly

the circular intervals of the ordering;
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• recursive: Q is not simply-linked and for w being the guard of Q (cf. Definition 4)
we have that Q′ = Q \ {W, {w}} is a union-difference family over W \ {w}; a
consequence is that the regular members of Q can be represented by the cross-free
decomposition of Q′ .

Proof: If Q is not simply-linked then it is straightforward to check the properties of
the last item (the recursive case). Otherwise Q could be prime and there is nothing
to show. If Q is simply-linked but it is not prime, then we will prove in Lemma 6
and Lemma 7 (both below) that GQ is a connected graph. Next, we complete the
classification by proving in Lemma 8 (below) that if GQ is connected, then it is
either a clique, a path, or a cycle. Finally, we prove in Lemma 9 (below) the O(|V |2)
space complexity of the encoding. 2

The remaining of the section is to prove Theorem 6. A chain of length k in a family
F is a sequence (A1, . . . , Ak) of members of F such that Ai

©©Ai+1 for all i , and
Ai ∩ Aj = ∅ for all |i − j| > 1. The chain is covering if A1 ∪ · · · ∪ Ak = V , and
irreducible if |Ai| = 2 for all 1 ≤ i ≤ k . An irreducible and covering chain of F
can also be seen as a Hamiltonian path in the 2-graph GF , which would imply its
connectivity, and enable the use of Lemma 8.

Lemma 6 Let F be a union-difference family and let Q be a quotient family in the
cross-free decomposition tree of F . Suppose that Q is simply-linked but not prime.
Then Q has a length 3 covering chain.

Proof: Since Q is not prime, let A be a regular member of Q , maximum by size.
Since Q is a quotient family there exists B ∈ Q such that A and B cross (cf.
Remark 5). Then, A∪B ∈ Q (union closure), and moreover A∪B is not a regular
member by maximality of A . However, A ∪ B cannot be trivial since A and B
cross. Since Q is simply-linked, A∪B overlaps some C ∈ Q . Here, all cases lead to
either D = C ∪B \A or E = C ∪A \B is a member of Q . Then, either (A,B,D)
or (B,A, E) is a covering chain of length 3. 2

Lemma 7 Let F be a union-difference family and let Q be a quotient family in the
cross-free decomposition tree of F . Suppose that Q is simply-linked but not prime.
Suppose moreover that Q has a covering chain of length at least 3. Then Q has an
irreducible covering chain (and hence GQ is connected).

Proof: Let A = (A1, . . . , Ak) be a covering chain of Q with k ≥ 3. We take k
maximum. Assume for some 1 < i < k that Ai \ (Ai−1 ∪ Ai+1) 6= ∅ . In this case
B = Ai \Ai+1 and C = Ai \Ai−1 are overlapping members of Q (see Figure 5(a)).
Then, replacing A with (A1, . . . , Ai−1, B, C, Ai+1, . . . , Ak) would improve k . Hence,
Ai \ (Ai−1 ∪ Ai+1) = ∅ for all 1 < i < k .

We now assume that |Ai| > 2 for some 1 < i < k . Then at least one among
B = Ai \Ai+1 and C = Ai \Ai−1 is a regular member of Q , and hence not cross-free
because Q is a quotient family. By symmetry we suppose it was B . Let D ∈ Q
cross B . We show in all cases a contradiction as follows (see also Figure 5(b)).
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Fig. 5. Illustration for the proof of Lemma 7.

• Case 1: D ⊆ Ai . In particular, D and Ai−1 overlap. Let E = Ai−1 \D , we can
improve k by replacing A with (A1, . . . , Ai−2, E,B,D,Ai+1, . . . , Ak).

• Case 2: D\Ai 6= ∅ and C\D 6= ∅ . Then, we are conducted to Case 1 by replacing
D with D′ = Ai \D .

• Case 3: D\Ai 6= ∅ and C ⊆ D . We define the left and right as L = A1∪· · ·∪Ai−2

and R = Ai+1 ∪ · · · ∪Ak . Notice that L ∪R = B . Since D and B cross, there is
some element in either L or R that does not belong to D . If it was L , replacing
D with Ai \ (Ai−1 \ (D \ L)) leads back to Case 1. If it was R , the same can be
done with Ai \ (D \R).

