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Abstract

The Feedback Vertex Set problem asks whether a graph contains q vertices meet-
ing all its cycles. This is not a local property, in the sense that we cannot check if q
vertices meet all cycles by looking only at their neighbors. Dynamic programming
algorithms for problems based on non-local properties are usually more compli-
cated. In this paper, given a graph G of clique-width cw and a cw-expression of G,
we solve the Minimum Feedback Vertex Set problem in time O(n22O(cw log cw)). Our
algorithm applies dynamic programming on a so-called k-module decomposition of
a graph, as defined by Rao [30], which is easily derivable from a k-expression of
the graph. The related notion of module-width of a graph is tightly linked to both
clique-width and NLC-width, and in this paper we give an alternative equivalent
characterization of module-width.

1 Introduction

The problem of finding a minimum Feedback Vertex Set (FVS) in a graph, i.e. the
smallest set of vertices whose removal results in a graph that has no cycles, has many
applications. For example to optical networks [22], circuit testing, deadlock resolution,
analyzing manufacturing processes and computational biology (see [10] and its bibliogra-
phy). It is one of the classical NP-complete problems from the 1972 list of Karp [21] and
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has been extensively studied from many viewpoints, including linear programming [7], ap-
proximation algorithms [2, 13, 16, 22], exact algorithms [14] and parametrized complexity
[6, 10, 17, 25, 29].

The minimum FVS problem is 2-approximable in polynomial time [1]. The fastest ex-
act algorithm has runtime O(1.7548n) [14]. The fastest FPT (Fixed Parameter Tractable)
algorithm when parametrized by the size q of the FVS has runtime O(5qqn2) [6]. These
algorithmic results are quite strong, but are not useful for cases of input graphs having a
large number of vertices n, and a large minimum FVS q, if we want the actual smallest
FVS. For such cases we may instead hope that the input graph has a bounded width
parameter. For example, if G is a planar graph of treewidth tw then Kloks et al [23] give
a dynamic programming algorithm solving minimum FVS on G in time O(2O(tw log tw)n).
Recently a randomized algorithm with runtime O(3twnO(1)) for minimum FVS with one-
sided error of probability at most 0.5 was developed [9]. It is still an open problem whether
there is a deterministic O(2O(tw)nO(1)) algorithm for FVS, even though such algorithms
exist for a large variety of NP-hard problems. However, for minimum FVS it would re-
quire a small breakthrough to get such an algorithm. One reason for this is that FVS is
not a locally checkable property, in the sense that given q vertices we cannot check that
they form an FVS simply by looking at their neighbors. One also has to consider paths
between pairs of vertices. The same issue arises when the problem is parametrized by q
the size of the FVS, but Dehne et al. [10] gave an O(2O(q)n) algorithm using the technique
of iterative compression and the running time for this parameterization was improved in
a long series of papers. In this paper we do not aim to prolong this series. Instead, we
consider the problem on graphs of clique-width cw. This graph class encompasses large
classes of graphs of unbounded treewidth, and for which powerful algorithmic results are
known. Note that bounded clique-width does not imply bounded treewidth, hence we
can not directly translate FPT algorithms parametrized by treewidth to FPT algorithms
parametrized by clique-width. For instance, we have that any graph problem express-
ible in MSO1-logic, as is the case with minimum FVS, is FPT when parametrized by
clique-width (roughly, apply [20], then [27, Proposition 6.3], then [8]). Since FVS can
be expressed in MSO1-logic it follows that FVS is FPT parameterized by clique-width,
however the running time will contain a tower of 2’s, and we are not aware of any MSO1

formulation which would lead to a tower with less than 4 levels. In this paper we are
interested in as low exponential dependency on cw as possible, and for this we need to
use a specially designed dynamic programming algorithm.

The complement of a FVS is a vertex subset inducing a forest, and solving such
tree-like problems using dynamic programming based on clique-width are usually more
complicated than dynamic programming based on treewidth. An O∗(2cw2 log cw) algorithm
was given in [5], and an O∗(2cw2

) algorithm was given in [15] (this algorithm also works
for the lower parameter rank-width). The first algorithm is an extension of the treewidth
algorithm with the key observation that we only need to consider cw2 components of
the complement of FVS. The second improves this by cleverly reducing the number of
considered components to cw.

In this paper we give an O∗(2cw log cw) algorithm. To this end, we use the trick of
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considering only cw components, but we also make use of a technique taking into account
an “expectation from the outside” during the bottom-up computation of the dynamic
programming. This technique was introduced in [3] where it was used for finding a
minimum dominating set along a so-called H-join decomposition, and later also for FVS
in [15]. Roughly, when operating on some reduced instance – e.g., some subgraph G[A]
induced by vertex subset A – we not only compute solutions – e.g., FVS, dominating
sets, etc. – depending on G[A], but also those solutions satisfying specific constraints
depending on G[V (G)\A]. As opposed to classical dynamic programming, a consequence
of “expecting from the outside” will be that we no longer partition the set of possible
solutions (of G[A]) into equivalence classes with a one-to-one correspondence between
such classes and indices of the table (data-structure for dynamic programming). Instead,
each possible solution now can influence several indices of the table.

The exponential dependency on clique-width of our algorithm matches asymptotically
the current best known algorithms based on treewidth. More precisely, our algorithm
finds a minimum FVS on a graph G of clique-width cw in time O(2O(cw log cw)n2), when
given a cw-expression of G which is a decomposition of the graph showing that it has
clique-width cw.

Clique-width is related to the notion of NLC-width of a graph [12] with which it shares
most properties but we have chosen to use clique-width in this paper simply because that
notion is more well known. More specifically, our algorithm applies dynamic programming
on a so-called k-module decomposition of a graph, as defined by Rao [30], which is easily
derivable from a k-expression of the graph. The related notion of module-width of a
graph is tightly linked to both clique-width and NLC-width, and in this paper we give an
alternative equivalent characterization of module-width.

2 Framework

Let G be a graph with vertex set V (G) and edge set E(G). Consider the following unifying
decomposition framework for several decomposition schemes. A binary tree is a rooted
tree where every internal node has exactly two children.

Definition 2.1 (Decomposition tree). A rooted decomposition tree of a graph G is a pair
(T, δ) where T is a binary tree having n = |V (G)| leaves and δ is a bijection between the
vertices of G and the leaves of T .

Roughly, trees with their leaves in a bijection with the vertices of G are important
for techniques like divide-and-conquer or dynamic programming since they show how to
“divide” the graph instance into several sub-instances and recurse. Clearly, any tree with
the right number of leaves and a bijection can be considered as a decomposition tree.
Then, a common technique to select those that are more suited for some task is to use an
evaluating function.

