
H -join decomposable graphs and algorithms with runtime
single exponential in rankwidth†

Binh-Minh BUI-XUAN Jan Arne TELLE Martin VATSHELLE

Department of Informatics, University of Bergen, Norway.
[buixuan,telle,vatshelle]@ii.uib.no

Abstract

We introduceH -join decompositions of graphs, indexed by a fixed bipartitegraphH .
These decompositions are based on a graph operation that we call H -join, which adds edges
between two given graphs by taking partitions of their two vertex sets, identifying the classes
of the partitions with vertices ofH , and connecting classes by the patternH . H -join de-
compositions are related to modular, split and rank decompositions.

Given anH -join decomposition of ann-vertexm-edge graphG we solve the Maximum
Independent Set and Minimum Dominating Set problems onG in time O(n(m+2O(ρ(H)2))) ,
and theq -Coloring problem in timeO(n(m + 2O(qρ(H)2))) , whereρ(H) is the rank of the
adjacency matrix ofH over GF(2).

Rankwidth is a graph parameter introduced by Oum and Seymour, based on ranks of
adjacency matrices over GF(2). For any positive integerk we define a bipartite graphRk

and show that the graphs of rankwidth at mostk are exactly the graphs having anRk -join
decomposition, thereby giving an alternative graph-theoretic definition of rankwidth that does
not use linear algebra.

Combining our results we get algorithms that, for a graphG of rankwidth k given
with its width k rank-decomposition, solves the Maximum Independent Set problem in time
O(n(m+2

1
2
k2+ 9

2
k×k2)) , the Minimum Dominating Set problem in timeO(n(m+2

3
4
k2+ 23

4
k×

k3)) and theq -Coloring problem in timeO(n(m+2
q

2
k2+ 5q+4

2
k×k2q×q)) . These are the first

algorithms for NP-hard problems whose runtimes are single exponential in the rankwidth1.

1 Introduction

A key tool in the area of graph algorithms is the concept of decomposing a graph into a tree
structure. Many variants have been studied, like modular, split and rank decompositions. In this
paper we introduceH -join decompositions, another tree-like decomposition ofgraphs based on a
graph operation that we callH -join. TheH -join operation is indexed by a fixed bipartite graphH

and adds edges between two given graphs by taking partitionsof their two vertex sets, identifying
the classes of the partitions with vertices ofH , and connecting classes by the patternH . The
formal definitions and a discussion of relations to some other graph decompositions are given in
Section 2. For this to be a good algorithmic tool we should choose a graphH that satisfies the
following desiderata list:

†Supported by the Norwegian Research Council, project PARALGO. Part of this work was done while the first
author was a Ph. D. student of Université Montpellier II, and supported by the French National Research Agency,
project GRAAL.

1For a polynomial functionpoly we call 2poly(k) single exponential ink .

1

• given anH -join decomposition of a graphG several important NP-hard problems should
be solvable fast onG

• there should be a relatively fast algorithm that finds anH -join decomposition of an input
graphG, if it exists

• interesting classes of graphs should haveH -join decompositions, alternatively we could
use a family of graphsH1,H2,H3, ... such that everyG is Hi -decomposable for somei

In Section 3 we address the first item and show that regardlessof which graphH is chosen we
can solve several NP-hard optimization problems onG by dynamic programming along anH -join
decomposition ofG. We will show this for the problems of computing a Maximum Independent
Set, Maximum Clique, Minimum Dominating Set and Vertexq -Coloring. The runtime of these
algorithms will depend single exponentially onρ(H) , the rank of the adjacency matrix ofH over
GF(2).

In Section 4 we define, for any positive integerk , a bipartite graphRk having 2k vertices in
each color class, and show that the graphs of rankwidth at most k are exactly the graphs having an
Rk -join decomposition. Combining our algorithms from Section 2 with the powerful results that
hold for rankwidth [7, 18] this means that all three items on the desiderata list are satisfied for the
family R1, R2, R3,

Let us say a few words about rankwidth. Several decompositions define a graph “width”
parameter, with the most important from an algorithmic point of view being, in order of dis-
covery: treewidth, branchwidth, cliquewidth and rankwidth. The first two of these parameters
are “less powerful” than the last two, in the sense that a graph class has bounded treewidth iff
it has bounded branchwidth [27], it has bounded cliquewidthiff it has bounded rankwidth [24],
and if it has bounded treewidth then it has bounded cliquewidth but not the other way around
[4]. The rankwidth of a graph is never larger than its cliquewidth, nor its branchwidth, nor its
treewidth plus one [23]. In this sense rankwidth, which has been investigated quite heavily in
recent years [6, 8, 18, 22, 23] is the most powerful of the fourparameters. Many NP-hard graph
optimization problems have fixed-parameter tractable (FPT) algorithms when parameterized by
these graph width parameters, see the recent paper by Hliněný et al [19] for an overview. As re-
flected by the two first items in our desiderata list, these FPTalgorithms usually have two stages:
a first stage computing the right decomposition of the input graph and a second stage solving the
problem using the decomposition. For a long time there was nogood first stage algorithm for
cliquewidth, and rankwidth was in fact introduced by Oum andSeymour [24] as a tool to help
compute a decomposition for cliquewidth.

Recently, Hliněný and Oum found an FPT algorithm that given a graphG on n vertices and
a parameterk will decide if G has rankwidth at mostk and if so output a rank decomposition of
width k in time O(f(k)n3) [18]. Between rankwidthrw(G) and cliquewidthcw(G) we have
the connectionrw(G) ≤ cw(G) ≤ 2rw(G)+1 [24]. Moreover, a rank decomposition of widthk
of G can be turned into a (2k+1)-expression that is then used as the cliquewidth decomposition
of G. Note that in going from rankwidth to cliquewidth some exponential jump is required, as it
follows by results of Corneil and Rotics [4] that for anyk there is a graphG with rankwidth k

and cliquewidth at least2k/2−1−1. Because of this exponential jump, if we want algorithms with
runtime single exponential in rankwidth, we cannot go via a cliquewidth decomposition.

Designing algorithms running directly on a rank decomposition is a question that has attracted
recent attentions from other perspectives as well [6, 15]. In this topic, the main algorithmic issue is
that any rank decomposition suffers from the fact one does not know, a priori, how the sub-graphs

2

associated to the sub-trees of the decomposition tree are related to each other, from the scope of
designing dynamic programming algorithms along the decomposition tree. Essentially, given an
n-vertexm-edge graphG and a widthk rank decomposition ofG, there are three ways to cope
with this situation. All of them compute additional information which, together with the widthk
rank decomposition, will allow to perform dynamic programming. One way is to compute a so-
calledterm over bilinear productsin the sense of [6], where all the involved bilinear productscan
be computed in FPT runtime when parameterized byk . Another way is to compute a so-called
labelled parse treein the sense of [15], where the additional information requires a computation in
global O(k2n2) time. Finally, as we will show in Section 3 of this paper, one can also compute the
so-calledmaximum external module partitionassociated to every edge of the decomposition tree,
in globalO(nm) time. From either a term (over bilinear products) or a labelled parse tree, one can
deduce inO(1) time an information similar to the external module partitions (the difference will
be that they are not neccessarily maximum). Actually, we believe that external module partitions
act as the crucial additional information we need in order toovercome the lack of information that
rank decompositions suffer for the purpose of doing dynamicprogramming on them.