Hence, |Ai| = 2 for all 1 < i < k . Now, assume that |A1| > 2, and let D ∈ Q cross
B = A1\A2 . Let Z = Ak \Ak−1 . We will examine whether Z \D 6= ∅ or Z ⊆ D (see
Figure 5(c)). In the first case, let E = A3∪· · ·∪Ak and F = D∪A2∪· · ·∪Ak−1 : they
overlap. Then, G = F\E is a member of Q , and replacing A with (B,G, A2, . . . , Ak)
would improve k . In the second case, since D and B cross, there is some element in
A2 ∪ · · · ∪Ak−1 that does not belong to D . In other words, A2 ∪ · · · ∪Ak−1 and D
overlap. Then, E = D \ (A2 ∪ · · · ∪Ak−1) is a member of Q which contains Z . The
fact that E ∈ Q implies (E, A1, . . . , Ak−1) is a chain of Q . The fact that E contains
Z implies the chain is covering. Moreover, it is of length k , i.e. of maximum length.
However, from the last paragraph, this chain cannot have A1 with more than two
elements. Therefore, |A1| = 2. Then, by symmetry we obtain |Ak| = 2, and A is an
irreducible covering chain. 2
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To conclude, we use a beautiful technique which was discovered for weakly partitive
families (see, e.g., [18, Proof of Lemma 5.4]) but which only required the union and
difference closures (the almost same technique was also used as part of the proof of
Lemma 5).

Lemma 8 (cf. [18] with partitive families) Let F be a union-difference family. If
its 2-graph GF is connected then GF is either a clique, a path, or a cycle.

Proof: The proof given in [18] is as follows. Suppose that GF has a vertex x with
degree at least 3, and let y, z, t be three distinct neighbours of x . In other words,
{x, y} and {x, z} are members of F , and so is {x, y, z} by the union closure. But
{x, t} is also a member of F . By the difference closure we deduce that {y, z} is
an edge of GF . Likewise, we can deduce that {x, y, z, t} induces a clique in GF .
Now, let v be a vertex that is connected to the previous clique at some point, say t .
Then, by a similar argument on the fact that t is of degree at least 3, we can show
that v is connected to all other vertices of the clique. Thus the previous clique plus
vertex v form a bigger clique, and so on. The connectivity of GF then can be used
to conclude that the whole graph GF is a clique. Finally, the only connected graphs
of degree at most 2 are paths and cycles. 2

Lemma 9 Let F ⊆ 2V be a union-difference family. Labelling the internal nodes
of the cross-free decomposition tree of F according to Theorem 6 will result in an
O(|V |2) global space encoding.

Proof: By induction on n = |V | . Let f(n) be the maximum size of all such de-
composition trees of n leaves. Obviously, f(1) and f(2) are non null constants. Let
f(k) ≤ α × k2 hold for all k < n . We suppose without loss of generality that α is
greater than any other constant in this proof. Let us consider a decomposition tree
of n leaves and let N be the set of its internal nodes. For each i ∈ N , let ni be its
degree. The label of i is either of constant size (cf. prime and complete nodes), of
linear size on ni (cf. linear and circular nodes), or of size bounded by f(ni− 1) + β
(cf. recursive nodes). In all cases, it is bounded by α × (ni − 1)2 + α since ni ≥ 3
and α ≥ β . The total size of leaves, edges, and orientations is linear in n , hence
bounded by α× n . We deduce that

f(n) ≤ α×
(∑

i∈N

((ni − 1)2 + 1) + n

)
≤ α×

(∑

i∈N

(ni − 1)2 + n′ + n

)
,

where n′ = |N | . Notice that
∑

i∈N ni = n + 2 × (n′ − 1) (the n pendant edges
are counted once while other edges are counted twice). In other words,

∑
i∈N(ni −

1) = n + n′ − 2. Let S = n + n′ − 2 The greatest value that
∑

i∈N(ni − 1)2

can reach happens when one among the ni gets the greatest value possible. Since
ni − 1 ≥ 2, we have

∑
i∈N(ni − 1)2 ≤ (n′ − 1) × 22 + (S − (n′ − 1) × 2)2 . Then,

f(n) ≤ α × (n2 + n′2 + 5n′ + n(1 − 2n′) − 4). Besides, that there are no degree 2
nodes in the tree provides us with n ≥ n′+2. Moreover, it is clear that 1−2n′ ≤ 0.
Hence, n(1 − 2n′) ≤ (n′ + 2)(1 − 2n′), which is also n(1 − 2n′) ≤ −2n′2 − 3n′ + 2.
Therefore, f(n) ≤ α× (n2 − n′2 + 2n′ − 2) ≤ α× (n2 − (n′ − 1)2 − 1) ≤ α× n2 . 2
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5 Sesquimodular decompositions