Definition 2.2 (Decomposition and width parameters). Let G be a graph, f : 2V (G) → R
a function assigning a non-negative real value to subsets of V (G), and (T, δ) a rooted
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decomposition tree of G. For every node u of T , let Vu denote the vertex subset of
G induced by the leaves of the subtree of T rooted at u. The f -width of (T, δ) is the
maximum value of f(Vu), taken over every node u of T . An optimal f -decomposition of
G is a rooted decomposition tree of G having minimum f -width. The f -width of G is the
f -width of an optimal f -decomposition of G.

If f is also required to be symmetric, namely that f(Vu) = f(V (G) \ Vu) for every Vu,
then the above framework, up to unrooting the tree T and setting f(V (G)) = f(∅) = 0, is
equivalent to the one developed for the study of branch decomposition of symmetric and
submodular functions (see, e.g., [27, Section 2] for a short and recent introduction). This
includes the branch-width [31], rank-width [27], and boolean-width [4] decompositions of
graphs. On the other hand, rooted decomposition trees as defined here can be used for
situations where the symmetry does not occur, for instance with a branch-like decom-
position of a submodular function that is not necessarily symmetric, a clique-width or
NLC-width expression, or a so-called k-module decomposition as will be presented below.

For an efficient complexity analysis of the algorithm that will be described in Section 4,
we will be interested in the following definition of f -width, so-called module-width in [26,
32].

Definition 2.3. Let G be a graph and let X ⊆ V (G) be a vertex subset. A subset
A ⊆ X is a twin set of X if, for every z ∈ V (G) \ X and pair of vertices x, y ∈ A, we
have x adjacent to z if and only if y adjacent to z. A twin set A is a twin-class of X if
A is maximal. The set of all twin-classes of X forms a partition of X, that we call the
twin-class partition of X.

Definition 2.4 (Module-width). The function µG : 2V (G) → N is defined such that µG(X)
is the number of twin-classes of X in the graph G. The module-width decompositions
and parameters of G refer to those of Definition 2.2 when f = µG. The µG-width of G
will be called the module-width of G and denoted by µw(G).

The above terminology of module-width is according to the name given to an equiv-
alent notion that was mentioned in [26, last two pages] and formalized in [32, Section
6.1.2]. Indeed, one can use a similar decomposition framework, so-called k-module de-
composition, in order to result in the same parameter as follows.

Definition 2.5. ([26, 32]) Let G be a graph. A vertex subset X ⊆ V (G) is a k-module if
there exists a partition of X into k twin sets. G is a k-module decomposable graph if there
is a rooted decomposition tree (T, δ) such that every vertex subset of G that is induced
by the leaves of some subtree of T is also a k-module of G. The module-width of G is the
minimum integer k such that G is k-module decomposable.

Definitions 2.4 and 2.5 both lead to the same notion of module-width thanks to the
following simple observations. Firstly, if X is a k-module, then it is also a (k+ 1)-module
as long as k + 1 ≤ |X|. Secondly, the minimum number k such that X is a k-module is
exactly µG(X).
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Clique-width and NLC-width expressions are constructions of a graph using logic
operations. For a proper introduction to clique-width and NLC-width refer to [8, 12].
The underlying graphs of clique-width and NLC-width expressions are rooted trees where
every internal node has at most two children and where the leaves are in a bijection with
the vertices of the graph. This, up to contracting one child nodes, can be seen as a rooted
decomposition tree. The clique-width cw(G) and the NLC-width nlc-w(G) of a graph G
are parameters of G having powerful algorithmic properties. For instance, we have that
any graph problem expressible in MSO1-logic is FPT when parametrized by one of these
two parameters (roughly, apply [20], then [27, Proposition 6.3], then [8]). They are closely
linked to module-width by the following property.

Theorem 2.6. ([32, Theorem 6.6]) We have for any graph G that

µw(G) ≤ nlc-w(G) ≤ cw(G) ≤ 2µw(G).

We now give an alternative viewpoint of these module-width decompositions, that will
link module-width to the so-called H-join decomposition framework [3] in an unexpected
way.

Definition 2.7. Let H be a bipartite graph with color classes V1 and V2, thus V (H) =
V1 ∪ V2. Let G be a graph and X ⊆ V (G) a subset of its vertices. We say that G is
an H-join across the ordered cut (X, V (G) \X) if there exists a partition of X with set
of classes P and a partition of V (G) \ X with set of classes Q, and injective functions
f1 : P → V1 and f2 : Q → V2, such that for any x ∈ X and y ∈ V (G) \ X we have x
adjacent to y in G if and only if x belongs to a class Pi of P and y to a class Qj of Q
with f1(Pi) adjacent to f2(Qj) in H.

We will abusively refer to ordered cuts simply by cuts. Twins in a bipartite graph are
vertices in the same color class having exactly the same neighborhood. A twin contraction
is the deletion of a vertex when it has a twin. Notice that H-joins are insensitive to twin
contractions: if H ′ is obtained from H by a twin contraction then G is an H-join across
some cut if and only if G is an H ′-join across the same cut. Note also that we do allow
a twin-free bipartite graph to have one isolated vertex in each color class. We model the
joining in module-width decompositions by using the following graph.

Definition 2.8. For a positive integer k we define a bipartite graph Yk having for each
integer i of {1, 2, . . . , k} a vertex ai ∈ A and having for each subset S of {1, 2, . . . , k} a
vertex bS ∈ B, with V (Yk) = A ∪ B. This gives k vertices in A and 2k vertices in B. A
vertex ai is adjacent to a vertex bS if and only if i ∈ S.

Lemma 2.9. Let k be an integer, let H be a bipartite graph over color classes V1 ∪ V2
with |V1| ≤ k. Then, applying successive twin contractions in H until stability will always
result in a graph that is isomorphic to an induced subgraph of Yk.

Proof. Just give an arbitrary ordering over the vertices of V1 = (v1, v2, . . . , vl), and map
them to the l first vertices a1, a2, . . . , al of Yk, respectively (note that l ≤ k by hypothesis).
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Then, for every vertex u ∈ V2 of H, let S = {i : vi ∈ N(u)}, and map u to vertex bS of Yk.
Hence, H is an induced subgraph of Yk. Now, applying twin contractions on a subgraph
of Yk will always result in another induced subgraph of Yk.

Corollary 2.10. The function µG of Definition 2.4 is exactly equal to the function ηG
defined for all X ⊆ V (G) by

ηG(X) = min{k : G is a Yk-join across the cut (X, V (G) \X)}.

