H -join decomposable graphs and algorithms with runtime
single exponential in rankwidth

Binh-Minh Bui-XUAN Jan Arne ELLE Martin VATSHELLE

Department of Informatics, University of Bergen, Norway.
[bui xuan, telle,vatshelle]@i.uib.no

Abstract

We introduceH -join decompositions of graphs, indexed by a fixed bipadii@ph H .
These decompositions are based on a graph operation thatwé goin, which adds edges
between two given graphs by taking partitions of their twdewesets, identifying the classes
of the partitions with vertices off, and connecting classes by the pattéfn H -join de-
compositions are related to modular, split and rank decaitipas.

Given anH -join decomposition of am -vertexm-edge graplG we solve the Maximum
Independent Set and Minimum Dominating Set problem&dn time O (n(m+20@(H))),
and theq-Coloring problem in timeO (n(m + 2°(@()*))), wherep(H) is the rank of the
adjacency matrix off over GF(2).

Rankwidth is a graph parameter introduced by Oum and Seynhbasged on ranks of
adjacency matrices over GF(2). For any positive integeve define a bipartite grapfy,
and show that the graphs of rankwidth at mésare exactly the graphs having d®), -join
decomposition, thereby giving an alternative graph-tetodefinition of rankwidth that does
not use linear algebra.

Combining our results we get algorithms that, for a graghof rankwidth k& given
with its width k& rank-decomposition, solves the Maximum Independent Sdtlem in time
O(n(m+22%+2k x k2)), the Minimum Dominating Set problem in tim@(n(m-+23% +%% x
k3)) and theg-Coloring problem in timeD (n(m-+25+"+>%"k x k20 x q)). These are the first
algorithms for NP-hard problems whose runtimes are singp@eential in the rankwidth

1 Introduction

A key tool in the area of graph algorithms is the concept ofodgmosing a graph into a tree
structure. Many variants have been studied, like modupdit, &nd rank decompositions. In this
paper we introduced -join decompoaositions, another tree-like decompositiographs based on a
graph operation that we calf -join. The H -join operation is indexed by a fixed bipartite grafih
and adds edges between two given graphs by taking partiictheir two vertex sets, identifying
the classes of the partitions with vertices 8f, and connecting classes by the pattéfn The
formal definitions and a discussion of relations to someragingph decompositions are given in
Section 2. For this to be a good algorithmic tool we shouldoskeoa graphf that satisfies the
following desiderata list:

fSupported by the Norwegian Research Council, project PARAL Part of this work was done while the first
author was a Ph. D. student of Université Montpellier lidaupported by the French National Research Agency,
project GRAAL.

!For a polynomial functiorpoly we call 27°'¥(®) single exponential irk .

e given an H -join decomposition of a graplr several important NP-hard problems should
be solvable fast oW+

e there should be a relatively fast algorithm that findsFarjoin decomposition of an input
graph@, if it exists

e interesting classes of graphs should ha¥ejoin decompositions, alternatively we could
use a family of graph$f,, Hs, Hs, ... such that everyr is H;-decomposable for somie

In Section 3 we address the first item and show that regardfegsich graphH is chosen we
can solve several NP-hard optimization problemg:bhy dynamic programming along & -join
decomposition of7. We will show this for the problems of computing a Maximum épendent
Set, Maximum Clique, Minimum Dominating Set and VertgColoring. The runtime of these
algorithms will depend single exponentially @H), the rank of the adjacency matrix &f over
GF(2).

In Section 4 we define, for any positive integera bipartite graphR;, having 2* vertices in
each color class, and show that the graphs of rankwidth at inase exactly the graphs having an
Ry.-join decomposition. Combining our algorithms from Seetwith the powerful results that
hold for rankwidth [7, 18] this means that all three items lo@ desiderata list are satisfied for the
famlly Ri,Ro,Rs3,

Let us say a few words about rankwidth. Several decompasitiefine a graph “width”
parameter, with the most important from an algorithmic pahview being, in order of dis-
covery: treewidth, branchwidth, cliquewidth and rankwidtThe first two of these parameters
are “less powerful” than the last two, in the sense that alg@ass has bounded treewidth iff
it has bounded branchwidth [27], it has bounded cliquewifith has bounded rankwidth [24],
and if it has bounded treewidth then it has bounded cliquialit not the other way around
[4]. The rankwidth of a graph is never larger than its cliqiddty nor its branchwidth, nor its
treewidth plus one [23]. In this sense rankwidth, which haserbinvestigated quite heavily in
recent years [6, 8, 18, 22, 23] is the most powerful of the fmnameters. Many NP-hard graph
optimization problems have fixed-parameter tractable jF&Jorithms when parameterized by
these graph width parameters, see the recent paper byniiletéal [19] for an overview. As re-
flected by the two first items in our desiderata list, these &Igdrithms usually have two stages:
a first stage computing the right decomposition of the inpaph and a second stage solving the
problem using the decomposition. For a long time there wagaoum first stage algorithm for
cliquewidth, and rankwidth was in fact introduced by Oum &®ymour [24] as a tool to help
compute a decomposition for cliquewidth.

Recently, Hlinény and Oum found an FPT algorithm that gigegraphG on n vertices and
a parametek: will decide if G has rankwidth at most and if so output a rank decomposition of
width & in time O(f(k)n®) [18]. Between rankwidth-w(G) and cliquewidthcw(G) we have
the connectionw(G) < cw(G) < 2r(@)+1 [24]. Moreover, a rank decomposition of width
of G can be turned into a2(*!)-expression that is then used as the cliquewidth decoriposi
of GG. Note that in going from rankwidth to cliquewidth some exgotial jump is required, as it
follows by results of Corneil and Rotics [4] that for aythere is a graph with rankwidth &
and cliquewidth at least*/2—! — 1. Because of this exponential jump, if we want algorithmshwit
runtime single exponential in rankwidth, we cannot go vidiguewidth decomposition.

Designing algorithms running directly on a rank decompasiis a question that has attracted

recent attentions from other perspectives as well [6, Ibihik topic, the main algorithmic issue is
that any rank decomposition suffers from the fact one doekmaw, a priori, how the sub-graphs

associated to the sub-trees of the decomposition tree lateddo each other, from the scope of
designing dynamic programming algorithms along the deawsitipn tree. Essentially, given an
n-vertex m-edge graphG and a widthk rank decomposition of+, there are three ways to cope
with this situation. All of them compute additional infortian which, together with the widtlk
rank decomposition, will allow to perform dynamic programm One way is to compute a so-
calledterm over bilinear product the sense of [6], where all the involved bilinear produgzs
be computed in FPT runtime when parameterizedcbyAnother way is to compute a so-called
labelled parse treé the sense of [15], where the additional information reggia computation in
global O(k?n?) time. Finally, as we will show in Section 3 of this paper, oae also compute the
so-calledmaximum external module partitiassociated to every edge of the decompaosition tree,
in global O(nm) time. From either a term (over bilinear products) or a lazkefparse tree, one can
deduce inO(1) time an information similar to the external module partisdthe difference will
be that they are not neccessarily maximum). Actually, weebelthat external module partitions
act as the crucial additional information we need in ordeavercome the lack of information that
rank decompositions suffer for the purpose of doing dyngmagramming on them.