Modular decomposition has become a classical topic in graph theory [10,18,27,35],
as well as some of its generalizations [13,15,32,33,36]. A module in an undirected
graph is a vertex subset M such that ∀x, y ∈ M , N(x) \ M = N(y) \ M . As
having been studied in other fields, this notion also appears under various names,
including intervals, externally related sets, autonomous sets, partitive sets, clans,
etc. Direct applications of modular decomposition include tractable constraint sat-
isfaction problems [11], computational biology [26], graph clustering for network
analysis, and graph drawing. This rich research field relies on the nice combinatorial
properties of modules. To name but one, the family of modules of any graph is a
partitive family, and therefore can be efficiently represented by a tree, the modu-
lar decomposition tree of the graph [10,18,35]. Now, in the area of social networks,
several vertex partitioning have been introduced in order to formalize the idea of
finding regularities [45]. Modular decomposition gives such a partitioning. But the
notion of a module (of undirected graphs) seems to be too restrictive for real-life
applications. On the other hand, although the concept of a role [20] seems promising,
its computation is unfortunately NP-hard [21]. It is then a natural question to look
for relaxed, but tractable, decomposition schemes related to modular decomposition.

We investigate the case of digraphs, and their generalization to 2-structures. Therein,
the major tractable decomposition that has been addressed in the literature so far
is the so-called clan decomposition 2 : a clan in a digraph is a vertex subset M such
that ∀x, y ∈ M , N−(x)\M = N−(y)\M and N+(x)\M = N+(y)\M . In order to
further decompose, we propose a weakened definition. Fortunately enough, we still
obtain a well-structured variation, thanks to weakly partitive crossing families and
union-difference families.

Definition 6 (Digraph sesquimodule) In a digraph G = (V,A) we say that
M ⊆ V is a sesquimodule if:

• ∀x, y ∈ M , N−(x) \M = N−(y) \M , and
• ∀x, y ∈ M , either N+(x) \M = N+(y) \M or N+(x) \M = N+(y) \M .

Roughly, the classical generalization of a graph module to digraph clans asks for two
full conditions, one on in-neighbours and one on out-neighbours. Let us consider a
clan as a double-module. Now, in the new definition, there is a full condition on
in-neighbours, and a relaxed one on out-neighbours: the exterior still has to be par-
titioned w.r.t. the out-neighbourhood homogeneously, however, the order of the par-
tition classes is irrelevant. We qualify the relaxed condition as a half-condition and
this is the reason for the terminology of a module-and-half, namely a sesquimodule.

2 A clan of a digraph is also called a module in [34]. However, for the sake of clarity,
we will not use this terminology throughout the paper. Instead, we simply refer to the
clans of a digraph, according to their introduction by Ehrenfeucht and Rozenberg [19] (an
excellent introduction to this topic is [18]).
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Fig. 6. A digraph with no non-trivial clans and its sesquimodular decomposition tree.
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Fig. 7. Sesquimodular decomposition. Some sesquimodules of the digraph are: all subsets
of A = {a1, a2, a3, a4} , A∪{b} , A∪{b, c} , A∪{b, c, d} , {b, c, d} , {b, c, d, e} , {b, c, d, e, f} ,
{c, d, e} , . . .
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Note that when the digraph is an undirected graph, the three notions of a module, a
sesquimodule, and a clan are equivalent. For digraphs however, we show in Figure 6
that the generalization from clans to sesquimodules is strict. In Figure 7 we give
an example of two sesquimodular decomposition schemes, depending on whether we
follow the statement of Theorem 7, or that of Theorem 8.

A 2−structure is an edge-colored complete digraph: a pair (V,C) where V is a finite
set and C : V 2 \ {(v, v) : v ∈ V } → N . Note that graphs, digraphs and tournaments
are special cases of 2-structures with C(u, v) = 1 if (u, v) ∈ A , and C(u, v) = 0
otherwise. Digraph clans can be generalized to clans of a 2−structure: M is a clan
if ∀x, y ∈ M , ∀c ∈ N , N c(x) \ M = N c(y) \ M , where N c(x) = {z : C(x, z) =
c} . Likewise, digraph sesquimodules can be generalized to the sesquimodules of
a 2−structure: M is a sesquimodule of a 2−structure if it holds two following
conditions. For all x, y ∈ M , for all s /∈ M , the arcs (s, x) and (s, y) are of the
same color. For all x, y ∈ M , for all s, t /∈ M , (x, s) and (x, t) are of the same color if
and only if (y, s) and (y, t) are of the same color. This has an equivalent formulation.
We say that v is uniform to x and y if C(v, x) = C(v, y), and this is denoted by
v|xy . Otherwise, we say that v is a splitter of {x, y} , and denote this fact by v|xy .
For a partition P and V ⊆ X , let P ∩ V = {P ∩ V : P ∈ P and P ∩ V 6= ∅} , and
let P \ V = P ∩ V .