Proof. In Definition 2.7 of an H-join across (X, V (G) \ X), if we consider as joining
partition of X the twin-class partition of X, then H is a bipartite graph having exactly
µG(X) vertices on one of its color class. Lemma 2.9 then allows to conclude.

3 Computing the twin-classes

In the next section we will give a dynamic programming algorithm to solve the feedback
vertex set problem on an input made by an n-vertex m-edge graph G and one of its rooted
decomposition tree (T, δ). Note that the underlying graph of a clique-width expression
of G is a rooted tree where each internal node has at most two children, and the leaves
are in a bijection with the vertices of G. Contracting the internal nodes having one child
will result in a rooted decomposition tree of G. Moreover, it can also be obtained from
the proof of Theorem 2.6 that the module-width of this rooted decomposition tree is at
most the clique-width of the clique-width expression. Consequently, if the input to our
algorithm is the graph G and a clique-width k expression of G, we can transform them
in a straightforward manner to an input made of G and one of its rooted decomposition
tree of module-width at most the value of k.

For every internal node u of T with Vu being the vertex subset of G induced by the
subtree of T rooted at u, we will need to compute the twin-classes of Vu as mentioned
in the definition of µG in Definition 2.4. In this section, we will describe how to perform
such a computation for every internal node u of T , in global running time O(n2).

We will use the so-called partition refinement algorithmic technique (refer to, e.g., [18,
28] for details). Partitions will be represented by double-linked lists. A refinement op-
eration of a partition Q = (Q1, Q2, . . . , Qk) of Vu using A ⊆ Vu as pivot is the act of
splitting every Qi into Qi ∩ A and Qi \ A. The output of a refinement operation can be
of two types. It can be made of one partition of Vu which is the result of removing all
empty sets from (Q1 ∩ A,Q1 \ A,Q2 ∩ A,Q2 \ A, . . . , Qk ∩ A,Qk \ A). We refer to these
as one-to-one refinements. It can also be composed of two partitions (one of A and one
of Vu \ A) which result from removing all empty sets from (Q1 ∩ A,Q2 ∩ A, . . . , Qk ∩ A)
and (Q1 \ A,Q2 \ A, . . . , Qk \ A). We refer to these as one-to-two refinements. With the
appropriate data structure, all these types of refinement operations can be implemented
to run in O(|A|) time for each operation (refer to, e.g., [18] for details).

A simple way to compute the twin-class partition of Vu is to initializeQ = (Vu) and, for
every vertex z ∈ V (G)\Vu, perform an one-to-one refinement of Q using the neighborhood
N(z) of z as pivot. The correctness follows directly from the definition of twin-classes.
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This computation would have O(m) runtime for each internal node u of T , hence a global
O(nm) runtime.

The main idea to reduce this runtime is to observe that, in the above operations, we
can use N(z)∩Vu as pivot instead of N(z) (for every z ∈ V (G)\Vu) without modifying the
refined partition of each step. However, the sum over every possible Vu and z ∈ V (G)\Vu
of the value |N(z)∩Vu| might still be large. We will observe a second fact. For a partition
Q = (Q1, Q2, . . . , Qk) of X and a subset Y ⊆ X, we denote by Q[Y ] the partition of Y
which results from removing all empty sets from (Q1 ∩ Y,Q2 ∩ Y, . . . , Qk ∩ Y ).

Remark 3.1. Let w be an internal node of T with children a and b. Let Vw, Va, and Vb
be the vertex subsets of G induced by the leaves of the subtrees of T rooted at w, a, and
b, respectively. Let Qw = (Qw(1), Qw(2), . . . , Qw(hw)) be the twin-class partition of Vw.
Then, initializing Q = Qw[Va] and refining Q using N(z) ∩ Va as pivot for all z ∈ Vb will
result to the twin-class partition of Va.

Basically, the algorithmic difference given by the remark is that we can now be re-
stricted to z ∈ Vb instead of using all z ∈ V (G) \ Va as before. The main point is that
the sum over every possible Va and z ∈ Vb of the value |N(z) ∩ Va| will be at most twice
the value n+m (every edge of G appears at most twice in the sum). We now implement
Remark 3.1.

First of all, the bottleneck of using N(z) ∩ Va as pivot will be that, unlike the case
with N(z) which can be read simply in the adjacency list of G, we will need to compute
N(z) ∩ Va for every possible Va and z. We do this as a preprocessing step as follows.

We prepare the tree T as described in [19] so that afterwards we can, given two leaves
x and y of T , compute the lowest common ancestor w of x and y in T in O(1) time. This
can also be done in such a way that, if a and b denote the children of w, then we can
in O(1) time decide whether x is a descendent of a or it is a descendent of b. Then, for
every internal node w of the tree T , with children a and b, we initialize two tables N b→a

w

and Na→b
w that will contain, for every vertex z in Vb (resp. Va), the neighborhood of z in

Va (resp. Vb). Now, we scan through every edge xy of G and compute the lowest common
ancestor w of x and y, as well as the children a and b of w such that x is a descendent of
a, and finally add x to N b→a

w [y] and y to Na→b
w [x]. Clearly, after scanning all edges of G,

we have that N b→a
w [z] = N(z) ∩ Va for all w, a, b, and z. This preprocessing takes O(m)

time.
We come to the proper computation of the twin-class partitions. The twin-class parti-

tion associated to the root of T only has one class, which is V (G). Suppose that we have
computed the twin-class partition Qw of an internal node w having children a and b. This
partition Qw is stored in a double-linked list w.r.t. the data structure used for partition
refinement. Basically, the following operations can operate directly on this data structure,
if we allow ourselves to modify the double-linked list. However, the information on the
twin-classes of Vw would then be lost. For this reason, before continuing, we duplicate
the data structure of Qw so that we store the twin-classes of Vw in a private place of
node w. Then, we can compute Qw[Va] and Qw[Vb] simply by performing an one-to-two
refinement of Qw using either Va or Vb as pivot (cf. Vb = Vw \ Va) for each w. Duplication
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and refinement using Va (or Vb) as pivot take O(n) time for every node w, hence an O(n2)
global runtime.

We then initialize Q = Qw[Va] and, for every entry z of the table N b→a
w , refine Q using

N b→a
w [z] as pivot. As mentioned before, the main point of all these procedures is that the

sum of the size of all possible pivots will now be at most twice the value n + m. Hence,
the global runtime of this step is in O(n + m). We deduce the following lemma, whose
proof is straightforward. Recall that from the input of a clique-width expression of G, we
can derive a rooted decomposition tree simply by contracting all internal nodes having
one child in the underlying graph of the clique-width expression. The module-width of
this decomposition tree is at most the clique-width of the expression.