Turning our attention back to general FPT algorithms fobpgms parameterized by cliquewidth
or rankwidth, we have a recent negative result by Fomin et2] §howing that various graph
problems are W[1]-hard when parameterized by cliquewitlths also when parameterized by
rankwidth, and hence unlikely to have FPT algorithms atTtle main positive result is by Cour-
celle, Makowsky and Rotics [7] who have shown that any M3@yic problem is FPT when
parameterized by cliquewidth. Courcelle and Kanté [6]egan alternative algebraic character-
ization of graphs of bounded rankwidth, based on vertexrsdloat are manipulated by linear
transformations over the GF[2] vector space, that willalboresult like the one in [7] for graphs
of bounded rankwidth without transforming into a cliquethigéxpression. Ganian and Hlinény
[15] give another alternative characterization of ranktvitly using labelling parse trees and an
automata-approach in order to explicitly solve all MS@roblems directly on these parse trees.
However, these results that hold for all M§@roblems do not have practical runtime [13], as
the exponential dependency on the parameter is a tower oénsadepending on the logical ex-
pression. For practical runtime a more refined analysis tesgary. Finding FPT algorithms
with low dependency on the parameter is a main goal of researparameterized algorithms,
see e.g. Downey and Fellows [10]. Applying the algorithmegettgped in Section 3 to the family
Ry, Ry, R3, ... Will give the first algorithms for NP-hard problems that amegte exponential in
rankwidth.

Theorem 1.1 For a graph G of rankwidth %, given with its rank-decomposition, we can solve the
Maximum Independent Set problem in ti@én(m + 22%°*2% x %2)), the Maximum Clique
problem in timeO(n(m + 23k ok o k%)), the Minimum Dominating Set problem in time

O(n(m + 21F+5* x 3)), and ¢-coloring in time O (n(m + 28K +257F » 124 x ¢)).

Let us mention that using the connection between the famRilyRs, Rs3, ... and rankwidth
it easily follows that any MS© problem can be solved in FPT time fa@f -join decomposable
graphs when parameterized by the rank of the adjacencyxwditéii over GF(2).

2 H-join decomposable graphs

In this section we introducéf -join decompositions and discuss its relations to othel-kredwn
graph decompositions. However, the main result showindidfm connection to rank decompo-

sitions is postponed to Section 4.

Definition 2.1 Let H be a bipartite graph with color classdg, and V5, thusV (H) = V; U V;.
Let G be a graph andS C V(G) a subset of its vertices. We say tl@tis an H -join across the
ordered cut(S, V(G) \ S) if there exists a partition of with set of classe$ and a partition of
V(G)\ S with set of classe§), and injective functiong; : P — V; and f, : Q@ — V5, such that
foranyz € S andy € V(G)\ S we haver adjacent toy in G if and only if z belongs to a class
P; of P andy to a classQ; of Q with f,(F;) adjacent tof2(Q;) in H. We say thaiG is an
H -join across the non-ordered cdtS, V(G) \ S} if G is an H -join across either(S, V (G) \)
or (V(G)\S,S).

Twins in a bipartite graph are vertices in the same colorsdiaving exactly the same neigh-
bourhood. A twin contraction is the deletion of a vertex witdmas a twin. Notice thaf7 -joins
are insensitive to twin contractions: H’ is obtained fromH by a twin contraction thei is an
H -join across some cut if and only & is an H’-join across the same cut. In the remainder of
the paper we therefore assume that, unless otherwise ieaqbliél is a graph with no twins in the
same color class. However, note that we do allow one isolagéx in each color class. We will
decompose graphs ¥ -joins in a way analogous to branch decompositions. Withesalbuse in
terminology, a subcubic tree is an unrooted tree where t@iiial nodes have degree three.

Definition 2.2 Let T be a subcubic tree andl a bijection between the leaf set’6fand the vertex
set of a graphG. We say tha{T', ¢) is an H -join decomposition o~ if for any edgeuv of T" we
have G being an H -join across the cufS,, S,} we get from the 2-partition o’ (G) induced
by the leaf sets of the two subtrees we get by removindrom 7T'. A graph having anH -join
decomposition will be called a# -join decomposable graph.

One feature of studying such a tree-like decompositionaswle can think of the decomposi-
tion as the collection of cuts of the initial graph given by ttollection of edges of the subcubic
tree. Under this standpoint/ -join decomposition is related to modular decompositiof].[1n-
deed, sayingl/ C V(G) is a module ofG is exactly equivalent to saying that is a P, -join
across the ordered cyd/, V(G) \ M), where P;" is obtained by adding an isolated vertex to the
second colour class of the bipartite graph. Therefore we have for instance that a cograph — a
graph where every induced subgraph of at least four vertiassa non-trivial module — is always
PgL -join decomposable, and that@r -join decomposition of the cograph can be obtained from
its modular decomposition tree by unrooting the tree andisiding arbitrarily all internal nodes
of degree more than three. The link between modular decdtigpoand H -join decomposition
will also be reflected in the upcoming section via the notibarmexternal module partition, our
main tool for the study of the partitions used for &h-join across a cut (cf. Definition 3.1 and
Proposition 3.3).

As for split decomposition [9], saying that a c{f, V(G) \ S} is a split is exactly equivalent
to saying thatG' is a Pyt -join across{S,V(G) \ S}, where P, is obtained by adding one
isolated vertex to each colour class of the bipartite gr&ph Here, we have a stronger fact than
that with modular decomposition: a graph is distance htagdi- meaning a graph where every
induced subgraph of at least five vertices has a non-triyilil s if and only if it is P;" " -join
decomposable. Moreover, there is a straightforward matenglstain aP," ™ -join decomposition
from the split decomposition tree of the distance heregligmaph, and conversely.