Definition 7 (2-structure sesquimodule) Let G = (V,C) be a 2-structure. For
any u ∈ V , there is a unique partition Part(u) = {M1,M2, . . . ,Mk} of V \{u} such
that for all v, w ∈ V \ {u} , C(u, v) = C(u,w) if and only if v and w belong to the
same Mi . Then, M ⊆ V is a sesquimodule if and only if we have both:

• ∀x, y ∈ M and v ∈ V \M , C(v, x) = C(v, y)
• ∀x, y ∈ M , Part(x) \M = Part(y) \M .

We will prove the following theorems.

Theorem 7 (2-structures uniqueness decomposition theorem) There is a
unique unrooted tree associated to a 2-structure G = (V, C) such that: the leaves of
the tree are in one-to-one correspondence with the vertices of G; the edges of the tree
are oriented; the internal nodes of the tree are marked with at most 5 types of labels;
and all sesquimodules of G can be generated from this tree without the knowledge of
the 2-structure. The size of this tree and its labels is in O(|V |2).
Note that a generating object of quadratic size is not an improvement in space
in itself since the initial 2-structure is already such. However, the one given for
sesquimodules in Theorem 7 follows a tree structure, and furthermore Lemma 10
below proves that the sesquimodules form a union-difference family. These are in-
structive structural properties (cf. also the open question whether the quadratic
space complexity of union-difference families is tight or not). More importantly,
when the 2-structure is a digraph, we have the following major improvement.

Theorem 8 (Digraphs uniqueness decomposition theorem) There is a unique
unrooted tree associated to a digraph G = (V,A) such that: the leaves of the tree
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are in one-to-one correspondence with the vertices of G; the edges of the tree are
oriented; the internal nodes of the tree are marked with at most 5 types of labels;
and all sesquimodules of G can be generated from this tree without the knowledge of
the graph. The size of this tree and its labels is in O(|V |).
Theorems 7 and 8 follow from the two simple facts that:

Lemma 10 The sesquimodules of a 2-structure form a union-difference family.
Furthermore there are no circular nodes in its decomposition tree.

Proof: Let G = (V, C) be a 2-structure. Clearly, the trivial vertex subsets are
sesquimodules of G . Let X and Y be two overlapping sesquimodules of G . It
follows straight from definition that X ∪ Y is a sesquimodule. We only need to
prove that Z = X \ Y is also a sesquimodule.

First suppose that there exist an exterior vertex s /∈ Z and two vertices x, y ∈ Z s.t.
s is a splitter for {x, y} . Since X is a sesquimodule s belongs to X ∩ Y . Moreover,
that X and Y overlap implies there is a vertex t belonging to Y \X . Notice that
s, t ∈ Y and x, y /∈ Y . Since Y is a sesquimodule, t is a splitter for {x, y} . But
then X no more is a sesquimodule as t /∈ X and x, y ∈ X . Hence, for all x, y ∈ Z
and s /∈ Z , C(s, x) = C(s, y).

Now let x, y ∈ Z and s, t /∈ Z . We need to prove that x|st ⇔ y|st . If none of s
and t belong to X , that X is a sesquimodule allows to conclude. If both s and t
belong to Y , that Y is a sesquimodule allows to conclude. By symmetry, the only
remaining case is when s ∈ X ∩ Y and t /∈ X ∪ Y . In this case, let u ∈ Y \ X .
Since X is a sesquimodule, we already have x|tu ⇔ y|tu , but we would like the
same property with vertex u replaced by vertex s . For this, notice that x /∈ Y ,
but s, u ∈ Y , and Y is a sesquimodule. Therefore, C(x, u) = C(x, s). Likewise,
C(y, u) = C(y, s). Then, combining the two latter facts and x|tu ⇔ y|tu leads to
the desired property.

Finally, a circular sesquimodule quotient node would be a complete one. 2

Lemma 11 The sesquimodules of a digraph form a weakly partitive crossing family.
Furthermore there are no circular nodes in its decomposition tree.

Proof: Let G = (V,A) be a digraph. Let X and Y be two crossing sesquimodules
of G . By Lemma 10, X ∪ Y and X \ Y are sesquimodules of G . We only need to
prove that Z = X ∩ Y is a sesquimodule.