Lemma 3.2. Given a graph G and either (T, δ) a rooted decomposition tree of G, or
a clique-width expression tree of G. Then in O(n2) global runtime we can compute
and store, for every internal node u of T with Vu being the vertex subset of G induced
by the leaves of the subtree of T rooted at u, the partition of Vu into its twin-classes
Qu(1), Qu(2), . . . , Qu(hu).

4 Solving the Feedback Vertex Set Problem

Definition 4.1. A feedback vertex set of a graph G is a subset S of the vertices of G with
G[V (G) \ S] a forest. A forest inducing set (FI-set) of a graph G is a subset of vertices S
with G[S] a forest.

Fact 4.2. If S is a FI-set of maximum cardinality then V (G)−S is a feedback vertex set
of minimum cardinality.

We give dynamic programming algorithms that given a graph G and a rooted decom-
position tree (T, δ) of G will find the size of a minimum Feedback Vertex Set of G, by
computing the size of a maximum FI-set in G. Recall that in Section 3 Va, Vb, Vw were the
vertex subsets corresponding to subtrees rooted at nodes a, b, w of T . For simplicity we
adopt A = Va, B = Vb,W = Vw for the rest of this section. The runtime of the algorithm
will be expressed as a function of µG(A), i.e. the number of twin-classes of such vertex
subsets A = Va.

4.1 Definition of Tables

For A ⊆ V (G) let T CA = {TC1
A, TC

2
A, ...TC

k
A} be the twin-classes of A, using k =

µw(V (G)) and allowing some empty classes. The indices of table TabA will consist of
pairs (P , C) where P is a partition of T CA and C is a partition of a subset of T CA. We
denote the classes of P by Q0

A, Q
1
A, R

0
A, R

1
A, ..., R

k
A, allowing some empty classes. C will be

a partition of T CA \ (Q0
A ∪ R0

A) and a coarsening of R1
A, R

2
A, ..., R

k
A in the sense that two

twin-classes both in Ri
A, for some 1 ≤ i ≤ k, must belong to the same class in C.

Before defining the contents of the table formally, let us briefly give some intuition.
An index (P , C) will store a largest FI-set S ⊆ A satisfying certain properties, e.g. where
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Q0
A and Q1

A are those twin-classes containing exactly zero and one vertex from S and the
remaining classes of P consist of twin-classes containing at least two vertices of S. Among
these, the twin-classes of R0

A are exactly those containing vertices that should not get any
further FI-set neighbors as we progress up to the root of the decomposition tree. The
partition of the remaining twin-classes into R1

A, R
2
A, ..., R

k
A is part of the ’expectation from

the outside’. As we progress up the path to the root two nodes receive a new common
FI-neighbor if and only if they are in twin-classes belonging to the same Ri

A. The partition
class C is also part of the expectation and tells us about connected components of FI-sets.

Definition 4.3. For every partition P of T CA into k + 3 parts Q0
A, Q

1
A, R

0
A, R

1
A, ..., R

k
A

(allowing empty classes) and every partition C of T CA \ (Q0
A ∪ R0

A) that is a coarsening
of R1

A, R
2
A, ..., R

k
A, we have an index (P , C) in TabA. The contents of TabA[P , C] will be a

vertex subset S ⊆ A of maximum cardinality among all S ⊆ A satisfying the pair (P , C),
where such S is said to satisfy (P , C) if

1. Q0
A = {TCi

A : |TCi
A ∩ S| = 0}

2. Q1
A = {TCi

A : |TCi
A ∩ S| = 1}

3. The graph G(P , S) is a forest, where G(P , S) is constructed from G[S] by adding
new intermediate vertices {v1, v2, ..., vk}, and edges from vi to all vertices in twin-
classes belonging to Ri

A, for 1 ≤ i ≤ k.

4. Two vertices u ∈ TCi
A ∩ S and v ∈ TCj

A ∩ S with TCi
A, TC

j
A not in R0

A belong to
the same connected component of G(P , S) if and only if TCi

A, TC
j
A are in the same

class of C.

If no set S ⊆ A satisfying (P , C) exists then the contents of TabA[P , C] should be ].

4.2 The dynamic programming algorithm

We are now ready to describe the algorithm computing a maximum FI-set of G. The
algorithm starts by initializing all table entries of all tables of the tree T to ].

At any leaf a of the tree T we have A = {δ(a)} and T CA = {{δ(a)}}. Two entries of
the table Taba will be updated to something other than ] corresponding to the two choices
for a set satisfying an index (P , C), namely S = {δ(a)} and S = ∅. The first choice gives
Taba[P , C] = {δ(a)} for P having empty classes except Q1

A = {{δ(a)}} and C = {{δ(a)}}.
The second choice gives Taba[P , C] = ∅ for P having empty classes except Q0

A = {{δ(a)}}
and C the partition of the empty set.

In a bottom-up traversal of the tree T , when reaching an internal node w having
children a and b we do the following dynamic programming:

For all index triples (PA, CA), (PB, CB), (PW , CW )
If Taba[PA, CA] = SA and Tabb[PB, CB] = SB (i.e. not ] entries)

and SA ∪ SB satisfies (PW , CW )
and Tabw[PW , CW ] = ] or |Tabw[PW , CW ]| < |SA ∪ SB|

Then update Tabw[PW , CW ] := SA ∪ SB
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After the bottom-up traversal filling all tables output the entry Tabroot[P , C] at the
root of T , for P having empty classes except R0

root = {V (G)} and C the partition of the
empty set.

5 Correctness and timing

Let us start by noting that at the root of T we have T Croot = {V (G)} and the value of
Tabroot[P , C] for the partition where R0

root = {V (G)} and C the partition of the empty
set will by Definition 4.3 be a maximum FI-set of G. A central part of the correctness
argument is to show that the FI-set stored in a table entry will induce an acyclic graph.
This will be done by contradiction, showing that a cycle in one graph can be replaced
in another graph by a walk starting and ending in the same vertex and using some edge
exactly once, and then applying the following easy observation.

Lemma 5.1. Consider a graph H containing a walk starting and ending in the same
vertex. If some edge uv appears an odd number of times in the walk then the subgraph H ′

of H induced by the edges in the walk contains a cycle.

Proof. Note that H ′ is a connected graph. We first show that it remains connected also
after removing the edge uv. Removing uv breaks the walk up in subwalks of three types,
from u to u, from v to v and from u to v. Since uv is used an odd number of times and
the original walk started and ended in same node, both u and v are used as endpoints
an odd number of times. Therefore one of the subwalks will go from u to v showing that
u and v are in the same connected component even after removing uv. Since adding a
new edge to a connected graph will give a graph with a cycle the graph H ′ must have
contained a cycle.