Turning our attention back to general FPT algorithms for problems parameterized by cliquewidth
or rankwidth, we have a recent negative result by Fomin et al [12] showing that various graph
problems are W[1]-hard when parameterized by cliquewidth,thus also when parameterized by
rankwidth, and hence unlikely to have FPT algorithms at all.The main positive result is by Cour-
celle, Makowsky and Rotics [7] who have shown that any MSO1 -logic problem is FPT when
parameterized by cliquewidth. Courcelle and Kanté [6] gave an alternative algebraic character-
ization of graphs of bounded rankwidth, based on vertex colors that are manipulated by linear
transformations over the GF[2] vector space, that will allow a result like the one in [7] for graphs
of bounded rankwidth without transforming into a cliquewidth expression. Ganian and Hliněný
[15] give another alternative characterization of rankwidth by using labelling parse trees and an
automata-approach in order to explicitly solve all MSO1 problems directly on these parse trees.
However, these results that hold for all MSO1 problems do not have practical runtime [13], as
the exponential dependency on the parameter is a tower of powers depending on the logical ex-
pression. For practical runtime a more refined analysis is necessary. Finding FPT algorithms
with low dependency on the parameter is a main goal of research in parameterized algorithms,
see e.g. Downey and Fellows [10]. Applying the algorithms developed in Section 3 to the family
R1, R2, R3, ... will give the first algorithms for NP-hard problems that are single exponential in
rankwidth.

Theorem 1.1 For a graphG of rankwidthk , given with its rank-decomposition, we can solve the
Maximum Independent Set problem in timeO(n(m + 2

1
2
k2+ 9

2
k × k2)) , the Maximum Clique

problem in timeO(n(m + 2
1
2
k2+ 11

2
k × k2)) , the Minimum Dominating Set problem in time

O(n(m + 2
3
4
k2+ 23

4
k × k3)) , and q -coloring in timeO(n(m + 2

q

2
k2+ 5q+4

2
k × k2q × q)) .

Let us mention that using the connection between the familyR1, R2, R3, ... and rankwidth
it easily follows that any MSO1 problem can be solved in FPT time forH -join decomposable
graphs when parameterized by the rank of the adjacency matrix of H over GF(2).

2 H-join decomposable graphs

In this section we introduceH -join decompositions and discuss its relations to other well-known
graph decompositions. However, the main result showing thetight connection to rank decompo-

3

sitions is postponed to Section 4.

Definition 2.1 Let H be a bipartite graph with color classesV1 and V2 , thusV (H) = V1 ∪ V2 .
Let G be a graph andS ⊆ V (G) a subset of its vertices. We say thatG is an H -join across the
ordered cut(S, V (G) \ S) if there exists a partition ofS with set of classesP and a partition of
V (G) \S with set of classesQ , and injective functionsf1 : P → V1 and f2 : Q → V2 , such that
for anyx ∈ S andy ∈ V (G)\S we havex adjacent toy in G if and only ifx belongs to a class
Pi of P and y to a classQj of Q with f1(Pi) adjacent tof2(Qj) in H . We say thatG is an
H -join across the non-ordered cut{S, V (G) \S} if G is an H -join across either(S, V (G) \S)
or (V (G) \ S, S) .

Twins in a bipartite graph are vertices in the same color class having exactly the same neigh-
bourhood. A twin contraction is the deletion of a vertex whenit has a twin. Notice thatH -joins
are insensitive to twin contractions: ifH ′ is obtained fromH by a twin contraction thenG is an
H -join across some cut if and only ifG is an H ′ -join across the same cut. In the remainder of
the paper we therefore assume that, unless otherwise explicited, H is a graph with no twins in the
same color class. However, note that we do allow one isolatedvertex in each color class. We will
decompose graphs byH -joins in a way analogous to branch decompositions. With some abuse in
terminology, a subcubic tree is an unrooted tree where all internal nodes have degree three.

Definition 2.2 Let T be a subcubic tree andδ a bijection between the leaf set ofT and the vertex
set of a graphG. We say that(T, δ) is an H -join decomposition ofG if for any edgeuv of T we
haveG being anH -join across the cut{Su, Sv} we get from the 2-partition ofV (G) induced
by the leaf sets of the two subtrees we get by removinguv from T . A graph having anH -join
decomposition will be called anH -join decomposable graph.

One feature of studying such a tree-like decomposition is that we can think of the decomposi-
tion as the collection of cuts of the initial graph given by the collection of edges of the subcubic
tree. Under this standpoint,H -join decomposition is related to modular decomposition [14]. In-
deed, sayingM ⊆ V (G) is a module ofG is exactly equivalent to saying thatG is a P+

2 -join
across the ordered cut(M,V (G) \M) , whereP+

2 is obtained by adding an isolated vertex to the
second colour class of the bipartite graphP2 . Therefore we have for instance that a cograph – a
graph where every induced subgraph of at least four verticeshas a non-trivial module – is always
P+

2 -join decomposable, and that aP+
2 -join decomposition of the cograph can be obtained from

its modular decomposition tree by unrooting the tree and subdividing arbitrarily all internal nodes
of degree more than three. The link between modular decomposition and H -join decomposition
will also be reflected in the upcoming section via the notion of an external module partition, our
main tool for the study of the partitions used for anH -join across a cut (cf. Definition 3.1 and
Proposition 3.3).

As for split decomposition [9], saying that a cut{S, V (G) \ S} is a split is exactly equivalent
to saying thatG is a P++

2 -join across{S, V (G) \ S}, whereP++
2 is obtained by adding one

isolated vertex to each colour class of the bipartite graphP2 . Here, we have a stronger fact than
that with modular decomposition: a graph is distance hereditary – meaning a graph where every
induced subgraph of at least five vertices has a non-trivial split – if and only if it is P++

2 -join
decomposable. Moreover, there is a straightforward mannerto obtain aP++

2 -join decomposition
from the split decomposition tree of the distance hereditary graph, and conversely.

Other particular cases ofH -join decompositions include the so-called2-join [5], and also the
so-called generalized join, itself a particular case of so-called1-separations [20]. More precisely,
2-joins are related toH -joins whenH is equal to2P++

2 , the graph we obtain by adding one

4

isolated vertex to each colour class of the bipartite graph made by a disjoint union of twoP2 .
At the same time, Hsu’s generalized joins are related toH -joins as soon asH admits orderings
of colour classesV1 = (v1

1 , v
2
1 , . . . , v

k+1
1) and V2 = (v1

2 , v
2
2 , . . . , v

k+1
2) such thatNH(v1

i) =
{v1

2 , v
2
2 , . . . , v

k+1−i
2 }. Both 2-join and Hsu’s generalized join decompositions are important for

decomposing perfect graphs, with the former decompositionplaying a central role in the recent
proof of the strong perfect graph theorem by Chudnovsky et al[3]. This result has been known as
one of the major challenges in graph theory, and was conjectured by C. Berge half a century ago.