Other particular cases df -join decompositions include the so-callggoin [5], and also the
so-called generalized join, itself a particular case otalted 1-separations [20]. More precisely,
2-joins are related tdH -joins when H is equal to2P; *, the graph we obtain by adding one

4

isolated vertex to each colour class of the bipartite graplderby a disjoint union of twad>,.
At the same time, Hsu’s generalized joins are relateditgoins as soon a$i admits orderings

of colour classed/ = (v},v?,...,v" ™) and Vo = (v}, v3,...,v5"1) such thatNy (v}) =
{vs,v3,..., 0571711 Both 2-join and Hsu’s generalized join decompositions are inguarfor

decomposing perfect graphs, with the former decomposjilaging a central role in the recent
proof of the strong perfect graph theorem by Chudnovsky E]all his result has been known as
one of the major challenges in graph theory, and was comgttoy C. Berge half a century ago.

Finally, note that in the above list of connections betwéggoining (for someH) and par-
ticular vertex partitions, namely modules, splisjoin and Hsu’s generalized join, the two first
cases, namely wheH = Py~ and H = P, are known to own polynomially computable de-
composition trees. Then, it is clear that one can explo# thct to compute the corresponding
H -join decomposition of a givett -join decomposable grapty.

3 Dynamic programming on H -join decomposable graphs

Our goal is to give dynamic programming algorithms to solagous problems on aiif -join
decomposable grapty, given with its H -join decomposition(7,§). A potential drawback of
defining H -join decompositions simply as the paif’, ¢) is that for an edgeww of 7" wea priori

do not know the partition classd? of S, and @ of S, mentioned in Definition 2.1, to confirm
that G is an H -join across the cu{S,,, S, } . We now show how to compute this information. The
main idea is to use a technigue called vertex splittingpohiced by Paige and Tarjan as the act of
splitting parts according to the neighborhood of a vertéy{.[2

Definition 3.1 Let G be a graph and letS C V(G) be a vertex subset. Aexternal module
partition of S is a partition P of S such that, for every € V(G) \ S and pair of verticese, y
belonging to the same class A, we haver adjacent toz if and only if y adjacent toz.

Given as input a graplt and a vertex subset C V(G), by using partition refinement
techniques we can compute a maximum external module partfi S, which is well-defined by
Lemma 3.2 (below). Indeed, just initialize a partition s= {S}; then, for every exterior vertex
z € V(G)\ S, refine P using the neighbourhood af as pivot. These operations can be done in
O(m) time, with m = |E(G)|, since each refinement operation can be done in time propatti
to the size of the pivot set (refer to [17] for more details fiicent implementations of partition
refinement). The correctness of the computation is statdkifollowing lemma.

Lemma 3.2 Let G be a graph andS be a vertex subset df (G). The maximum (coarse-wise)
external module partition of' is well-defined and can be computed@| E(G)|) time.

Proof Let P be a maximal external module partition §f Suppose it is not maximum, and let
Q@ be an external module partition ¢f that is not comparable (coarse-wise) Bo If no parts
amongP and @ overlap (whereX andY overlap if they have a non-empty intersection and two
non-empty differences), Then, replacing the part$ahat are included in some part of Q by

Y will lead to an external module partition ¢f which is coarser tha®®. Contradiction. Hence,
we deduce that there are some pakisc P andY € @ such thatX and Y overlap. Then,
replace allX; in P which overlap (or included iny” by |, X; UY, and obtainP’. Using the
transitivity of the relation one, y for a givenz: "z andy are linked toz the same way”, we can
prove thatP’ is an external module partition that is coarser ttfanContradiction.

To achieve the proof, it suffices to prove that the above gafmm computes correctly a max-
imum external module partition. That the computation rssii an external module partition is
straightforward from an argument by contradiction. Fipathe fact the computed partition is
maximum can be proved by a straightforward argument by adittion. O

Maximum external module partitions have the following pdy, essential for computational
purposes orH -join decompositions:

Proposition 3.3 Let (7, 6) be an H -join decomposition of~. Let P,, P, be the maximum ex-
ternal module partitions of respectively, and S,, where{S,, S, } is the 2-partition ofV(G)

we get by deleting an edgev in T'. Let R, and R, be two sets containing exactly one vertex
per part in respectively?, and P, and let H' be the bipartite graph defined by the bipartite ad-
jacency inG betweenR,, and R,,. ThenH’ is an induced subgraph aff, and G is an H -join
across the cuf S,, S, } using partitionsP, and P, .

Proof Straight from Definition 2.1 we have thét is an H'-join across{.S,, S, } using P, and
P, . Besides, sincéT, ¢) is an H -join decomposition of7, G is also anH -join across{S,,, S, } .
This latter H -join uses some patrtitions o, and S, , say@, and @, . Let ' be the subgraph
of H which is induced by the image @, and @, by the injectionsf; and f, as defined in
Definition 2.1. Note thatF' is not necessarily twin-free. Clearly is an F'-join across{S,, S, }
using partitions@,, and @Q,,. It is straightforward to check tha®,, and Q,, are external module
partitions. From Lemma 3.2P, (resp. P,) is coarser tharQ, (resp. 0,). We deduce that
H' is an induced subgraph df which is obtained by some successive twin contraction$’ of
Therefore,H' is an induced subgraph df . Finally, from the fact thatz is an H'-join across
{Sy, Sy} using P, and P,, for an induced subgrap®’ of H, it follows by Definition 2.1 that
G is an H -join across{.S,, S, } using P, and P, . O

3.1 Equivalence classes used for independent set, domimggiset andg-coloring

For the dynamic programming, we subdivide an arbitrary enfg@ to get a new root node,
and denote byl the resulting rooted tree. The algorithms will follow a loott-up traversal of
T,-. With each node: of T, we associate a data structuable that will store optimal solutions
to subproblems restricted to the graphV,|, whereV, are the vertices o mapped to leaves
of the subtree off;. rooted ata. Each index of the table will be associated with an equivaden
class of subproblems. For the problems studied in this papeximum Independent Set, Mini-
mum Dominating Set and Vertex g-Coloring, these classesitgireblems will be related to the
following equivalence classes of vertex subsets.

Definition 3.4 For a fixed graphG and vertex subsetl C V(G), consider two vertex subsets
X CAandY C A anddefineX =4 Y ifandonly if N(X)\ A= N(Y)\ A.

Note that= 4 is an equivalence relation on subsetsAyfwith two equivalent sets having the
same neighbors outsidé. For the nodex of T, we will be interested in the equivalence relation
=y, on the above defined subsEf. Note that we have explained how to compute and Q,,
such that the grapldz is an H -join across the cu{V,,V(G) \ V,} using partitionsP, of V,
andQ, of V(G) \ V,, with P, and @, being maximum external module partitions. Consider an
arbitrary orderingP, (1), P, (2), ..., P,(h1) of the classes of,. Forall 1 <1i < hl, let v; be an
arbitrary element of?, (7).