Lemma 5.2. The dynamic programming algorithm will correctly fill all tables.

Proof. The lemma is proved by bottom-up induction on the tree T . Leaves of T are
correctly updated since we try both subsets of nodes as FI-sets for the unique indices that
they satisfy. Consider an internal node w of T with children a, b and assume inductively
that Taba and Tabb are correct. We show that Tabw is then updated correctly. Recall that
A,B,W are the vertex subsets corresponding to subtrees rooted at a, b, w.

For any index (PW , CW ) we must show that if there is a set satisfying (PW , CW ) then
Tabw[PW , CW ] is not equal ] and that, if Tabw[PW , CW ] = SW then SW ⊆ W is a largest
set satisfying (PW , CW ). First, note that in the latter case we know SW satisfies (PW , CW )
as this was checked in the algorithm.

Thus, assume for contradiction that there is a set FW ⊆ W satisfying (PW , CW )
and that we have either |FW | > |Tabw[PW , CW ]| or we have Tabw[PW , CW ] = ]. From
PW , CW , FW we first construct (PA, CA), (PB, CB) such that FW = FA∪FB and FA satisfies
(PA, CA) and FB satisfies (PB, CB). Note that we will not be using CW as the pair PW , FW

uniquely defines CW . Let FA = FW ∩ A and FB = FW ∩B.
We now construct PA = Q0

A, Q
1
A, R

0
A, R

1
A, ..., R

k
A. We set Q0

A = {TCi
A : |TCi

A∩FA| = 0}
and Q1

A = {TCi
A : |TCi

A ∩ FA| = 1}. Recall that T CW is a coarsening of T CA ∪ T CB, so
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that a class of T CW is the union of some classes of T CA and some of T CB. For any Ri
W

with i > 0 the twin-classes of T CA that are subsets of Ri
W , but have not been assigned to

Q0
A ∪Q1

A, will be assigned to Ri
A.

A twin-class TCh
A of T CA that has not been assigned yet (neither to Q0

A, Q
1
A nor any

Ri
A) must be a subset of R0

W and must have at least two vertices in FA. If TCh
A does

not have a neighbor in FB then it is assigned to R0
A. If TCh

A does have a neighbor in
FB then since FA ∪ FB contains no cycle all vertices in TCh

A have a single neighbor vh in
FB common to them all. We arbitrarily pick indices j ∈ {1, 2, ..., k} with Rj

A still empty
(since k = µw(V (G)) we can find enough such j). We then assign remaining twin-classes
using these indices such that two remaining twin-classes TCh

A and TCg
A both belong to

the same Rj
A if and only if they have the same common neighbor in FB. All remaining

Ri
A should be empty. This completes the construction of PA. For PB we do the analogous

construction.

Claim 5.3. The graph G(PA, FA) is isomorphic (respecting twin-classes) to the subgraph
of G(PW , FA ∪ FB) induced on edges with either both endpoints in FA or exactly one
endpoint in a twin-class belonging to Ri

A for some i. Same holds for G(PB, FB).

Proof. Note that G(PA, FA) and G(PW , FA ∪ FB) clearly induce the same graph on FA.
All remaining edges of G(PA, FA) are, by definition of G(PA, FA), accounted for by noting
that two vertices in some twin-class of Ri

A have a common neighbor (not in A) if and only
if their twin-classes belong to the same Ri

A for i > 0. But then they then have a common
neighbor also in G(PW , FA ∪ FB), since by construction Ri

A is one of two types: either
all twin-classes in Ri

A are subsets of some twin-class in Ri
W , in which case these vertices

have a common neighbor in G(PW , FA ∪FB), or all vertices of all twin-classes in Ri
A have

a common neighbor in FB. Since we are only showing that G(PA, FA) is (isomorphic to,
while respecting twin-classes) a subgraph of G(PW , FA ∪ FB) this suffices.

We now construct CA, following Definition 4.3. Consider the graph G(PA, FA) con-
structed from G[FA] by adding new vertices {v1, v2, ..., vk}, and edges from vi to all vertices
in all twin-classes belonging to Ri

A, for 1 ≤ i ≤ k. We define CA to be the partition of
T CA \ (Q0

A ∪ R0
A) such that TCi

A, TC
j
A not in (Q0

A ∪ R0
A) are in the same class of CA if

and only if two vertices u ∈ TCi
A ∩ FA and v ∈ TCj

A ∩ FA belong to the same connected
component of G(PA, FA). For CB we do the analogous construction. We are thus done
with construction of indices (PA, CA) and (PB, CB) in Taba and Tabb.

Claim 5.4. FA satisfies (PA, CA) and FB satisfies (PB, CB).

Proof. We give the argument for FA only since the argument for FB is symmetric. It is
obvious from the construction that FA will satisfy the two first constraints in Definition 4.3
for (PA, CA). By Claim 5.3 and the fact that FA ∪ FB satisfies (PW , CW ) the graph
G(PA, FA) is a forest so that it satisfies the third constraint. By construction of CA it is
clear that FA satisfies the fourth constraint.

Based on the inductive assumption that Taba and Tabb are correct we know that
since FA satisfies (PA, CA) and FB satisfies (PB, CB) we have Taba[PA, CA] = SA for some
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largest SA ⊆ A satisfying (PA, CA), Taba[PB, CB] = SB for some largest SB ⊆ B satisfying
(PB, CB), and thus |SA| ≥ |FA|, and |SB| ≥ |FB|. Consider what happens when the
algorithm considers the triple (PA, CA), (PB, CB), (PW , CW ). If SA∪SB satisfies (PW , CW )
then we are guaranteed that |Tab[PW , CW ]| ≥ |SA ∪ SB| ≥ |FA ∪ FB| = |FW | which will
establish the contradiction.

Thus, it remains only to show that SA ∪ SB satisfies (PW , CW ), as in Definition 4.3.
From Definition 4.3 we get that if TCi

A belongs to Q0
A or Q1

A then |SA∩TCi
A| = |FA∩TCi

A|,
same holds for B. A twin-class TCi

W is a union of some twin-classes from T CA and T CB.
If TCi

W belongs to Q0
W or Q1

W then it is a union of twin-classes belonging to Q0
A, Q1

A, Q0
B

or Q1
B and hence |(SA ∪ SB) ∩ TCi

W | = |FW ∩ TCi
W |. Therefore by construction SA ∪ SB

satisfies the first two constraints of Definition 4.3 for (PW , CW ). The following claims will
be useful to show that the third constraint is satisfied.