Finally, note that in the above list of connections betweenH -joining (for someH) and par-
ticular vertex partitions, namely modules, splits,2-join and Hsu’s generalized join, the two first
cases, namely whenH = P+

2 and H = P++
2 , are known to own polynomially computable de-

composition trees. Then, it is clear that one can exploit this fact to compute the corresponding
H -join decomposition of a givenH -join decomposable graphG.

3 Dynamic programming on H -join decomposable graphs

Our goal is to give dynamic programming algorithms to solve various problems on anH -join
decomposable graphG, given with its H -join decomposition(T, δ) . A potential drawback of
definingH -join decompositions simply as the pair(T, δ) is that for an edgeuv of T wea priori
do not know the partition classesP of Su and Q of Sv mentioned in Definition 2.1, to confirm
that G is anH -join across the cut{Su, Sv}. We now show how to compute this information. The
main idea is to use a technique called vertex splitting, introduced by Paige and Tarjan as the act of
splitting parts according to the neighborhood of a vertex [25].

Definition 3.1 Let G be a graph and letS ⊆ V (G) be a vertex subset. Anexternal module
partition of S is a partition P of S such that, for everyz ∈ V (G) \ S and pair of verticesx, y

belonging to the same class inP , we havex adjacent toz if and only if y adjacent toz .

Given as input a graphG and a vertex subsetS ⊆ V (G) , by using partition refinement
techniques we can compute a maximum external module partition of S , which is well-defined by
Lemma 3.2 (below). Indeed, just initialize a partition asP = {S}; then, for every exterior vertex
z ∈ V (G) \ S , refineP using the neighbourhood ofz as pivot. These operations can be done in
O(m) time, with m = |E(G)| , since each refinement operation can be done in time proportional
to the size of the pivot set (refer to [17] for more details in efficient implementations of partition
refinement). The correctness of the computation is stated inthe following lemma.

Lemma 3.2 Let G be a graph andS be a vertex subset ofV (G) . The maximum (coarse-wise)
external module partition ofS is well-defined and can be computed inO(|E(G)|) time.

Proof Let P be a maximal external module partition ofS . Suppose it is not maximum, and let
Q be an external module partition ofS that is not comparable (coarse-wise) toP . If no parts
amongP andQ overlap (whereX andY overlap if they have a non-empty intersection and two
non-empty differences), Then, replacing the parts ofP that are included in some partY of Q by
Y will lead to an external module partition ofS which is coarser thanP . Contradiction. Hence,
we deduce that there are some partsX ∈ P and Y ∈ Q such thatX and Y overlap. Then,
replace allXi in P which overlap (or included in)Y by

⋃

i Xi ∪ Y , and obtainP ′ . Using the
transitivity of the relation onx, y for a givenz : ” x andy are linked toz the same way”, we can
prove thatP ′ is an external module partition that is coarser thanP . Contradiction.

5

To achieve the proof, it suffices to prove that the above description computes correctly a max-
imum external module partition. That the computation results in an external module partition is
straightforward from an argument by contradiction. Finally, the fact the computed partition is
maximum can be proved by a straightforward argument by contradiction. 2

Maximum external module partitions have the following property, essential for computational
purposes onH -join decompositions:

Proposition 3.3 Let (T, δ) be anH -join decomposition ofG. Let Pu, Pv be the maximum ex-
ternal module partitions of respectivelySu and Sv , where{Su, Sv} is the 2-partition ofV (G)
we get by deleting an edgeuv in T . Let Ru and Rv be two sets containing exactly one vertex
per part in respectivelyPu and Pv and letH ′ be the bipartite graph defined by the bipartite ad-
jacency inG betweenRu and Rv . ThenH ′ is an induced subgraph ofH , and G is an H -join
across the cut{Su, Sv} using partitionsPu and Pv .

Proof Straight from Definition 2.1 we have thatG is anH ′ -join across{Su, Sv} using Pu and
Pv . Besides, since(T, δ) is anH -join decomposition ofG, G is also anH -join across{Su, Sv}.
This latterH -join uses some partitions ofSu and Sv , sayQu and Qv . Let F be the subgraph
of H which is induced by the image ofQu and Qv by the injectionsf1 and f2 as defined in
Definition 2.1. Note thatF is not necessarily twin-free. ClearlyG is anF -join across{Su, Sv}
using partitionsQu and Qv . It is straightforward to check thatQu and Qv are external module
partitions. From Lemma 3.2,Pu (resp. Pv) is coarser thanQu (resp. Qv). We deduce that
H ′ is an induced subgraph ofF which is obtained by some successive twin contractions ofF .
Therefore,H ′ is an induced subgraph ofH . Finally, from the fact thatG is an H ′ -join across
{Su, Sv} using Pu and Pv , for an induced subgraphH ′ of H , it follows by Definition 2.1 that
G is anH -join across{Su, Sv} usingPu andPv . 2

3.1 Equivalence classes used for independent set, dominating set andq -coloring

For the dynamic programming, we subdivide an arbitrary edgeof T to get a new root noder ,
and denote byTr the resulting rooted tree. The algorithms will follow a bottom-up traversal of
Tr . With each nodea of Tr we associate a data structuretable, that will store optimal solutions
to subproblems restricted to the graphG[Va] , whereVa are the vertices ofG mapped to leaves
of the subtree ofTr rooted ata . Each index of the table will be associated with an equivalence
class of subproblems. For the problems studied in this paper, Maximum Independent Set, Mini-
mum Dominating Set and Vertex q-Coloring, these classes of subproblems will be related to the
following equivalence classes of vertex subsets.

Definition 3.4 For a fixed graphG and vertex subsetA ⊆ V (G) , consider two vertex subsets
X ⊆ A and Y ⊆ A and defineX ≡A Y if and only if N(X) \ A = N(Y) \ A .

Note that≡A is an equivalence relation on subsets ofA , with two equivalent sets having the
same neighbors outsideA . For the nodea of Tr we will be interested in the equivalence relation
≡Va on the above defined subsetVa . Note that we have explained how to computePa and Qa

such that the graphG is an H -join across the cut{Va, V (G) \ Va} using partitionsPa of Va

andQa of V (G) \ Va , with Pa andQa being maximum external module partitions. Consider an
arbitrary orderingPa(1), Pa(2), ..., Pa(h1) of the classes ofPa . For all 1 ≤ i ≤ h1, let vi be an
arbitrary element ofPa(i) .

6

Definition 3.5 (Representative)Given an arbitrary orderingPa(1), Pa(2), ..., Pa(h1) of the classes
of Pa , and an arbitrary elementvi of Pa(i) , for 1 ≤ i ≤ h1, we define thecanonical represen-
tative canVa(X) of a vertex setX ⊆ Va ⊆ V (G) as the lexicographically smallest subset taken
over everyR ⊆ {v1, v2, . . . , vh1} satisfying:

• R ≡Va X

• For any vi ∈ R we haveN(vi) \
(

⋃

j<i, vj∈R N(vj) ∪ Va

)

6= ∅.