It is straightforward that for every u /∈ Z and for every x, y ∈ Z , (u, x) ∈ A ⇔
(u, y) ∈ A . Now there is a partition {A,B} of X and a partition {A′, B′} of Y
such that for every z ∈ Z , Part(z) \X = {A,B} and Part(z) \ Y = {A′, B′} . Since
X and Y cross, there is a v ∈ X ∪ Y . Suppose w.l.o.g. that v ∈ A ∩ A′ . For every
z ∈ Z either v ∈ N+(z) \ Z or v /∈ N+(z) \ Z . Thus N+(z) \ Z is either A ∪A′ or
B ∪B′ , and so Part(z) \ Z = {A ∪ A′, B ∪B′} .

Finally, a circular sesquimodule quotient node would be a complete one. 2
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6 Computing the sesquimodular decomposition tree of a 2-structure

This section describes a brute-force algorithm to compute in O(n7) time the sesquimod-
ular decomposition tree of a given 2-structure G = (V, C), where n = |V | . In Sec-
tion 7 we will improve this downto O(n3) when the 2-structure is a digraph. Our
algorithm in this section borrows ideas from [24]. Let us assume from now on that
C(u, v) ≤ n2 for every u, v ∈ V . We will constantly need to test if a given subset is
a sesquimodule.

Lemma 12 One can test in O(n2) if a given vertex subset X is a sesquimodule of
a given 2-structure G = (V, C).

Proof: We first check for every vertex y /∈ X and every vertex x ∈ X if for every
x′ ∈ X , C(y, x′) = C(y, x). In a second step we check for x ∈ X and x′ ∈ X if
Part(x) \ X = Part(x′) \ X . This can be done in O(n2) time if we suppose that
C(u, v) ≤ n2 for every u, v ∈ V . 2

A set X separates a set Y if Y ∩X and Y \X are both non-empty. The following
lemma and corollary show how one can find a regular member of the family of
sesquimodules.

Lemma 13 Let P be a partition of V and let A,B ∈ P . One can compute in O(n3)
time the unique maximal sesquimodule S such that A ( S , B ⊆ S and which does
not separate any set in P .

Proof: Firstly note that there are no distinct maximal sesquimodules S and S ′

satisfying the required properties, otherwise S would cross S ′ , and S ∪S ′ would be
a bigger sesquimodule satisfying these properties. We take an arbitrary x ∈ A and
start with Y = B . As long as there is a x′ ∈ V \ Y such that either Part(x) ∩ Y 6=
Part(x′) ∩ Y or C(x′, y′) 6= C(x, y) for a y′ ∈ Y , we add the set in P containing x′

to Y . When no such x′ exists anymore, V \Y is the maximal sesquimodule with the
property. About complexity issues, finding such x′ can be done trivially in O(n2),
and the algorithm repeats the loop at most O(n) times. Thus the total running time
is O(n3). 2

Applying |P|−2 times the previous procedure on (P \{B,D})∪{B∪D} , for every
D ∈ P \ {A,B} , we get the following corollary.

Corollary 2 One can compute in O(n4) time a sesquimodule S such that A ( S ,
B ( S and S does not separate any C ∈ P .

Now we present an O(n5) algorithm which finds every cross-free sesquimodule of a
2-structure G with at most O(n) calls to the procedure described in Corollary 2.

Lemma 14 Given a 2-structure G = (V, C) and a partition P of V , one can
compute in O(n5) time a family S of sesquimodules none of which will cross any
set in P . Moreover, S has the following property: for every sesquimodule S which
does not separate any set in P , and such that {S, S} ∩ P = ∅, either S ∈ S or
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there is S ′ ∈ S such that S ′ crosses S . In particular, S contains every cross-free
sesquimodule which does not separate any set in P , and such that {S, S} ∩ P = ∅.
Proof: While |P| > 3, we take A,B ∈ P . We test if there is a sesquimodule X
which does not separate any D ∈ P , and such that either A ⊆ X and B ⊆ X , or
B ⊆ X and A ⊆ X . To do that, we call two times the sub-routine of Corollary 2.
If such X exists, we add X into S and we recurse on the partitions P1 = {D ∈
P : D ∈ X} ∪ {X} and P2 = {D ∈ P : D ∈ X} ∪ {X} . Otherwise we add the
possible sesquimodules among the set {A ∪B, A ∪B} into S (using the procedure
of Lemma 12), and we recurse on P ′ = (P \ {A,B}) ∪ {A ∪B} .

We address time complexity first. There is at most O(n) calls to the sub-routine
described in Corollary 2 (in fact it follows from a straightforward induction that
there are at most 2× (|P| − 3) such calls). Thus the overall running time is O(n5).