Claim 5.5. For any i ≥ 1 all vertices in any non-empty twin-class of Ri
A have, in the

graph G(PW , SA∪SB), exactly one neighbor not in A, which is common to them all. Same
for Ri

B.

Proof. We first show that no vertex x of a twin-class that is a subset of Ri
A can have more

than one neighbor outside A in G(PW , SA ∪ SB). We do this by a case analysis showing
that I: it cannot have any neighbor in an Rj

B-class, II: it cannot have two neighbors in
Q1

B-classes, III: it cannot have two new intermediate neighbors, and IV: it cannot have
one intermediate neighbor and one neighbor in a Q1

B-class.
Since by Claim 5.4 FA, SA satisfy (PA, CA) and also FB, SB satisfy (PB, CB) all twin-

classes of Ri
A contain at least two vertices of SA and of FA, and Rj

B (for j > 0 an index
of a non-empty Rj

B) contain at least two vertices of SB and of FB. Therefore, since
all vertices in a twin-class of T CA have the same neighbors outside A case I must hold
since otherwise we would have a 4-cycle in G(PW , FA ∪ FB), contradicting that FA ∪ FB

satisfies (PW , CW ). Likewise all twin-classes of Qi
B contain one vertex of both SB and

of FB. Therefore, case II must hold since otherwise we would again have a 4-cycle in
G(PW , FA ∪ FB). By Definition 4.3 no vertex in the graph G(PW , SA ∪ SB) has more
than one intermediate neighbor so case III holds. For case IV note first that the only
way vertex x in a twin-class of Ri

A can have an intermediate neighbor in G(PW , SA ∪ SB)
is if its twin-class is a subset of Rj

W for some j > 0. But then the vertex of FA in the
same twin-class will also have an intermediate neighbor in G(PW , FA ∪ FB). Since all
twin-classes of Qi

B contain one vertex of both SB and of FB we conclude that case IV
must hold since otherwise we would again have a 4-cycle in G(PW , FA ∪ FB).

We now show that every vertex in any twin-class of Ri
A has a common neighbor outside

A in G(PW , SA ∪ SB). Firstly, every vertex whose twin-class is a subset of Rj
W for j > 0

has a common intermediate neighbor. Secondly, for a vertex whose twin-class is a subset
of R0

W any neighbor it has outside A must be in SB. Any two vertices of FA in twin-
classes of Ri

A have in G(PA, FA) a common neighbor, by Claim 5.4. By Claim 5.3 these
two vertices of FA have also in G(PW , FA ∪ FB) a common neighbor, which must be in
FB since Ri

A is a subset of R0
W . If any two vertices x, y in FA have a common neighbor in
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FB then any two vertices in SA from the same twin-classes as x, y must have a common
neighbor in FB. This concludes the proof.

Claim 5.6. The graph G(PA, SA) is isomorphic (respecting twin-classes) to the subgraph
of G(PW , SA ∪ SB) induced on edges with either both endpoints in SA or exactly one
endpoint in a twin-class belonging to Ri

A for some i. Same holds for G(PB, SB).

Proof. Note that G(PA, SA) and G(PW , SA ∪ SB) clearly induce the same graph on SA.
For the edges with exactly one endpoint in a twin-class belonging to Ri

A Claim 5.5 implies
that such an edge exists in both graphs or none of the two graphs. No other edges exist
in G(PA, SA).

To show that SA ∪ SB satisfies the third constraint of Definition 4.3 for (PW , CW ) we
show that G(PW , SA ∪ SB) is a forest. We will prove this by contradiction, showing that
if we have a cycle Ψ in G(PW , SA ∪ SB) then we also have a walk Ψ′ containing a cycle
in G(PW , FW ) (which we know is a forest). We assume that the cycle Ψ is induced and
break it into parts uniquely as follows (after first uniquely choosing parts of type 1 below
and then of type 2 below the rest of the cycle will uniquely be of types 3 and 4 below):

1. maximal paths starting and ending in SA containing at least one edge of G[SA] and
otherwise only containing edges with exactly one endpoint in a twin-class belonging
to Ri

A for some i.

2. maximal paths starting and ending in SB containing at least one edge of G[SB] and
otherwise only containing edges with exactly one endpoint in a twin-class belonging
to Ri

B for some i.

3. crossings from SA to SB directly by one edge.

4. crossings using one intermediate new vertex vi.

We assume additionally that the cycle Ψ has the smallest number of parts over all
induced cycles. Each part starts and ends in a vertex of SA ∪ SB and these endpoints are
called special vertices.

Claim 5.7. Each twin-class of T CA and T CB contains at most one special vertex.

Proof. Assume for contradiction that some twin-class contains two special vertices x, y.
This twin-class must be some Ri

A (or Ri
B) since these are the only classes containing more

than one vertex of SA (or SB). Any special vertex x in SA (resp SB) has two neighbors
x1, x2 in the cycle Ψ. These two neighbors cannot both be in SA (resp SB), since x
would then not be a special vertex. By Claim 5.5, x, y have exactly one neighbor not in
A, thus wlog we can assume x1 = y1 /∈ A so that the cycle Ψ has consecutive vertices
x, x1, y. Their other neighbor(s) x2, y2 in the cycle are in SA and thus x, y are not special
vertices.

Claim 5.8. Ψ cannot have only one part.
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Proof. Note that Ψ must have at least two parts since if it had only one part this part
would have to be of type 1 (or type 2) and be a cycle in which case Claim 5.6 would imply
that G(PA, SA) (or G(PB, SB)) had a cycle, and thus not satisfy (PA, CA) (or (PB, CB))
contradicting Claim 5.4.

We are ready to start constructing Ψ′. First, we choose for each special vertex v ∈ SA

(resp SB) of Ψ an arbitrary vertex of FA (resp FB) from the same twin-class as v. By
Claim 5.7 we have thus chosen at most one vertex from each twin-class. We then replace
each part of Ψ in G(PW , SA∪SB) by a path in G(PW , FW ) between the two chosen vertices
and call the resulting graph Ψ′.

Claim 5.9. Parts of type 1 (resp 2) can be replaced by paths in G(PW , FA∪FB) containing
at least one edge of G[FA] and otherwise only containing edges with exactly one endpoint
in a twin-class belonging to Ri

A for some i (resp for type 2, replacing A by B).