Note that such a representative always exists, namelyR0 = {vi, X ∩ Pa(i) 6= ∅} is a subset
which satisfy the first item in the definition. Moreover, a subset satisfying both items can be de-
fined fromR0 by a greedy scan on thevi ’s (this is basically the computation that will be formally
proved in Lemma 3.7). Besides, the above definition also leads to a canonical representative for
every equivalence class of≡Va , namely we have that

X ≡Va X ′ ⇒ canVa(X) = canVa(X ′).

Finally, the following bounds are crucial for an efficient complexity analysis of all algorithms
presented in this paper:

Proposition 3.6 For any vertex subsetX ⊆ Va ⊆ V (G) , we have that|canVa(X)| ≤ ρ(H) , the
rank of the bipartite adjacency matrix ofH . Moreover, for the numberneq of equivalence classes
of ≡Va we haveneq ≤ 2

1
4
ρ(H)2+ 5

4
ρ(H)ρ(H) .

Proof Let M(Va) be the bipartite adjacency matrix associated to the cut{Va, V (G) \ Va} of G.
For convenience, letR = canVa(X) .

For the first claim of the proposition, we only need to prove that the rows inM(Va) which
correspond to the vertices ofR areGF (2)-independent (hence form a subbasis ofM(Va)). This
can be proven by induction on|R| . Indeed, if|R| = 1 then it is clear how to conclude. Suppose
that the property is true for every canonical representative with cardinality uptop − 1 ≥ 1, and
let us consider a canonical representativeR with cardinalityp . Let x ∈ R be the highest element
belonging toR (w.r.t. the orderv1, v2, . . . , vh1). Notice from the definition ofR that R \ {x} is
not in the same equivalence class as the oneR andX belong to. Moreover, it also follows directly
from definition thatR \ {x} is a canonical representative (of some other set thanX): otherwise
R would not be a canonical representative ofX . Applying the inductive hypothesis, we obtain
that the rows corresponding toR \ {x} in M(Va) are GF (2)-independent. Finally, from the

maximality of x and the definition ofR we have thatN(x) \
(

⋃

v∈R\{x} N(v) ∪ Va

)

6= ∅.

Combining the previous facts, we obtain the desired property on R .

Now, what we just proved also implies that every equivalenceclass of≡Va can be associated
with (at least) one space that isGF (2)-spanned by some rows ofM(Va) . In other words, the
number of spaces spanned by a subset of rows ofM(Va) is larger than the value ofneq . This will
be used to prove the following bound onneq :

neq ≤

ρ(H)
∑

i=1

(

ρ(H)

i

)

2

, where

(

n

m

)

q

=

m
∏

i=1

1 − qn−i+1

1 − qi
.

Indeed, this bound is just a combination of the previous factand the folklore fact that
(n
m

)

q
,

which is known under the name of theq -binomial coefficient ofn andm , is exactly the number

7

of different subspaces of dimensionm of a given space of dimensionn over a finite field ofq
elements (roughly,1−qn−i+1

1−qi is the number of choices of anith vector that is linearly independent
from the previously chosen ones).

Let neq = a(ρ(H)) . In order to conclude we can use theq−analog of Pascal triangles:
(n
m

)

q
= 2m

(n−1
m

)

q
+

(n−1
m−1

)

q
, for all m ≤ n, with the convention that

(n
m

)

q
= 0 if m < 0 or

m > n . From this we firstly have that the highest number among
(n
m

)

q
, for all 0 ≤ m ≤ n ,

is whenm = ⌈n
2 ⌉ . Therefore,a(n) ≤ n × b(n) with b(n) =

(

n
⌈n

2
⌉

)

q
. Finally, still using the

q -analog of Pascal triangles, one can check thatb(n) ≤
(

2⌈
n
2
⌉ + 1

)

× b(n − 1) ≤ 2
1
4
n2+ 5

4
n . 2

We now show a straightforward computation of the canonical representativecanVa(X) of
a subsetX ⊆ Va . Recall thatvi was an arbitrary element ofPa(i) , for 1 ≤ i ≤ h1. Let
Qa(1), Qa(2), . . . , Qa(h2) be an arbitrary ordering of the classes ofQa , and letui be an arbitrary
element ofQa(i) , for 1 ≤ i ≤ h2. Let H ′ be the bipartite graph induced by edges (ofG) between
the two vertex sets{v1, v2, ..., vh1} and{u1, u2, ..., uh2}. Note from Proposition 3.3 that we have
H ′ isomorphic to an induced subgraph ofH , and in particular|E(H ′)| ≤ |E(H)| andρ(H ′) ≤
ρ(H) . For more clarity, we denote the neighbors ofvi in H ′ by NH′(vi) , while we denote the
neighbors ofvi in G simply by N(vi) . Besides, we will also denote the neighborhood of a vertex
subset byN(X) =

⋃

x∈X N(x) \ X . The algorithm to compute the canonical representative of
X can be:

compute the setXH′ = {vi : X ∩ Pa(i) 6= ∅}.
initialize canVa(X) andW to the emptyset.
for i = 1 to h1

if NH′(vi) ⊆ NH′(XH′) andNH′(vi) \ W 6= ∅
then addvi to canVa(X) and add the vertices inNH′(vi) \ W to W .

Note that in the above we could have broken out of the for loop as soon asW = NH′(XH′) .

Lemma 3.7 For X ⊆ Va ⊆ V (G) the above algorithm computes correctly the canonical repre-
sentativecanVa(X) of X and runs inO(|X| + |E(H)|) time.

Proof Let R be the output of the algorithm. IfR ≡Va X then it is straightforward to check that
R fulfills the other requirements in Definition 3.5. Therefore, we only give the proof ofR ≡Va X .
Firstly, it is clear thatX ≡Va XH′ . Now, the only trick in the algorithm is to restrict the visitted
edges to those ofH ′ . It means in particular thatNH′(XH′) = NH′(R) at the end of the algorithm
(andapriori we cannot guarantee anything about the neighborhood ofR in G). However,Qa is
an external module partition ofV (G) \ Va . This can then be exploited and leads toXH′ ≡Va R .
Hence,R ≡Va X .

For complexity issues note that the first action of the algorithm takes timeO(|X|) , and in
the for loop we check every edge of the graphH ′ at most once. Note that we here require the
adjacency list ofH ′ . This task can be included in the pre-computation explainedin Lemma 3.2
by some straightforward modifications. Finally,|E(H ′)| ≤ |E(H)| from Proposition 3.3. 2

We present a last tool that will be used afterwards. Basically, we do not want in our algorithms
to parse the subsets ofVa in order to look for some equivalence class of≡Va . Fortunately, the
previous definition of canonical representatives comes in handy since there is a fast and simple
manner to output the listCa containing all canonical representatives:

8

initialize the listCa to contain{∅}
for i = 1 to h1

for all R ∈ Ca

if (R ∪ vi == canVa(R ∪ vi))
add the setR ∪ vi to Ca

Theorem 3.8 R belongs toCa if and only if R is a canonical representative of≡Va . Moreover,
Ca can be output inO(h1 ∗ neq ∗ |E(H)|) time.