About correctness of the algorithm, clearly S is a family of non crossing sets. We
show the property by induction on |P| . If |P| ≤ 3 then such S cannot exists, and
the empty family has the desired property. Now suppose that |P| > 3. Suppose
that the sub-routine of Corollary 2 finds the sesquimodule X . If X ∈ {S, S} or
X crosses S then the property is satisfied. Otherwise there is a unique i ∈ {1, 2}
such that S does not separate any D ∈ Pi . By induction, the procedure will find
S , S , or a sesquimodule crossing S . Suppose now that no such X exists. Then
either A ∪ B ⊆ S or A ∪ B ⊆ S . If S = A ∪ B or S = A ∪ B , then S will be
immediately found by the sub-routine of Lemma 12. Otherwise, S does not cross
any D ∈ (P \ {A,B}) ∪ {A ∪ B} . Thus by induction, the procedure will find S or
a sesquimodule crossing S . 2

Using the procedure of the previous lemma on P = {{v} : v ∈ V } , one can compute
in O(n5) time a family S containing every regular cross-free sesquimodule of G (and
potentially something else). Moreover, S is a cross-free family (it can actually be
seen as a subdivision of the sesquimodular decomposition tree of G). Accordingly,
S can be represented by an unrooted tree TS such that the leaves of TS are in
bijection with V , and there is a bijection between S and internal edges in TS .

We briefly show how to find non-cross free members of S . Suppose that S is a
non cross-free sesquimodule. Then there is a sesquimodule S ′ which crosses S . Let
(a, b, c) ∈ (S∩S ′)× (S∩S ′)× (S∩S ′). Using the algorithm described in Lemma 13,
one can check in O(n3) if there is a sesquimodule S ′′ with {b, c} ⊆ S ′′ and a ∈ S ′′

(and thus S ′′ crosses S ). Now we fix a ∈ S , and for every pair (b, c) ∈ S × (V \S),
we check if there is either a sesquimodule S1 with {b, c} ⊆ S1 and a ∈ S1 , or a
sesquimodule S2 with {a, c} ⊆ S2 and b ∈ S2 . If such a S1 or S2 exists, S is not
cross-free. Otherwise S is cross-free by the previous observation.

Let us come back to S as being the output of the algorithm described in Lemma 14.
We check for every S ∈ S if S is cross-free with the latter routine, and we com-
pute the family S ′ of cross-free sesquimodules of G , and thus the sesquimodular
decomposition tree of G . The overall running time is O(n6).
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The only remaining thing is to type the nodes. The main difficulty is how to test
for nodes that are not simply-linked. Actually, we avoid this test by elimination of
cases. Let α be a internal node of the decomposition tree. We compute the 2-graph
of the quotient w.r.t. node α (quadratic number of tests for membership). If this is
a clique or a path we conclude accordingly, and stop. Now we compute all quasi-
trivial members of the quotient (there are at most as many quasi-trivial members
as incident edges of the node). If there are more than one or none of such, report a
prime node, and stop. Else either the node is prime or it is not simply-linked with
that unique quasi-trivial member which is overlap-free. Let {c} be the complement
of the unique quasi-trivial member. Assume that the node α is not simply-linked
and recursively compute the decomposition tree of the quotient excluding {c} . If the
latter tree is anything except a single prime node then node α effectively was not
simply-linked, we conclude and stop. The latter tree is a single prime node. If there
is some quasi-trivial member therein then node α effectively was not simply-linked,
we conclude and stop. Otherwise node α was simply-linked. We report a prime node.
Without recursive calls the process is in O(n6) time. Then, an inductive argument
similar to the proof of Lemma 9 gives an O(n7) time bound. To sum up we have:

Theorem 9 The sesquimodular decomposition tree of a given 2-structure G =
(V,C) can be computed in O(|V |7) time.

7 Computing the sesquimodular decomposition tree of a digraph

We show in this section how the time complexity of the computation of the sesquimod-
ular decomposition can be improved when the input is a digraph.

Lemma 15 One can test in O(m) if a given vertex subset X is a sesquimodule of
a given digraph.

Proof: For every vertex v /∈ X with N+(v) ∩ X 6= ∅ , we check if X ⊆ N+(v).
Moreover we take x ∈ X , and for every y ∈ X \{x} we check if either N+(y)\X =
N+(x) \X or N+(y) \X = (V \X) \N+(x). 2

We adapt the procedure of Lemma 13 to digraphs. The algorithm computing a
regular sesquimodule on digraphs works in two steps. It takes C ∈ P \ {A,B} , and
try in a first step to find a minimal sesquimodule (w.r.t. inclusion) containing A and
C , and not B . If it fails, it tries to find a maximal sesquimodule which contains A ,
and not B and C . We say that (s, t) with s, t ∈ V is a violation for (x, y) (with
x, y ∈ V ) if {x, s} is not a sesquimodule in G[{x, y, s, t}] .
Lemma 16 Let X be a vertex subset, x ∈ X and y /∈ X . Then X is a sesquimodule
if and only if there is no s ∈ X and t /∈ X such that (s, t) is a violation for (x, y).