Proof. By Claim 5.6 a part of type 1 in Ψ, i.e. a path in G(PW , SA ∪ SB), gives a path
in G(PA, SA). Since both SA and FA satisfy (PA, CA) this gives a path in G(PA, FA).
This means that for any part of type 1 between special vertices u, v there is a path in
G(PA, FA) between the vertices u′v′ chosen from the same twin-classes as u, v, having
edges in G[FA] and edges with exactly one endpoint in a twin-class belonging to Ri

A. We
now show that there is such a path in G(PA, FA) between u′, v′ containing at least one
edge of G[FA]. Note that if u, v both belong to the same Ri

A then u, v have a common
neighbor in G(PW , SA ∪ SB) and Ψ would have only one part and we apply Claim 5.8.
Thus u′, v′ are in twin-classes belonging to different classes of the partition PA. Any path
in G(PA, FA) between vertices in twin-classes belonging to different classes of PA must
contain an edge of G[FA].

Let us now argue that the existence of such a path from u′ to v′ in G(PA, FA) implies
the existence of a similar path in G(PW , FA ∪ FB). Firstly, on FA the induced subgraphs
are the same in both graphs. Secondly, by construction of PA from PW any two vertices
of FA having in G(PA, FA) a common neighbor outside FA also have in G(PW , FA ∪ FB)
a common neighbor outside FA.

We can similarly argue for parts of type 2.

Parts of type 3 are easy to replace since if there is an edge in G(PW , SA ∪ SB) from a
vertex in a twin-class TCi

A to a vertex in a twin-class TCj
B then in the graph G(PW , FW )

any vertex in TCi
A will be connected to all vertices in TCj

B. Parts of type 4 are also
easy to replace: such a part goes from a vertex in a twin-class TCi

A via an intermediate
new vertex to a vertex in twin-class TCj

B with both twin-classes belonging to the same
Rk

W and thus since FW satisfies PW , CW the same edges are present in G(PW , FW ). This
finishes the construction of Ψ′ from Ψ.

Note that the subgraph Ψ′ must be connected since we started with a cycle Ψ, then
first replaced each special vertex v by some v′ and then replaced paths of the cycle between
special vertices u, v by paths connecting u′ and v′. Ψ′ is therefore a walk starting and
ending in the same vertex and that is why Lemma 5.1 is useful to show that Ψ′ contains
a cycle.
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Claim 5.10. If Ψ contains an edge from a special vertex u in a twin-class of Q1
A (resp

Q1
B) to a vertex w not in A nor in a twin-class of Ri

B (resp not in B nor in a twin-class
of Ri

A) then Ψ′ contains a cycle.

Proof. Note that for u ∈ Q1
A there are only two choices for w: it can either belong to a

twin-class of Q1
B or it can be an intermediate vertex between u and a special vertex of

B. The special vertex u of Ψ is replaced in Ψ′ by u′ in the same twin-class and no other
special vertex of Ψ is replaced by u′. Similarly, if w ∈ Q1

B then it is replaced by a vertex
w′ from the same twin-class and it is the only such vertex. Otherwise we let w′ = w. We
will argue that the edge u′w′ appears exactly once in Ψ′, and the statement will follow
from Lemma 5.1. The edge u′w′ does not belong to G[FA] nor to G[FB] and neither u′

nor w′ belongs to some Ri
A or Ri

B. Therefore, by Claim 5.9 parts of type 1 or 2 in Ψ will
never be replaced by a path containing the edge u′w′. A part of type 3 will be replaced
by a single edge, and a part of type 4 by a path on two edges, from A to B. Two parts
of type 3 cannot both be replaced by the same edge u′w′ since then the cycle Ψ would
have contained the edge uw twice contradicting the fact that Ψ was chosen to be simple.
Similarly, two parts of type 4 cannot both be replaced by a path containing the edge u′w′

since then the cycle Ψ would have contained the edge from u to its intermediate neighbor
twice contradicting the fact that Ψ was chosen to be simple. Similarly we can argue for
u ∈ Q1

B.

Claim 5.11. If all edges of Ψ belong either to G[SA] or G[SB] or have at least one endpoint
in Ri

A or Ri
B then Ψ′ contains a cycle.

Proof. By Claim 5.5 a vertex u in Ri
A (resp Ri

B) has a single neighbor outside B so that
if the cycle Ψ contains a vertex u in a twin-class of Ri

A (resp Ri
B) then Ψ must contain

an edge uv of G[SA] (G[SB]). Thus Ψ has at least one part of type 1 or 2.
We now argue that the condition in the claim implies that the parts of Ψ must alternate

between being: of type 1 (containing at least one edge of G[SA]), then crossing parts of
type 3 or 4 (containing no edges of G[SA] or G[SB]), then of type 2 (containing at least
one edge of G[SB]), then again crossings, and so forth. Consider wlog a part of type 1
ending in a special vertex u ∈ SA. The other part with special vertex u cannot be of type
1 or 2 since parts of type 1 are maximal and parts of type 2 have special vertices in SB.
We need to show that going around the cycle Ψ from u we must encounter a part of type
2 before we encounter a part of type 1 again (i.e. they alternate). When going around
the cycle Ψ from u there are two cases, either we encounter a vertex in a twin-class of
some Ri

B before encountering an edge of G[SA], or not. In the former case we would next
encounter an edge of G[SB] by the observation at the start of the proof of this claim and
would be done. In the latter case the condition in the claim implies that every edge of Ψ
between u and the occurrence of the edge of G[SA] would have an endpoint in Ri

A, which
would contradict the maximality of the type 1 part ending in u. We conclude that the
parts alternate as described above.

Parts of type 3 and 4 in Ψ are replaced in Ψ′ by crossings containing no edges of G[A]
or G[B] and by Claim 5.9 parts of type 1 (resp 2) are replaced in Ψ′ by paths containing at
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least one edge of G[A] and no edge of G[B] (resp at least one edge of G[B] and no edge of
G[A]). Call an edge of Ψ′ with both endpoints in G[A] or both in G[B] a one-sided edge.
Firstly, if there is some one-sided edge uv of Ψ′ that appears only once in the walk defined
by Ψ′ then by Lemma 5.1 the walk Ψ′ contains a cycle. Otherwise, take a one-sided edge
uv such that there are two appearances of it in the walk Ψ′ with no other one-sided edge
appearing twice in the part of the walk between these two appearances of uv. Note that
there must be at least one special vertex between the two occurences.

As the types alternate, the subgraph induced by the edges between these two uses of
uv in the walk Ψ′ must contain a one-sided edge yz (on the other side). We therefore have
a walk in Ψ′ starting and ending in vertex u containing an edge yz used exactly once, so
that Ψ′ contains a cycle by Lemma 5.1.