Proof (⇒) SinceR is in Ca someR′ ∪ vi = R must have passed the check “if (R′ ∪ vi =
canVa(R ∪ vi))” hence,R is a canonical representative.
(⇐) AssumeR is a canonical representative andvi is the element inR with highest index
i . If R = {vi}, then R ∈ Ca . Assume inductively that this is true for all representatives of
size less than|R| , then R would be added toCa iff R \ vi is in Ca and hence is a canonical
representative. By definition of canonical representatives NH′(R \ vi) 6= NH′(R) , the only
vertex that sees any nodes ofX = NH′(R) \ NH′(R \ vi) is vi . The algorithm computing
canVa(R \ vi) goes through the nodesv1, v2, ...vi−1 in the same way as forcanVa(R) , they both
only pick vertices incanVa(R \ vi) since no node beforevi sees any node inX . This means
canVa(R \ vi) = canVa(R) \ vi = R \ vi henceR ∈ Ca . By induction the result follows.

The runtime follows from Lemma 3.7 since the calls tocanVa(X) always satisfy|X| =
O(|E(H)|) . 2

3.2 Maximum Independent Set and Maximum Clique

We consider the problem of computing the size of a maximum independent set. Recall for a
nodea of Tr that we denote byVa the vertex subset ofG induced by the leaves of the subtree
of Tr rooted ata , and that we have explained how to computePa and Qa such that the graph
G is an H -join across the cut{Va, V (G) \ Va} using partitionsPa of Va and Qa of V (G) \
Va , with Pa and Qa being maximum external module partitions. We have also considered that
Pa(1), Pa(2), ..., Pa(h1) is some arbitrary ordering of the classes ofPa , and, for all1 ≤ i ≤ h1,
considered thatvi is some arbitrary element ofPa(i) .

Our aim is that the table data structureTaba associated with nodea of Tr will have an index
set that containsamong other thingsall elements of{canVa(X) : X ⊆ Va}, i.e. all elements of
the list Ca . This way, for everycanVa(X) , we can access toTaba[canVa(X)] in O(1) time. We
will proceed as follows. First recall from Proposition 3.6 that no canonical representative has more
thanρ(H) elements fromv1, v2, ..., vh1 . Therefore, we can associate each elementcanVa(X) of
Ca with a distinct integer from1 to

(h1
ρ(H)

)

. Then, inO(1) time we initializeTaba as a table of
(h1
ρ(H)

)

entries. After that, the access (read/write) to the value inTaba corresponding tocanVa(X)

will be in fact done viaTaba[i] , wherei is the previously mentioned distinct integer from1 to
(h1
ρ(H)

)

associated tocanVa(X) . For the sake of simplicity, we hereafter refer to these operations
simply as “accessingTaba[canVa(X)]”. Note that we have shown how to computeCa . This way,
it is possible to loop through all values ofTaba corresponding to the canonical representatives in
|Ca| time. Actually, using

(

h1
ρ(H)

)

entries, instead of|Ca| entries, inTaba will only affect space
complexity and not time complexity.

For R = canVa(X) the contents ofTaba[R] after processinga should be the size of the
largest independent set contained in the equivalence classof R , in other words

9

Taba[R]
def
= max

S⊆Va

{|S| : S ≡Va R ∧ ∀x, y ∈ S ⇒ xy 6∈ E(G)}

At a leaf w of Tr associated to a nodex of G we have a partition ofVw = {x} into two
equivalence classes and setTabw[∅] = 0 andTabw[{x}] = 1. For an internal nodew of Tr with
childrena andb whose tables have already been processed, we process the table of w as follows:

initialize all values ofTabw to 0
for all indicesRa in Taba andRb in Tabb

if (Ra ∪ Rb is an independent set) then
Rw := canVw(Ra ∪ Rb)
Tabw[Rw] := max{Tabw[Rw],Taba[Ra] + Tabb[Rb]}

Lemma 3.9 The table of an internal nodew having childrena, b is updated correctly.

Proof Let Rw be a canonical representative of≡Vw . AssumeI ⊆ Vw is an independent set such
that I ≡Vw Rw , we first show thatTabw[Rw] ≥ |I| . Let Ia = I ∩ Va and Ib = I ∩ Vb . Clearly,
Ia and Ib are independent sets, and therefore by an inductive argument on the correctness of the
tables ofa and b we have thatTaba[canVa(Ia)] ≥ |Ia| andTabb[canVb

(Ib)] ≥ |Ib| . The update
procedure at nodew will thus setTabw[canVw(canVa(Ia) ∪ canVb

(Ib))] ≥ |Ia| + |Ib| = |I| .
To conclude, we simply need to prove the claim thatRw = canVw(canVa(Ia) ∪ canVb

(Ib)) . By
expressingcanVa(Ia) ≡Va Ia andcanVb

(Ib) ≡Vb
Ib , we haveN(canVa(Ia)∪ canVb

(Ib))\Vw =
N(Ia ∪ Ib) \ Vw = N(I) \ Vw = N(Rw) \ Vw , In other words,Rw ≡Vw canVa(Ia)∪ canVb

(Ib) ,
and this proves the claim sinceRw is a canonical representative.

To conclude the lemma, we need to prove that ifTabw[Rw] = k then there exists an indepen-
dent setI ⊆ Vw with |I| = k andI ≡Vw Rw . For this, note that the algorithm increases the value
of Tabw[Rw] only if there exist indicesRa in Taba and Rb in Tabb such thatRa ∪ Rb is an
independent set. Moreover, ifIa ≡Va Ra andIb ≡Vb

Rb , then the factRa∪Rb is an independent
set can be used to prove thatIa ∪ Ib is also an independent set. 2

At the rootr of Tr we haveVr = V (G) and thus no outside neighbors to distinguish vertices
into distinct equivalence classes, so that the single entryof its table will store the size of the
maximum independent set ofG.

For the runtime note that we first computed, for each of theO(n) nodes ofTr , the maximum
external module partitions inO(m) time, the canonical representatives in timeO(h1 × neq ×
|E(H)|) and filled the table at this node in timeO(neq2|E(H)|) . This gives a total runtime of
O(n(m + neq2|E(H)|)) . Note that a bound for the number of edges inH is |E(H)| ≤ 22ρ(H) ,
however, for parse graphsH this number could be much lower. Now, using the bound onneq

from Proposition 3.6 we get:

Theorem 3.10 Given a graphG on n nodes andm edges, and anH -join decomposition(T, δ)

of G, we can inO(n(m + 2
1
2
ρ(H)2+ 5

2
ρ(H)ρ(H)2|E(H)|)) time solve the Maximum Independent

Set problem onG, whereρ(H) is the rank of the adjacency matrix ofH .