Proof: If (s, t) is a violation then trivially X is not a sesquimodule. Suppose now
that X is not a sesquimodule. Either there are t /∈ X and s, s′ ∈ X such that t|ss′ ,
or there are s, s′ ∈ X such that Part(s) \ X 6= Part(s′) \ X . In the first case we
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have either t|xs or t|xs′ , thus either (s, t) or (s′, t) is a violation for (x, y). (Note
that we can have t = y .) In the second case, either Part(x) \ X 6= Part(s) \ X or
Part(x) \ X 6= Part(s′) \ X . W.l.o.g. we suppose that Part(x) \ X 6= Part(s) \ X .
Note that Part(x) \ X and Part(s) \ X are two partitions of X of size at most
two. Thus either Part(x) \X or Part(s) \X is of size two. If Part(s) \X has size
one, then (s, t) is a violation, where t ∈ W and W ∈ Part(s) \X with y 6∈ W . If
Part(x) \X has size one, we conclude similarly. Thus Part(x) \X and Part(s) \X
are two partitions of size two. Let W ∈ Part(x) \ X and W ′ ∈ Part(s) \ X such
that y ∈ W ∩W ′ . W∆W ′ is non empty since the two partitions differ. Then (s, t)
is a violation, where t ∈ W∆W ′ . 2

Lemma 17 Let P be a partition of V and let A,B ∈ P . One can compute in
O(n2) time a minimal (w.r.t inclusion) sesquimodule S of G such that A ⊆ S ,
B ( S and which does not separate any set in P (if such a sesquimodule exists).

Proof: Let x ∈ A and y ∈ B . We start with X = A . As long as there is a violation
(s, t) for (x, y) such that s ∈ X and t ∈ V \ X , we add the component of P
containing t into X . When X cannot be augmented anymore, X is a sesquimodule
by Lemma 16, and by construction X is minimal. This can be done in O(n2), since
there is at most a quadratic number of couples to test, and each violation test take
constant time. 2

The proof of the following lemma is similar to the proof of Lemma 17, and is omitted.

Lemma 18 Let P be a partition of V and let A,B ∈ P . One can compute in
O(n2) time a maximal (w.r.t inclusion) sesquimodule S of G such that A ( S ,
B ⊆ S and which does not separate any set in P (if such a sesquimodule exists).

Lemma 19 Let P be a partition of V and let A,B ∈ P . One can compute in
O(n2) time a sesquimodule S of G such that A ( S , B ( S , and which does not
separate any set in P (if such a sesquimodule exists).

Proof: Let C ∈ P \ {A,B} . If there is a sesquimodule S with A ( S and B ( S ,
then either C ⊆ S or C ⊆ S . In the first case, Lemma 17 says that one can compute
a sesquimodule S with A ∪ C ⊆ S , B ( S in O(n2)time. Similarly by Lemma 18,
in the second case one can compute sesquimodule with A ( S , B ∪ C ⊆ S in the
same time. 2

The procedure of Lemma 14 remains unchanged. Thus we get the following.

Corollary 3 One can compute in O(n3) time a family S of sesquimodules of a
digraph G such that: for every non cross-free sesquimodule S then either S ∈ S
or there is a S ′ ∈ S such that S ′ which crosses S . In particular, S contains every
cross-free sesquimodule.

Let S be the family of the Corollary 3 and let TS be its representative tree. We
show now how to find non cross-free members of S . Let T be the sesquimodular
decomposition tree of G . Let α be a node in TS , let k be its degree, and {V1, . . . , Vk}
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be the partition of V induced by α . We know that for every i , Vi or Vi is a
sesquimodule. Moreover by Lemma 14, for every I ( {1, . . . , k} such that 1 < |I| <
k , neither W = ∪i∈IVi nor W is a sesquimodule. Thus we know that if k > 3, the
node α is prime. Accordingly, α is marked prime for later use. Let {α, β} be an
internal edge of TS corresponding to a partition {A,B} of V . Suppose w.l.o.g. that
A is a sesquimodule. If α or β is prime, then A is cross-free since a sesquimodule X
which crosses A will be a regular member of the quotient family corresponding to α
and β . Thus α and β have degree 3, and separate V into 4 sets {A1, A2, B1, B2} .

Lemma 20 If a sesquimodule X crosses A, then there is a (i, j) ∈ {1, 2} × {1, 2}
such that Ai ∪Bj is a sesquimodule.