Definition 3.5 (Representative) Given an arbitrary orderingP, (1), P,(2), ..., P,(h1) of the classes
of P,, and an arbitrary element; of P,(i), for 1 < i < hl, we define theanonical represen-
tative cany, (X) of a vertex setX C V, C V(G) as the lexicographically smallest subset taken
over everyR C {vy,vs,..., v} Satisfying:

e R =V, X
e Foranyv; € R we haveN (v;) \ (Uj@ vi€R N(v;) U Va> # 0.

Note that such a representative always exists, namgly= {v;, X N P,(i) # 0} is a subset
which satisfy the first item in the definition. Moreover, a sebsatisfying both items can be de-
fined from R by a greedy scan on the’s (this is basically the computation that will be formally
proved in Lemma 3.7). Besides, the above definition alscsléac canonical representative for
every equivalence class efy, , namely we have that

X =y, X' = cany,(X) = cany, (X').

Finally, the following bounds are crucial for an efficientngplexity analysis of all algorithms
presented in this paper:

Proposition 3.6 For any vertex subsekX’ C V, C V(G), we have thatcany, (X)| < p(H), the
rank of the bipartite adjacency matrix éf . Moreover, for the numbetieq of equivalence classes
of =y, we haveneq < Qip(H)ZJr%p(H)p(H).

Proof Let M(V,) be the bipartite adjacency matrix associated to the[8utV (G) \ V,} of G.
For convenience, leR = cany, (X).

For the first claim of the proposition, we only need to provat ttihe rows in)M (V,,) which
correspond to the vertices &t are GF'(2)-independent (hence form a subbasis\étV/,)). This
can be proven by induction gi?|. Indeed, if|R| = 1 then it is clear how to conclude. Suppose
that the property is true for every canonical represergatiith cardinality uptop — 1 > 1, and
let us consider a canonical representativevith cardinality p. Let x € R be the highest element
belonging toR (w.r.t. the ordervy, v, ..., vs1). Notice from the definition of? that R \ {z} is
not in the same equivalence class as the Brand X belong to. Moreover, it also follows directly
from definition thatR \ {z} is a canonical representative (of some other set tignotherwise
R would not be a canonical representative 6t Applying the inductive hypothesis, we obtain
that the rows corresponding t8 \ {z} in M(V,) are GF(2)-independent. Finally, from the

maximality of z and the definition ofR we have thatN(x) \ (UUER\{JE} N(v)U Va> # 0.
Combining the previous facts, we obtain the desired prgpertR.

Now, what we just proved also implies that every equivaletiass of=y, can be associated
with (at least) one space that {sF'(2)-spanned by some rows @i/ (V). In other words, the
number of spaces spanned by a subset of rowd ¢¥,,) is larger than the value ofeq. This will
be used to prove the following bound arq:

n—i+1

P(H) m
H n 1-—
neq < E (p(i)>2, where<m>q = H %qi‘

i=1

Indeed, this bound is just a combination of the previous &t the folklore fact thaf") ,
which is known under the name of tlRebinomial coefficient ofn and m, is exactly the number

of different subspaces of dimension of a given space of dimension over a finite field ofq
elements (roughly,l‘f:]z+1 is the number of choices of aff' vector that is linearly independent
from the previously chosen ones).

Let neq = a(p(H)). In order to conclude we can use the analog of Pascal triangles:

(g =2" ("0, + (”’1)(1, forall m < n, with the convention tha{}) = 0 if m < 0 or

m m m—1

m > n. From this we firstly have that the highest number améggq, forall 0 < m < n,
is whenm = [%]. Therefore,a(n) < n x b(n) with b(n) = ([21) . Finally, still using the
2l7q

¢-analog of Pascal triangles, one can check tfa) < (2(%1 + 1> x b(n —1) < 21" Fin . O

We now show a straightforward computation of the canonieplesentativecany, (X) of
a subsetX C V,. Recall thatv; was an arbitrary element af, (i), for 1 < i < hl. Let
Qa(1),Q4(2),...,Q.(h2) be an arbitrary ordering of the classeaf, and letu; be an arbitrary
element of@,(7), for 1 <i < h2. Let H' be the bipartite graph induced by edges@fbetween
the two vertex set$vy, v, ..., vp1 } @nd{uy, us, ..., upo } . Note from Proposition 3.3 that we have
H' isomorphic to an induced subgraph Bf, and in particulat E(H')| < |E(H)| and p(H') <
p(H). For more clarity, we denote the neighborswfin H' by Ny (v;), while we denote the
neighbors ofv; in G simply by N(v;). Besides, we will also denote the neighborhood of a vertex
subset byN (X) = J,cx N(z) \ X. The algorithm to compute the canonical representative of
X can be:

compute the seK;r = {v; : X N P,(3) # 0}.
initialize cany, (X) and W to the emptyset.
fori=1tohl
if NH/(UZ') - NH/(XH/) andNH/(vZ-) \ w ?é 0
then addv; to cany, (X) and add the vertices iV (v;) \ W to W.

Note that in the above we could have broken out of the for Ipomn adV = Ny (Xp).

Lemma 3.7 For X C V, C V(G) the above algorithm computes correctly the canonical repre
sentativecany, (X) of X and runs inO(| X | + |E(H)|) time.

Proof Let R be the output of the algorithm. IR =y, X then it is straightforward to check that
R fulfills the other requirements in Definition 3.5. Therefone only give the proof of? =y, X .
Firstly, it is clear thatX =y, Xz . Now, the only trick in the algorithm is to restrict the visid
edges to those aff’. It means in particular tha¥/ (X /) = Ny/(R) at the end of the algorithm
(andapriori we cannot guarantee anything about the neighborhodd of G). However,Q,, is
an external module partition df (G) \ V,,. This can then be exploited and leadsXe, =y, R.
Hence,R =y, X.

For complexity issues note that the first action of the atporitakes timeO(|X|), and in
the for loop we check every edge of the grafi at most once. Note that we here require the
adjacency list ofH’. This task can be included in the pre-computation explaindcemma 3.2
by some straightforward modifications. Finallyy(H')| < |E(H)| from Proposition 3.3. O

We present a last tool that will be used afterwards. Bagioak do not want in our algorithms
to parse the subsets &f, in order to look for some equivalence class=f, . Fortunately, the
previous definition of canonical representatives comesaimdig since there is a fast and simple
manner to output the list’, containing all canonical representatives:

8

initialize the listC, to contain{(}
fori=1tohl
forall R € C,
if (RUv; == cany, (RUv;))
add the setlR U v; to C,,

Theorem 3.8 R belongs toC,, if and only if R is a canonical representative afy, . Moreover,
C, can be output inO(hl x neq * |[E(H)|) time.