Notice that the problem of finding a maximum clique of a given graph G can be solved by
finding a maximum independent set inG , the complement ofG. Moreover, anyH -join de-
composition ofG can be used as anH -join decomposition ofG. Therefore, the Maximum
Clique problem can be solved using the “Independent Set” algorithm with a runtime bounded by
O(n(m + 2

1
2
ρ(H)2+ 7

2
ρ(H)ρ(H)2|E(H)|)) , sinceρ(H) ≤ ρ(H) + 1.

10

3.3 Vertex q-Coloring

For q -Coloring a straightforward generalization of the ideas used for Maximum Independent Set
works. We now ask if there exists a partition of the vertex setinto q color classes each forming
an independent set. The table at a nodew will be indexed byq representatives, one for each
color class, and the contents ofTabw[R1][R2]...[Rq] should be True if there exists a partition
(S1, ..., Sq) of Vw with eachSi inducing an indpendent set andSi ≡Vw Ri . There will thus be
neqq indices in each table. For the combining of two tables we loopover all pairs of indices having
the value True, check for each of theq color classes whether the union of the two representatives
are an independent set, and if so update the table at the parent, in time O(|E(H)| × q) . Applying
Proposition 3.6 we get

Theorem 3.11 Given anH -join decomposition of ann-vertex m-edge graphG we can solve
the q -Coloring problem inO(n(m + 2

q

2
ρ(H)2+ 5q

2
ρ(H)ρ(H)2qq|E(H)|)) time.

3.4 Minimum Dominating Set

We consider the problem of computing the size of a minimum dominating set. Naively general-
izing from the independent set algorithm we may think that the table at a nodew of Tr should
store the size of a smallest dominating setD for G[Vw] . However, unlike the case of independent
sets we note that a dominating setD will need to include vertices ofV (G) \ Vw that dominate
vertices ofVw ’from the outside’. This complicates the situation. DenoteV (G) \ Vw by Vw .
The main idea for dealing with this complication is to index the table atw by two sets, one that
represents the equivalence class under≡Vw of D ∩ Vw that dominate ’from the inside’, and one
that represents the equivalence class under≡Vw

of D ∩ Vw that help dominate the rest ofVw

’from the outside’. The representatives of these equivalence classes are computed as described
in subsection 3.1, for both≡Vw and for≡Vw

. In the table update procedure when we join two
subgraphs to form a bigger subgraph we use the union of ’the inside’ dominators as the ’inside’
dominator, and loop over all possibilities of sets that can dominate ’from the outside’.

Definition 3.12 Let G = (V,E) be a graph, forVw,X ⊆ V we say thatX dominatesVw if Vw

is a subset ofX ∪ N(X) .

Note that if X dominatesVw then X ∩ Vw are the ’inside’ dominators andX \ Vw are
the ’outside’ dominators. For this algorithm, the tableTabw associated with a nodew of Tr

will have index set{canVw(X) × canVw
(Y) : X ⊆ Vw, Y ⊆ Vw}. We define the contents of

Tabw[RX][RY] whereRX = canVw(X) andRY = canVw
(Y) as:

Tabw[RX][RY]
def
= minS⊆Vw{|S| : S ≡Vw RX ∧ S ∪ RY dominatesVw}.

Since we are dealing with a minimization problem we first set all entries of all tables to∞ .
At a leaf w of Tr corresponding to a vertexx of G, there are at most four entries inTabw . Let
R = canVw

(Vw) . We then setTabw[{x}][R] = 1, we setTabw[{x}][∅] = 1, and if x ∈ N(R)
then we setTabw[∅][R] = 0. The rest of the entries stay equal to∞ .

At an internal nodew we only proceed when both children already have been processed. Let
a and b be two nodes ofTr with w their common parent. As described by Theorem 3.8 we have
computed all lists of representatives, and in particular wehave Ca = {canVa(X) : X ⊆ Va},
Cb = {canVb

(X) : X ⊆ Vb}, and Cw = {canVw
(X) : X ⊆ Vw}. Given the two tables

Taba,Tabb we computeTabw as follows:

11

initialize all values ofTabw to ∞
for all indicesRa ∈ Ca, Rb ∈ Cb andRw ∈ Cw do:

Rw := canVw(Ra ∪ Rb)
Ra := canVa

(Rb ∪ Rw)

Rb := canVb
(Ra ∪ Rw)

Tabw[Rw][Rw] := min(Tabw[Rw][Rw], Taba[Ra][Ra] + Tabb[Rb][Rb])

Theorem 3.13 The table at nodew is updated correctly, namely

Tabw[Rw][Rw] ≤ s ⇔ ∃Sw : |Sw| ≤ s ∧ Rw ≡Vw Sw and Sw ∪ Rw dominatesVw

Proof We prove this inductively bottom-up in the tree of theH -join decomposition, namely we
assume thatTaba andTabb are correct.

(⇒) We have thatTabw[Rw][Rw] ≤ s . This means that an update happened in the algorithm,
hence there must existRa andRb such that:canVw(Ra ∪ Rb) = Rw , Ra := canVa

(Rb ∪ Rw) ,
Rb := canV

b
(Ra ∪ Rw) and Taba[Ra][Ra] + Tabb[Rb][Rb] ≤ s . Then by induction there exist

Sa ≡Va Ra and Sb ≡Vb
Rb and Sa ∪ Sb = Sw ≡Vw Rw , and also|Sw| = |Sa| + |Sb| ≤ s . It

remains to show thatSw ∪ Rw dominatesVw or equivalently thatSa ∪ Sb ∪ Rw dominatesVw .
We do this in two steps, first we show thatVa is dominated, then we show thatVb is dominated.
We know thatSa ∪ Ra dominatesVa , now sinceRa ≡Va

Sb ∪ Rw we have thatSa ∪ Sb ∪ Rw

dominatesVa . Similary we know thatSb ∪ Rb dominatesVb , now sinceRb ≡Vb
Sa ∪ Rw we

have thatSb ∪ Sa ∪ Rw dominatesVb and we are done with this direction of the proof.

(⇐) In this case we know∃Sw : |Sw| ≤ s ∧ Rw ≡Vw Sw and Sw ∪ Rw dominatesVw .
Let Sa = Sw \ Vb , Sb = Sw \ Va , Ra = canVa(Sa) and Rb = canVb

(Sb) . Since the algorithm
goes through all triples it will go throughRa, Rb, Rw . Let Ra = canVa(Rw ∪ Rb) and Rb =
canVb

(Rw ∪ Ra) . SinceSw = Sa ∪ Sb we getSa ∪ Ra dominatesVa and Sb ∪ Rb dominates
Vb . By induction Taba[Ra][Ra] ≤ |Sa| and Tabb[Rb][Rb] ≤ |Sb| . HenceTabw[Rw][Rw] ≤
|Sa| + |Sb| = |Sw| . 2

At the end we have a tableTabr at the root ofTr whereVr = V . We thus find the size of
the minimum dominating set ofG stored inTabr[∅][∅] . For accessing the tables we use the same
technique as for Max Independent Set. By applying Proposition 3.6 we get the following runtime:

Theorem 3.14 Given anH -join decomposition of ann-vertex m-edge graphG we can solve
the Minimum Dominating set problem inO(n(m + 2

3
4
ρ(H)2+ 15

4
ρ(H)ρ(H)3|E(H)|)) time.