If Ψ does not fulfill the condition of Claim 5.11 then it contains an edge having one
endpoint in a twin-class of Q1

A (resp Q1
B) and the other endpoint not in A (resp not in

B) and not in a twin-class of Ri
B (resp Ri

A). But then Ψ fulfills Claim 5.10. Thus the
existence of a cycle Ψ in G(PW , SA ∪ SB) implies a cycle in G(PW , FW ) either by Claim
5.10 or 5.11, contradicting the fact that FW satisfies (PW , CW ). Thus, we have shown that
SA ∪ SB satisfies the third constraint of Definition 4.3 for (PW , CW ). We now show that
it satisfies also the fourth constraint.

The argument for the fourth constraint is similar to the one for the third constraint
but a bit simpler since we only need to replace paths by connected graphs and not cycles
by connected graphs containing a cycle.

We show there exists a path Γ in G(PW , SA ∪ SB) from a vertex in TCi
W /∈ R0

W to a
vertex in TCj

W /∈ R0
W if and only if there exists a path Γ′ in G(PW , FW ) from a vertex in

TCi
W to a vertex in TCj

W . Since FW satisfies the fourth constraint of Definition 4.3 for
(PW , CW ), showing this will imply that also SA ∪ SB satisfies it. Given Γ we construct
Γ′ as follows. Break Γ into parts of 4 types in such a way that the endpoints of a part
contains no vertex from R0

W .

1. paths having edges in A only

2. paths having edges in B only

3. a single edge from SA to SB

4. a path of length two from SA or SB to SA or SB via a new vertex vi

This can be done since vertices of R0
W have no crossing edges. First replace each

vertex v ∈ TCp
A (resp. v ∈ TCp

B) that is the endpoint of a part of Γ by an arbitrary
vertex v′ of FW in TCp

A (resp. TCp
B). A part (of type 1) with endpoints u, v containing

only edges from A is a path also in G(PA, SA), and since both SA and FA satisfy (PA, CA)
such a part can be replaced by a path between u′, v′ in G(PA, FA), and since by Claim 5.3
G(PA, FA) is a subgraph of G(PW , FW ) it can be replaced by a path between u′, v′ in
G(PW , FW ). The same holds for parts (of type 2) with endpoints u, v containing only
edges from B. A part of type 3 is easy to replace: edges from SA to SB are replicated in
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FW since all vertices in a twin-class have the same neighbors on the other side. A part
of type 4 is also easily replaced since they go from a vertex in a twin-class TCj

A or TCj
B

to a vertex in a twin-class TCp
A or TCp

B both in Ri
W and thus in G(PW , FW ) all vertices

of these two twin-classes will be connected by such a path of length two via new vertex
vi. This concludes the construction of Γ′ and shows that there is a path between u′, v′

in G(PW , FW ). The opposite direction, given Γ′ constructing Γ, is done in an analogous
manner. Thus SA ∪ SB satisfies the fourth constraint of Definition 4.3 for (PW , CW ).

We have shown that SA ∪ SB satisfies (PW , CW ). Therefore we cannot have that
Tabw[PW , CW ] = ] and, since |SA ∪ SB| = |SA| + |SB| ≥ |FA| + |FB| = |FW |, we cannot
have |FW | > |Tabw[PW , CW ]|, finishing the proof.

Theorem 5.12. Given either a rooted decomposition tree (T, δ) of module-width k of a
graph G, or a k-expression of a graph G of clique-width at most k, we can in O(k5kn2)
steps solve the Minimum Feedback Vertex Set problem on G.

Proof. Consider first the case of input being a rooted decomposition tree. By Lemma 3.2
we can compute twin-classes for all nodes of the tree in time O(n2). Note that for any
node a of the tree T the number of twin-classes of Va is at most k. By Definition 4.3 and
Lemma 5.2 the maximum value over all entries in the table at the root of our dynamic
programming algorithm will correctly solve the problem.

The tables are indexed by P , an ordered partition and C an unordered partition of a
subset defined by P . There are O(kk+3) ordered partitions of k+3 elements. The number
of unordered partitions of k elements is bounded by the number of ordered partitions.
Note that the number of unordered partitions is so much smaller than the number of
ordered partitions that it will cancel all factors polynomial in k, hence the size of the
tables are O(k2k). For the runtime, the bottleneck is the inner node update procedure
which loops over all triples of table indexes (PA, CA), (PB, CB), (PW , CW ) and check if the
union the two elements SA = Taba[PA, CA] and SB = Tabb[PB, CB] satisfies (PW , CW ).
This gives a total of O(k6k) iterations, however CW is uniquely defined by the other 5
elements hence only O(k5k) iterations are needed. To check if SA ∪ SB satisfies (PW , CW )
we first make the union in O(n) time and then check the four constraints of Definition 4.3
for (PW , CW ). The two first constraints are checked in O(n) time, building the graph
G(PW , SA ∪ SB) and checking if it is a forest is straight forward to do in O(m) time.
However if the two graphs G[SA] and G[SB] are stored from the previous step, then one
can build the graph in O(k2n) time, and since a forest has at most n− 1 edges also check
if G(PW , SA ∪SB) is a forest. Checking that the connected components match CW is also
done in O(n) time as long as the graph is a forest. In total the combine step is O(k5kn).
The preprocessing is done in O(n2) time, initialization is done in O(n× k2k) time. Filling
the tables requires n combine steps, hence the total running time is O(n2k5k).

Note that within the same runtime we could instead have taken as input a k-expression
of a graph G of clique-width at most k. This is since by Theorem 2.6 the module-width
of G is no larger than the clique-width of G, and from the k-expression we easily derive
a rooted decomposition tree of module-width at most k.
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6 Conclusion

The Feedback Vertex Set problem has a non-local property that does not lend itself to
easy dynamic programming. Using the technique of ’expectation from the outside’ in the
definition of tables of the dynamic programming, and not the standard technique of par-
titioning the solution space into equivalence classes, we have given an FPT algorithm for
FVS parametrized by the clique-width of a given decomposition. The exponential runtime
of this algorithm matches the runtime of the best known deterministic algorithm when
parametrizing by treewidth. Note that many graph classes have unbounded treewidth
and bounded clique-width but the opposite cannot occur. It is already an open problem
to solve FVS deterministically in exponential time O∗(2O(tw)), so maybe O∗(2O(cw)) is too
much to hope for. Boolean-width and rank-width are parameters bounded on the same
graph classes as clique-width, but their values can be exponentially smaller than clique-
width. The best runtime known for FVS on graphs of rank-width rw is O(25rw2

rw3n)
[15], and from this we can deduce an algorithm with runtime O(25(22bw)+3bwn) for graphs
of boolean-width bw. Can we get runtime O∗(2O(bw2)) for boolean-width?
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