Proof (=) SinceR isin C, someR' Uwv; = R must have passed the check “R(U v; =
cany, (R Uv;))” hence, R is a canonical representative.

(<) AssumeR is a canonical representative amg is the element inR with highest index
i. If R = {v;}, thenR € C,. Assume inductively that this is true for all representsivof
size less tharlR|, then R would be added t&’,, iff R\ v; is in C, and hence is a canonical
representative. By definition of canonical representativg; (R \ v;) # Ng/(R), the only
vertex that sees any nodes &f = Ny (R) \ Ng/(R \ v;) is v;. The algorithm computing
cany, (R \ v;) goes through the nodes, vo, ...v;_; in the same way as fatany, (R), they both
only pick vertices incany, (R \ v;) since no node before; sees any node ik . This means
cany, (R \ v;) = cany, (R) \ v; = R\ v; henceR € C,. By induction the result follows.

The runtime follows from Lemma 3.7 since the callsdony, (X) always satisfy|X| =
O(|E(H)])- O

3.2 Maximum Independent Set and Maximum Clique

We consider the problem of computing the size of a maximunepeddent set. Recall for a
nodea of T, that we denote by, the vertex subset off induced by the leaves of the subtree
of T, rooted ata, and that we have explained how to compiile and @, such that the graph
G is an H -join across the cu{V,, V(G) \ V,} using partitionsP, of V, and Q, of V(G) \
V., with P, and Q, being maximum external module partitions. We have alsoidensd that
P,(1), P,(2),..., P,(h1) is some arbitrary ordering of the classesiyf, and, for alll < i < hl,
considered that; is some arbitrary element d?, (7).

Our aim is that the table data structufab, associated with node of T, will have an index
set that containamong other thingsll elements of{ cany, (X) : X C V,}, i.e. all elements of
the list C,,. This way, for everycany, (X), we can access t@ab,[cany, (X)] in O(1) time. We
will proceed as follows. First recall from Proposition 30t no canonical representative has more
than p(H) elements fronwy, ve, ..., v1 . Therefore, we can associate each elemeni;, (X) of
C, with a distinct integer froml to (péﬁ,)) . Then, inO(1) time we initialize Tab, as a table of

(p?é)) entries. After that, the access (read/write) to the valu&dh, corresponding taany, (X)

will be in fact done viaTab,[i], wherei is the previously mentioned distinct integer froimo
(pf‘é)) associated t@any, (X). For the sake of simplicity, we hereafter refer to these afians
simply as “accessingab, [cany, (X)]”. Note that we have shown how to compute . This way,

it is possible to loop through all values @fab, corresponding to the canonical representatives in
|C,| time. Actually, using(p@)) entries, instead ofC,| entries, in Tab, will only affect space

complexity and not time complexity.

For R = cany,(X) the contents ofTub,[R] after processing: should be the size of the
largest independent set contained in the equivalence afaRs in other words

9

Tab,|R) o Sr}lcz%;c{|5| :S=y, RANVx,ye S=uzy & E(G)}

At a leaf w of T, associated to a node of G we have a partition ol,, = {z} into two
equivalence classes and $gtb,,[0)] = 0 and Tab,,[{z}] = 1. For an internal nodev of 7, with
childrena andb whose tables have already been processed, we processléheftabas follows:

initialize all values ofTab,, t0 0
for all indices R, in Tab, and Ry, in Taby
if (Ra U Ry is an independent set) then
Ry, := cany,, (R, U Rp)
Taby[Ry) := max{Tab,[Ry], Taby[R,] + Taby[Rp]}

Lemma 3.9 The table of an internal node having childrena, b is updated correctly.

Proof Let R,, be a canonical representativesf, . Assumel C V,, is an independent set such
that I =y, R,, we first show thatTab,[R,] > |I|. LetI, = I NV, andI, = I NV,. Clearly,
1, and I, are independent sets, and therefore by an inductive argurnethe correctness of the
tables ofa and b we have thatTab,[cany, (1,)] > |I,| and Taby[cany, (1)) > |Ip|. The update
procedure at nodev will thus set Tab,,[cany,, (cany, (1,) U cany, (Ip))] > |I.| + || = |1].
To conclude, we simply need to prove the claim that = cany,, (cany, (1) U cany, (Ip)). By
expressingany, (I,) =v, I, andcany, (1) =v, I, we haveN (cany, (1,) U cany, (1)) \ Vi =
NI, UIp)\Viy=N(I)\ Viy = N(Ry) \ Vi, In other words,R,, =v,, cany, (I,) U cany, (Ip),
and this proves the claim sind®,, is a canonical representative.

To conclude the lemma, we need to prove thafib,,[R,,] = k then there exists an indepen-
dentsetl C V,, with |I| = k andI =y,, R,,. For this, note that the algorithm increases the value
of Tab,[R,] only if there exist indicesk,, in Tab, and Ry, in Tab, such thatR, U Ry is an
independent set. Moreover, ff =y, R, andI, =y, R;, then the fact?, U Ry, is an independent
set can be used to prove thitu I, is also an independent set. O

At the rootr of T, we haveV, = V(&) and thus no outside neighbors to distinguish vertices
into distinct equivalence classes, so that the single anftiys table will store the size of the
maximum independent set 6f.

For the runtime note that we first computed, for each of@{e) nodes ofT,., the maximum
external module partitions i®(m) time, the canonical representatives in tifé¢hl x neq x
|E(H)|) and filled the table at this node in tim@(neq?|E(H)|). This gives a total runtime of
O(n(m + neq®|E(H)|)). Note that a bound for the number of edgesHnis |E(H)| < 22/(1)
however, for parse graphd this number could be much lower. Now, using the boundren
from Proposition 3.6 we get:

Theorem 3.10 Given a graphG on n nodes andn edges, and arf -join decomposition(T’, 9)
of G, we can inO(n(m + 22°H)*+30(H) o2 E(H)))) time solve the Maximum Independent
Set problem oG, wherep(H) is the rank of the adjacency matrix &f .

Notice that the problem of finding a maximum clique of a giveaph G can be solved by
finding a maximum independent set @, the complement of7. Moreover, anyH -join de-
composition of G can be used as ad -join decomposition ofG. Therefore, the Maximum
Clique problem can be solved using the “Independent Setrikgn with a runtime bounded by

O(n(m + 23°H*+ 300D (2| E(H)))), sincep(H) < p(H) + 1.