Proof First, the computation of the maximum external module partitions associated with every
node ofTr takesO(nm) time. Also, the tables of all leaves are initialized inO(n) time. Now, in
the bottom-up process for each of theO(n) other tables, we compute the list of canonical repre-
sentatives for each of the three subsets in timeO(|V (H)|2

1
4
ρ(H)2+ 5

4
ρ(H)ρ(H)|E(H)|) . Then, we

go through all triples of representatives, namelyO(2
3
4
ρ(H)2+ 15

4
ρ(H)ρ(H)3) triples, and for each of

them, we findRw , Ra , andNb in O(|E(H)|) time. The subsequent update takes constant time.

In summary, the bottom-up process takesO(n(m + 2
3
4
ρ(H)2+ 15

4
ρ(H)ρ(H)3|E(H)|)) time. 2

4 Rankwidth

We now turn to the strong connections betweenH -join decompositions and rank decompositions.
We first recall the definition of rankwidth. For any graphG, the cut-rank functionρG is defined

12

over every vertex subsetX ⊆ V (G) as the rank of theX ×V (G)\X submatrix of the adjacency
matrix of G. For any pair(T, δ) with T a subcubic tree andδ a bijection between vertices ofG
and leaves ofT , (T, δ) is defined as a widthr rank decomposition ofG if for all edgeuv in T ,
the cut-rank ofSu is at mostr , where{Su, Sv} is the 2-partition ofV (G) induced by the leaf
sets of the two subtrees we get by removinguv from T . The rankwidth ofG is the minimumr

such that there exists a widthr rank decomposition ofG.

Definition 4.1 For a positive integerk we define a bipartite graphRk having for each subsetS
of {1, 2, ..., k} a vertexaS ∈ A and a vertexbS ∈ B , with V (Rk) = A ∪ B . This gives2k

vertices in each of the color classes. Two verticesaS and bS′ are adjacent iff|S ∩ S′| is odd.

Lemma 4.2 The functionσG : 2V (G) → N defined by

σG(X) = min{k : G is an Rk -join of G across the cut{X,V (G) \ X}}

is equal to the cut-rank functionρG .

Proof Let k = ρG(X) . There are several ways to view the graphRk . Before proving the
lemma, note the following, where we slightly abuse the notation of Definition 4.1 by denoting
the vertices arising from a one-element subsetS = {i} simply asai and bi . We denote byMk

the bipartite adjacency matrix of the bipartite graphRk , meaning that its rows correspond to the
vertices of one color class and the columns to those of the other color class. Suppose that the
verticesa1, a2, . . . , ak are mapped to rows inMk : again by abuse of notation, we can view vertex
of Rk as the row/column it is mapped to inMk . Clearly,aS with S = ∅ is a linear combination of
a1, a2, . . . , ak : choose scalar0 for every vector. LetaS be a vertex ofRk with S = i1, i2, . . . , ip .
We can prove that inMk , the row aS is the GF2-sum of the rowsai1 , ai2 , . . . , aip : for every
columnbS′ of Mk , |S ∩S′| is odd iff there is an odd number of theiq (1 ≤ q ≤ p) which belong
to S′ , that isMk has a1 in the rowaip and columnbS′ . The same holds forb1, b2, . . . , bk . Note
also that an arbitrary bipartite adjacency matrix is not necessarily symmetric but it is clear here
that

Claim: There is a way to swap the columns and rows ofMk to result in a symmetric matrix.
Also, Mk is of rankk and has the maximum size among theGF2-matrices of rankk .

Moreover, let us w.l.o.g. defineMk in such a way that{a1, a2, . . . , ak} are mapped (in this order)
to the firstk rows of Mk while {b1, b2, . . . , bk} are mapped to thek first columns. This way, the
first k × k block of Mk is equal to the identity matrix of sizek . We defineLk as the block of
Mk made of the firstk rows. Clearly,Lk has2k columns and has one column with only0 ’s.

We now come to the actual proof of the lemma. We first prove thatσG(X) ≤ k . Let M be
the bipartite adjacency matrix induced byX andV (G) \X in G. A valid eliminationin a matrix
is a deletion of a column (resp. a row) when the matrix has another column (resp. row) identical to
the one we delete. This corresponds to twin contractions in the graph defined by the matrix. Let us
obtainN from M through a maximal sequence of valid eliminations. This operation corresponds
to the contraction with respect to some external module partition. Then, in order to prove thatG is
an Rk -join across{X,V (G) \ X}, it suffices to prove that the bipartite graphGN with bipartite
adjacency matrixN is an induced subgraph ofRk . This will be proved in two steps.

There can not be less thank rows in N . If the number of rows inN is exactlyk , then we
look at N as a collection of columns. By maximality of the sequence of valid eliminations, all
the latter columns are pairwise distinct. Besides, if we look at Lk as a collection of columns, then
by definition Lk contains all possiblek -bit vectors. Therefore,N (as a collection of columns)
is a subset ofLk . Hence,GN is an induced subgraph of the bipartite graph defined byLk , and

13

consequently it is an induced subgraph ofRk . If the number of columns inN is exactlyk , then
by transposition we can conduct a similar argument to conclude.

Otherwise we takek rows ofN which induce ak -basis of the matrixN . Putting thosek rows
together results in a matrixZ of k rows. Besides, the other rows ofN are linear combinations
of thosek rows. Therefore, the columns ofZ are pairwise distinct otherwise there would be
identical columns inN , which contradicts the maximality of the sequence of valid eliminations.
Then, the previous argument applies, and every column ofZ is a column ofLk : w.l.o.g. suppose
Z is a block ofLk (otherwise swap columns). LetT be a set of rows which contains all linear
combinations of rows ofZ . Now, the set of rows ofMk contains every linear combination of rows
of Lk , andZ is a block ofLk . Consequently, we can suppose w.l.o.g. thatT is a block ofMk

(otherwise just swap rows). Then, the bipartite graphGT defined byT is an induced subgraph of
Rk . Besides, it is clear that every row ofN belongs toT andGN is an induced subgraph ofGT .
Hence,GN is an induced subgraph ofRk .

We now prove thatρG(X) ≤ σG(X) . Let l = σG(X) . We know there exists external module
partitionsP andQ of X andV (G) \ X such thatG is anRl -join across{X,V (G) \ X}. Let
Y andZ contain one representative vertex per part in respectivelyP andQ . Then, the cut-rank
valueρG(X) is equal to the rank of the bipartite adjacency matrixM betweenY andZ . Clearly,
the graph defined byM is an induced subgraph ofRl from Proposition 3.3. Hence, the cut-rank
valueρG(X) can not exceed that ofRl , which is equal tol . 2

Theorem 4.3 (T, δ) is a width k rank decomposition ofG if and only if (T, δ) is an Rk -join
decomposition ofG. ThusG is a graph of rankwidth at mostk if and only if G is an Rk -join
decomposable graph.