Proof: If X crosses A1 and A1 is a sesquimodule, then X \A1 and X∪A1 are both
sesquimodules. If X crosses A1 and A1 is a sesquimodule, then A1 ∩X = X \ A1

and A \X = X ∪ A1 are both sesquimodules. In all cases, there is a sesquimodule
which crosses A and not A1 . With the same argument on A2 , B1 and B2 , there is
a sesquimodule which crosses A and does not cross A1 , A2 , B1 or B2 . 2

By Lemma 20, one can check in O(m) time if A is cross-free since there is at
most 4 sets to check. The family of cross-free sesquimodules and the sesquimodular
decomposition tree T of G can be computed from S in time O(nm).

The only remaining thing is to get the type of the internal nodes. Let α be a node
in a sesquimodular decomposition tree, and let {V1, . . . , Vk} be the partition of V
induced by α . Let F be the quotient family corresponding to α . Each vertex in GF
corresponds to a set in {V1, . . . , Vk} . For a subset I ⊆ {1, . . . k} , let WI = ∪i∈IVi .
If α has already been marked prime in the previous step, then it is prime. If α has
degree at most 4, then we check for every I ⊆ {1, . . . k} if WI is a sesquimodule,
thus we can deduce the type of α . Otherwise α is either complete or linear. Clearly,
α is of type Kk if for every I ⊆ {1, 2, 3, 4} , WI and WI are sesquimodules, and
α is of type Kk−1 + v if for every I ⊆ {1, 2, 3, 4} , exactly one of WI and WI is a
sesquimodule. Otherwise, α is linear. We know that S contains exactly k − 3 non
cross-free sesquimodules of the family corresponding to α , since α comes from the
contraction of edges of a connected subgraph of TS , and each node of this subgraph
has degree 3. Each non cross-free sesquimodule is a WI where I is consecutive in
the ordering of α . Thus we can deduce an ordering (v1, . . . , vk) of α in O(n2). Now
α is Pk−1 + v if there is a i such that W{i,i+1} and W{i,i−1} are not sesquimodules,
otherwise α is Pk . We have proved that

Theorem 10 The sesquimodular decomposition tree of a given digraph G = (V,A)
can be computed in O(|V |3) time.
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8 Conclusion and Perspectives

Two new classes of set families, namely weakly partitive crossing families and union-
difference families have been studied in the paper. It is shown that both cases can
be represented via a unique tree. This result is also applied on two new combinato-
rial decompositions, both proper generalizations of clan decomposition. Polynomial
algorithms are given for computing the corresponding decomposition trees. But of
course the runtimes of these algorithms have to be improved for a practical use.

In a digraph G = (V,A), a split-module is a vertex subset M ⊆ V such that
∀x, y ∈ M we have at the same time that N+(x) \ M = N+(y) \ M and that
(N−(x) \M 6= ∅ ∧ N−(y) \M 6= ∅) ⇒ (N−(x) \M = N−(y) \M). The family of
split-modules arise in the study of directed splits of G and in fact this family is at
the same time a weakly partitive crossing family and a union-difference family, but
it is not necessarily a partitive crossing family (hence not symmetric crossing nor
weakly partitive) [31]. In this sense, representing set families satisfying a number
of closure operations is an important question, and we are convinced that other
combinatorial decompositions can be expressed in this framework.

For the family of sesquimodules of a 2-structure we have seen that it is a union-
difference family. In fact it is not necessarily a weakly partitive crossing family
(the most general family known to have a sub-quadratic space complexity). In this
sense the open question whether union-difference families have a sub-quadratic space
complexity could be of special interest.

In Section 3 we gave a connection between modular decomposition and submodular
functions by analyzing the structures of the underlying set families that can be
defined therein. This could turn out to be useful. On the one hand, there are still on-
going large research efforts, e.g., [44], for simplifying the impracticality of linear time
modular decomposition algorithms. We hope that the connection to the powerful
framework of submodular function minimization would help in this direction. On
the other hand, the main algorithmic advantage of modular decomposition consists
in the tricky techniques developed on the way to obtaining the linear runtime of
modular decomposition algorithms. Then, our connection hints applications of these
techniques into the study of graph parameters based on symmetric submodular
functions such as branch-width and rank-width. In this sense, techniques as partition
refinements (a.k.a. vertex splitting) have recently contributed in preliminary steps
for fast FPT algorithms parameterized by clique-width [8], rank-width [9], and the
recently introduced boolean-width [7]. However, modular decomposition has stronger
computational properties, whose application, if possible, would be very interesting.

Acknowledgements: The first author is grateful to S. Thomassé for helpful dis-
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