10

3.3 Vertex g-Coloring

For ¢-Coloring a straightforward generalization of the ideasdufor Maximum Independent Set
works. We now ask if there exists a partition of the vertexiset ¢ color classes each forming
an independent set. The table at a nadeawill be indexed byq representatives, one for each
color class, and the contents @iub,,[R:][R2]...[R,] should be True if there exists a partition
(S, ..., 84) of V,, with each.S; inducing an indpendent set arff] =y, R;. There will thus be
neq? indices in each table. For the combining of two tables we lmagr all pairs of indices having
the value True, check for each of thecolor classes whether the union of the two representatives
are an independent set, and if so update the table at thetparéme O(|E(H)| x q). Applying
Proposition 3.6 we get

Theorem 3.11 Given an H -join decomposition of am -vertex m-edge graphG we can solve
the g-Coloring problem inO(n(m + 23°UD*+5'0(H) 5 H)2a9| E(H)|)) time.

3.4 Minimum Dominating Set

We consider the problem of computing the size of a minimumidating set. Naively general-
izing from the independent set algorithm we may think thattéble at a nodev of 7, should
store the size of a smallest dominating $efor G[V,,]. However, unlike the case of independent
sets we note that a dominating setwill need to include vertices oV (G) \ V,, that dominate
vertices ofV,, 'from the outside’. This complicates the situation. DendtéG) \ V,, by V.
The main idea for dealing with this complication is to indée table atw by two sets, one that
represents the equivalence class unde, of D NV, that dominate 'from the inside’, and one
that represents the equivalence class undgr of D N V,, that help dominate the rest df,
'from the outside’. The representatives of these equivaeriasses are computed as described
in subsection 3.1, for botkey,, and for=;—. In the table update procedure when we join two
subgraphs to form a bigger subgraph we use the union of 'idehdominators as the 'inside’
dominator, and loop over all possibilities of sets that camuhate 'from the outside’.

Definition 3.12 Let G = (V, E) be a graph, forV,,, X C V we say thatX dominatesV,, if V,,
is a subset ofX U N(X).

Note that if X dominatesV,, then X N V,, are the ’inside’ dominators an& \ V,, are
the ’outside’ dominators. For this algorithm, the taldleb,, associated with a node of T,
will have index set{cany,, (X) x cany—(Y) : X C V,,,Y C V»}. We define the contents of
Tab,[Rx][Ry] where Rx = cany,, (X) and Ry = cany—(Y) as:

Tab,, [Rx][Ry] def minsng{]S] : S =y, Rx A S U Ry dominatest}.

Since we are dealing with a minimization problem we first dle¢mtries of all tables tox.
At a leaf w of T,. corresponding to a vertex of Gz, there are at most four entries ifub,, . Let
R = cany—(V,,). We then setTab, [{z}][R] = 1, we setTab,[{«}][)] = 1, and if z € N(R)
then we sefl"ab,, [0][R] = 0. The rest of the entries stay equaldo.
At an internal nodewv we only proceed when both children already have been predeset
a andb be two nodes off;. with w their common parent. As described by Theorem 3.8 we have
computed all lists of representatives, and in particulathaee C, = {cany,(X) : X C V,},
Cy = {cany,(X) : X C V,}, and Gy = {cany—(X) : X C V,}. Given the two tables
Tab,, Tab, we computeTabd,, as follows:

11

initialize all values ofTab,, to co
for all indices R, € C,, Ry € C, and Ry € Cw do:
Ry := cany,, (R, U Ry)
Ry = canva(Rb U Rw)
Ry := cany(Rq U Rip)
Tab,|Ry|[Rw) := min(Taby, [Ry [Rw], Tab [R,][Ra] + Taby[Ry)[Ry))

Theorem 3.13 The table at nodev is updated correctly, namely
Taby[Ry][Rw] < s < ISy i |Sw| < sA Ry =y, Sw and Sy, U Ry dominatesV,,

Proof We prove this inductively bottom-up in the tree of the-join decomposition, namely we
assume thaf’ab, andTab, are correct.

(=) We have thatl'ab,,[R,|[Rw] < s. This means that an update happened in the algorithm,
hence there must exigt, and R, such that:cany, (R, U Ry) = Ry, Rg := cany,(Ry U Ry),
Ry := canyz(R, U Ry) and Taby[R,)[Rg] + Taby[Ry)[R;] < s. Then by induction there exist
Sa =v, Rq and S, =y, Ry and S, U S, = Sy, =v, Ry, and also|S,,| = |Sa| + [Sp| < s. It
remains to show tha$,, U R dominatesV,, or equivalently thatS, U S, U Rz dominatesV/,,,.
We do this in two steps, first we show the} is dominated, then we show th&} is dominated.
We know thatS, U Rz dominatesl/,, now sinceRz =y Sy U R we have thatS, U S, U Ry
dominatesV, . Similary we know thatS, U R; dominatesV;, now sinceR; =y S, U Rz we
have thatS, U S, U Rz dominatesV, and we are done with this direction of the proof.

(<) In this case we knovwaS,, : |Sy| < s A Ry =y, Sy and S, U R dominatesV,.
Let Sq = Suw \ Vb, Sp = Suw \ Va, Rq = cany, (Sq) and R, = cany, (Sp). Since the algorithm
goes through all triples it will go througli,, Ry, Rw. Let Rz = cany, (Rg U Ry) and Ry =
cany, (Rw U R,). SinceS,, = S, U S, we getS, U R; dominatesV,, and .S, U R; dominates
Vy. By induction T'ab,[Ry][Ra] < [Sa| and Taby[Ry)[R;] < |Sp|. HenceTab,[R,][Rw] <
|Sal + [Se] = [Swl. O

At the end we have a tabl&ab, at the root ofT,. whereV, = V. We thus find the size of
the minimum dominating set af stored in Tab, [0][0]. For accessing the tables we use the same
technique as for Max Independent Set. By applying PromosBi6 we get the following runtime:

Theorem 3.14 Given an H -join decomposition of am -vertex m-edge graphGG we can solve
the Minimum Dominating set problem @(n(m + 21°E)* 2 #(H) y(H)3| E(H))|)) time.

Proof First, the computation of the maximum external module pans associated with every
node of T, takesO(nm) time. Also, the tables of all leaves are initialized@{n) time. Now, in
the bottom-up process for each of thkn) other tables, we compute the list of canonical repre-

sentatives for each of the three subsets in t@{§) (H)[21°F)*+ () o (i) E(H)|). Then, we
go through all triples of representatives, namelg 17(F)*+¢ (1) (F1)3) triples, and for each of
them, we findR,,, Rz, and N; in O(|E(H)|) time. The subsequent update takes constant time.