Theorem 4.3 follows directly from Lemma 4.2. The following straightforward observation
shows how, on the other hand,H -join decompositions can be embedded in a rank decomposition
of reasonable width.

Theorem 4.4 To any bipartite graphH we can apply twin contractions to get an induced sub-
graph ofRρ(H) , whereρ(H) is the rank of the bipartite adjacency matrix ofH . A consequence
is that if G is an H -join decomposable graph thenG is also anRρ(H) -decomposable graph. In
other words, the rankwidth of anH -join decomposable graph is at mostρ(H) .

Note that Theorem 1.1 follows from Theorems 4.4, 3.10, 3.11 and 3.14 since|E(Rk)| ≤ 22k .
The above observation, though simple, implies thatH -join decompositions inherit algorithmic
results of rank decompositions. For instance, we immediately get the following.

Theorem 4.5 Any problem expressible in monadic second-order logic withquantifications over
vertex sets (MSO1 -logic) can be solved in FPT time forH -join decomposable graphs when pa-
rameterized byH .

This follows since it is true when parameterized by cliquewidth [7], hence when parameterized
by rankwidth because of the bound between cliquewidth and rankwidth, hence when parameter-
ized byρ(H) by Theorem 4.4. More generally, any FPT algorithm on anH -join decomposable
graph that is parameterized by the rankwidth of the graph is also an FPT algorithm when pa-
rameterized byρ(H) . Examples of problems outside of MSO1 -logic include those addressed
in [11, 16, 21, 26], however, note that some of the solutions given therein do not have FPT run-
time.

14

Applying the algorithm of [18] to anH -join decomposable graphG will in time O(f(k)n3)
give anRρ(H) -join decomposition ofG with the property that everyH ′ -join across the cut defined
by any edge of the subcubic tree satisfiesρ(H ′) ≤ ρ(H) .

5 Conclusion

The alternative definition of rankwidth given in this paper,usingRk -join decompositions, should
prove useful both for visualizing graphs of rankwidthk and for developing fast dynamic pro-
gramming algorithms that could be practical for low values of k . Let us remark that the graphRk

has many interesting properties, and that graphs with a similar definition based on a parity check
appear in the book of Alon and Spencer [1] and recently also ina paper by Charbit, Thomassé and
Yeo [2].

We are working on algorithms for a general class of vertex subset and vertex partitioning
problems forH -join decomposable graphs, see [28], that will also have runtime single exponential
in ρ(H) . We believe that the very general notion ofH -join decompositions deserves further study
of its own. A major result would be to find another graph classH1,H2,H3, ... , different from
R1, R2, R3, ... , satisfying the three properties on the desiderata list of the introduction.

References

[1] N. Alon and J. Spencer.The probabilistic method. Wiley-Interscience Series in Discrete
Mathematics and Optimization, 2000.

[2] P. Charbit, S Thomassé, and A. Yeo. The minimum feedbackarc set problem is NP-hard for
tournaments.Combinatorics, Probability and Computing, 16(1):1–4, 2007.

[3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thomas. The strong perfect graph theo-
rem. Annals of Mathematics, 164(1):51–229, 2006.

[4] D. Corneil and U. Rotics. On the relationship between clique-width and treewidth.SIAM
Journal on Computing, 34(4):825–847, 2005.

[5] G. Cornuéjols and W. Cunningham. Compositions for perfect graphs.Discrete Mathematics,
55(3):245–254, 1985.

[6] B. Courcelle and M. Kanté. Graph operations characterizing rank-width. Discrete Applied
Mathematics, 157(4):627–640, 2009. Abstract atWG’07.

[7] B. Courcelle, J. Makowsky, and U. Rotics. Linear time solvable optimization problems on
graphs of bounded clique-width.Theory of Computing Systems, 33(2):125–150, 2000.

[8] B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic, and a conjecture by
Seese.Journal of Combinatorial Theory, Series B, 97(1):91–126, 2007.

[9] W. Cunningham and J. Edmonds. A combinatorial decomposition theory.Canadian Journal
of Mathematics, 32:734–765, 1980.

[10] R. Downey and M. Fellows.Parameterized Complexity. Springer Verlag, 1999.

15

[11] W. Espelage, F. Gurski, and E. Wanke. How to solve NP-hard graph problems on clique-
width bounded graphs in polynomial time. In26th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG’01), volume 2204 ofLNCS, pages 117–128,
2001.

[12] F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurabh. Clique-width: on the price of gen-
erality. In20th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’2009), pages
825–834, 2009.

[13] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic re-
visited. Annals of Pure and Applied Logic, 130(1-3):3–31, 2004.

[14] T. Gallai. Transitiv orientierbare Graphen.Acta Mathematica Academiae Scientiarum Hun-
garicae, 18:25–66, 1967.

[15] R. Ganian and P. Hliněný. On Parse Trees and Myhill-Nerode-type Tools for handling
Graphs of Bounded Rank-width. Abstract atIWOCA’08. submitted manuscript.
http://www.fi.muni.cz/˜hlineny/Research/papers/MNto ols-2.pdf .

[16] M. Gerber and D. Kobler. Algorithms for vertex-partitioning problems on graphs with fixed
clique-width. Theoretical Computer Science, 299(1-3):719–734, 2003.

[17] M. Habib, C. Paul, and L. Viennot. Partition refinement techniques: An interesting algo-
rithmic tool kit. International Journal of Foundations of Computer Science, 10(2):147–170,
1999.

[18] P. Hliněný and S. Oum. Finding branch-decompositions and rank-decompositions.SIAM
Journal on Computing, 38(3):1012–1032, 2008. Abstract atESA’07.

[19] P. Hliněný, S. Oum, D. Seese, and G. Gottlob. Width parameters beyond tree-width and their
applications.The Computer Journal, 51(3):326–362, 2008.

[20] W.-L. Hsu. Decomposition of perfect graphs.Journal of Combinatorial Theory, Series B,
43(1):70–94, 1987.

[21] D. Kobler and U. Rotics. Edge dominating set and colorings on graphs with fixed clique-
width. Discrete Applied Mathematics, 126(2-3):197–221, 2003. Abstract atSODA’01.

[22] S. Oum.Graphs of Bounded Rank-width. PhD thesis, Princeton University, 2005.

[23] S. Oum. Rank-width is less than or equal to branch-width. Journal of Graph Theory,
57(3):239–244, 2008.

[24] S. Oum and P. Seymour. Approximating clique-width and branch-width.Journal of Combi-
natorial Theory, Series B, 96(4):514–528, 2006.

[25] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM Journal on Computing,
16(6):973–989, 1987.

[26] M. Rao. MSOL partitioning problems on graphs of boundedtreewidth and clique-width.
Theoretical Computer Science, 377(1-3):260–267, 2007.

[27] N. Robertson and P. Seymour. Graph minors. X. Obstructions to tree-decomposition.Journal
of Combinatorial Theory, Series B, 52(2):153–190, 1991.

16

[28] J. A. Telle and A. Proskurowski. Algorithms for vertex partitioning problems on partial
k -trees.SIAM Journal on Discrete Mathematics, 10(4):529–550, 1997.

17