In summary, the bottom-up process take&:(m + 21°E* e o (/3| E(H)|)) time. O

4 Rankwidth

We now turn to the strong connections betwégéroin decompositions and rank decompositions.
We first recall the definition of rankwidth. For any graph the cut-rank functiorpq is defined

12

over every vertex subset C V(G) as the rank of theX x V(G) \ X submatrix of the adjacency
matrix of G. For any pair(T, §) with 7" a subcubic tree and a bijection between vertices 6f
and leaves of’, (7, 9) is defined as a width rank decomposition of5 if for all edge wv in T,
the cut-rank ofS,, is at mostr, where{S,, S, } is the 2-partition ofV(G) induced by the leaf
sets of the two subtrees we get by removingfrom T'. The rankwidth ofG is the minimumr
such that there exists a widthrank decomposition of5.

Definition 4.1 For a positive integerk we define a bipartite grapt®;, having for each subset
of {1,2,....k} avertexas € A and a vertexbs € B, with V(R;) = AU B. This gives2”
vertices in each of the color classes. Two vertiagsand bg: are adjacent iff|.S N S’| is odd.

Lemma 4.2 The functiono; : 2V(¢) — N defined by
oc(X) = min{k : G is an Ry -join of G across the cuf{ X,V (G) \ X} }
is equal to the cut-rank functiopg .

Proof Let k& = pg(X). There are several ways to view the grafifh. Before proving the
lemma, note the following, where we slightly abuse the matabf Definition 4.1 by denoting
the vertices arising from a one-element subSet {i} simply asa; andb;. We denote byM},
the bipartite adjacency matrix of the bipartite graBh, meaning that its rows correspond to the
vertices of one color class and the columns to those of ther ablor class. Suppose that the
verticesaq, as, . . . , a; are mapped to rows iR/} : again by abuse of notation, we can view vertex
of Ry, asthe row/column itis mapped to i, . Clearly,as with S = () is a linear combination of
ai,as,...,a,: choose scalab for every vector. Letig be avertex ofRy, with S =iy,4s,...,7,.
We can prove that inV/;, the rowag is the GF2-sum of the rowsa;,, a;,, ..., a;,: for every
columnbg of My, |SNS’| is odd iff there is an odd number of thig (1 < ¢ < p) which belong

to S’, that is M}, has al in the rowa;, and columnbg:. The same holds fab, bs, . .., b;.. Note
also that an arbitrary bipartite adjacency matrix is notesearily symmetric but it is clear here
that

Claim: There is a way to swap the columns and rows\§f to result in a symmetric matrix.
Also, My, is of rank &k and has the maximum size among tH&'2-matrices of rankk.

Moreover, let us w.l.o.g. defind/;, in such away thafa,, as, ..., a;} are mapped (in this order)
to the firstk rows of M while {b;, b2, ..., b} are mapped to thé first columns. This way, the
first k x k block of M, is equal to the identity matrix of size. We defineL;, as the block of

M, made of the first: rows. Clearly,L;, has2* columns and has one column with orilis.

We now come to the actual proof of the lemma. We first prove ¢hatX) < k. Let M be
the bipartite adjacency matrix induced By and V' (G) \ X in G. A valid eliminationin a matrix
is a deletion of a column (resp. a row) when the matrix hasteratolumn (resp. row) identical to
the one we delete. This corresponds to twin contractionisamgtaph defined by the matrix. Let us
obtain N from M through a maximal sequence of valid eliminations. This afi@n corresponds
to the contraction with respect to some external modulétjpert Then, in order to prove thaf is
an Ry -join across{ X, V(G) \ X}, it suffices to prove that the bipartite graghy with bipartite
adjacency matrixV is an induced subgraph @t . This will be proved in two steps.

There can not be less thanrows in N. If the number of rows inV is exactly &, then we
look at N as a collection of columns. By maximality of the sequencealidveliminations, all
the latter columns are pairwise distinct. Besides, if wélabl;, as a collection of columns, then
by definition L, contains all possiblé:-bit vectors. Therefore)N (as a collection of columns)
is a subset ofL;.. Hence,Gy is an induced subgraph of the bipartite graph defined.pyand

13

consequently it is an induced subgraphif. If the number of columns iV is exactly k, then
by transposition we can conduct a similar argument to cateclu

Otherwise we také: rows of NV which induce & -basis of the matrixV . Putting thosé: rows
together results in a matriX of k£ rows. Besides, the other rows &f are linear combinations
of those k rows. Therefore, the columns & are pairwise distinct otherwise there would be
identical columns inN, which contradicts the maximality of the sequence of valichi@ations.
Then, the previous argument applies, and every columi of a column ofL;,: w.l.0.g. suppose
Z is a block of L;, (otherwise swap columns). L&t be a set of rows which contains all linear
combinations of rows of . Now, the set of rows of\/;, contains every linear combination of rows
of L, and Z is a block of L,,. Consequently, we can suppose w.l.0.g. tHas a block of M,
(otherwise just swap rows). Then, the bipartite graph defined byT is an induced subgraph of
Ry.. Besides, itis clear that every row &f belongs tol" and G is an induced subgraph ¢fr.
Hence,Gy is aninduced subgraph aty,.

We now prove thapg(X) < og(X). Letl = o¢(X). We know there exists external module
partitions P and @ of X andV(G) \ X such thatG is an R;-join across{ X,V (G) \ X}. Let
Y and Z contain one representative vertex per part in respectifebnd Q. Then, the cut-rank
value p(X) is equal to the rank of the bipartite adjacency matvixbetweenY” and Z . Clearly,
the graph defined by is an induced subgraph dt; from Proposition 3.3. Hence, the cut-rank
value pg(X) can not exceed that a®;, which is equal td. O

Theorem 4.3 (T, 6) is a width & rank decomposition of7 if and only if (7,0) is an Ry-join
decomposition ofy. ThusG is a graph of rankwidth at most if and only if G is an Ry -join
decomposable graph.

Theorem 4.3 follows directly from Lemma 4.2. The followingasghtforward observation
shows how, on the other handé -join decompositions can be embedded in a rank decompuositio
of reasonable width.

Theorem 4.4 To any bipartite graphd we can apply twin contractions to get an induced sub-
graph of R,z , wherep(H) is the rank of the bipartite adjacency matrix &f. A consequence
is that if G is an H -join decomposable graph thed is also an R, ;) -decomposable graph. In
other words, the rankwidth of a#/ -join decomposable graph is at mgstH).

Note that Theorem 1.1 follows from Theorems 4.4, 3.10, 3rid 314 sincd E(R;,)| < 22k,
The above observation, though simple, implies thafoin decompositions inherit algorithmic
results of rank decompositions. For instance, we immelgtige the following.

Theorem 4.5 Any problem expressible in monadic second-order logic withntifications over
vertex sets (MSQlogic) can be solved in FPT time faif -join decomposable graphs when pa-
rameterized byH .

This follows since it is true when parameterized by cliqudttvi 7], hence when parameterized
by rankwidth because of the bound between cliquewidth ankiwilth, hence when parameter-
ized by p(H) by Theorem 4.4. More generally, any FPT algorithm onfaroin decomposable
graph that is parameterized by the rankwidth of the grapHsis an FPT algorithm when pa-
rameterized byp(H). Examples of problems outside of M$bgic include those addressed
in [11, 16, 21, 26], however, note that some of the solutiamergtherein do not have FPT run-
time.

14

Applying the algorithm of [18] to arH -join decomposable grapf will in time O(f(k)n?)
give anR) -join decomposition oy with the property that everyl’-join across the cut defined
by any edge of the subcubic tree satisfig¢sl’) < p(H).

5 Conclusion

The alternative definition of rankwidth given in this papgsing R;. -join decompositions, should
prove useful both for visualizing graphs of rankwidthand for developing fast dynamic pro-
gramming algorithms that could be practical for low valuég ol et us remark that the grapRy,
has many interesting properties, and that graphs with dasihéfinition based on a parity check
appear in the book of Alon and Spencer [1] and recently alsogaper by Charbit, Thomassé and
Yeo [2].

We are working on algorithms for a general class of vertexssuland vertex partitioning
problems forH -join decomposable graphs, see [28], that will also havémansingle exponential
in p(H). We believe that the very general notionf@fjoin decompositions deserves further study
of its own. A major result would be to find another graph clégs H,, Hs, ..., different from
R4, Ro, R3, ..., satisfying the three properties on the desiderata lidt@iritroduction.

References

[1] N. Alon and J. SpencerThe probabilistic methad Wiley-Interscience Series in Discrete
Mathematics and Optimization, 2000.

[2] P.Charbit, S Thomassé, and A. Yeo. The minimum feedlaaclset problem is NP-hard for
tournamentsCombinatorics, Probability and Computing6(1):1-4, 2007.

[3] M. Chudnovsky, N. Robertson, P. Seymour, and R. Thom&® skrong perfect graph theo-
rem. Annals of Mathemati¢s64(1):51-229, 2006.

[4] D. Corneil and U. Rotics. On the relationship betweenud-width and treewidthSIAM
Journal on Computing34(4):825-847, 2005.

[5] G. Cornuégjols and W. Cunningham. Compositions for @etrfjraphsDiscrete Mathematics
55(3):245-254, 1985.

[6] B. Courcelle and M. Kanté. Graph operations charaziegi rank-width. Discrete Applied
Mathematics157(4):627—-640, 2009. Abstract\WG’07.

[7] B. Courcelle, J. Makowsky, and U. Rotics. Linear timevadile optimization problems on
graphs of bounded clique-widtiheory of Computing Systen8s(2):125-150, 2000.

[8] B. Courcelle and S. Oum. Vertex-minors, monadic secortbkr logic, and a conjecture by
SeeseJournal of Combinatorial Theory, Series 87(1):91-126, 2007.

[9] W. Cunningham and J. Edmonds. A combinatorial decontipmstheory. Canadian Journal
of Mathematics32:734—-765, 1980.

[10] R. Downey and M. FellowsParameterized Complexityspringer Verlag, 1999.

15

[11] W. Espelage, F. Gurski, and E. Wanke. How to solve NRigaph problems on clique-
width bounded graphs in polynomial time. R6th International Workshop on Graph-
Theoretic Concepts in Computer Science (WG'®b)Jume 2204 olLNCS pages 117-128,
2001.

[12] F. Fomin, P. Golovach, D. Lokshtanov, and S. Saurabligqu@twidth: on the price of gen-
erality. In20th Annual ACM-SIAM Symposium on Discrete Algorithms (8@@D9), pages
825-834, 2009.

[13] M. Frick and M. Grohe. The complexity of first-order andnadic second-order logic re-
visited. Annals of Pure and Applied Logi¢30(1-3):3-31, 2004.

[14] T. Gallai. Transitiv orientierbare GrapheActa Mathematica Academiae Scientiarum Hun-
garicag 18:25-66, 1967.

[15] R. Ganian and P. Hlinény. On Parse Trees and Myhiliede-type Tools for handling
Graphs of Bounded Rank-width. Abstract'AtOCA’08 submitted manuscript
http://www.fi.muni.cz/"hlineny/Research/papers/MNto ols-2.pdf

[16] M. Gerber and D. Kobler. Algorithms for vertex-pamiting problems on graphs with fixed
clique-width. Theoretical Computer Scienc299(1-3):719-734, 2003.

[17] M. Habib, C. Paul, and L. Viennot. Partition refinemeattniques: An interesting algo-
rithmic tool kit. International Journal of Foundations of Computer Scien@(2):147-170,
1999.

[18] P. Hlinény and S. Oum. Finding branch-decomposgiamd rank-decompositionsSIAM
Journal on Computing38(3):1012-1032, 2008. AbstractEBA'07

[19] P.HIlinény, S. Oum, D. Seese, and G. Gottlob. Widttapaaters beyond tree-width and their
applications.The Computer Journab1(3):326-362, 2008.

[20] W.-L. Hsu. Decomposition of perfect graphdournal of Combinatorial Theory, Series B
43(1):70-94, 1987.

[21] D. Kobler and U. Rotics. Edge dominating set and colgsilon graphs with fixed clique-
width. Discrete Applied Mathematic426(2-3):197-221, 2003. Abstract®DDA'01

[22] S. Oum.Graphs of Bounded Rank-widtPhD thesis, Princeton University, 2005.

[23] S. Oum. Rank-width is less than or equal to branch-widtlournal of Graph Theory
57(3):239-244, 2008.

[24] S. Oum and P. Seymour. Approximating clique-width arahich-width.Journal of Combi-
natorial Theory, Series B6(4):514-528, 2006.

[25] R. Paige and R. Tarjan. Three patrtition refinement algms. SIAM Journal on Computing
16(6):973-989, 1987.

[26] M. Rao. MSOL partitioning problems on graphs of boundestwidth and clique-width.
Theoretical Computer Sciencg77(1-3):260-267, 2007.

[27] N.Robertson and P. Seymour. Graph minors. X. Obstastio tree-decompositiodournal
of Combinatorial Theory, Series, B2(2):153-190, 1991.

16

[28] J. A. Telle and A. Proskurowski. Algorithms for verteargitioning problems on partial
k-trees.SIAM Journal on Discrete Mathematics0(4):529-550, 1997.

17

