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Abstract

We introduce the graph parameter boolean-width, related to the number of different unions of
neighborhoods — Boolean sums of neighborhoods — across a cut of a graph. For many graph
problems this number is the runtime bottleneck when using a divide-and-conquer approach. For
an n-vertex graph given with a decomposition tree of boolean-width k, we solve Maximum Weight
Independent Set in time O(n?k2%¥) and Minimum Weight Dominating Set in time O(n? 4 nk23%).
With an additional n? factor in the runtime we can also count all independent sets and dominating
sets of each cardinality.

Boolean-width is bounded on the same classes of graphs as clique-width. Boolean-width is
similar to rank-width, which is related to the number of GF(2)-sums of neighborhoods instead
of the Boolean sums used for boolean-width. We show for any graph that its boolean-width is at
most its clique-width and at most quadratic in its rank-width. We exhibit a class of graphs, the
Hsu-grids, having the property that a Hsu-grid on ©(n?) vertices has boolean-width ©(logn) and
rank-width, clique-width, tree-width, and branch-width O(n).
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1. Introduction

Width parameters of graphs, like tree-width, branch-width, clique-width and rank-width, are
important in the field of graph algorithms. Many NP-hard graph optimization problems have
fixed-parameter tractable (FPT) algorithms when parameterized by these parameters (see [23] for
a recent overview, and [15, 16] for extensive ones).

The most widely known parameter is the tree-width tw(G) of a graph G, which was introduced
along with branch-width bw(G) in [41]. In time! O*(237%(%)) a decomposition of tree-width at
most 3.7tw(G) can be computed [3], and once a decomposition of tree-width & is given, there are
case-specific algorithms solving many NP-hard problems in time O*(2¢¥) for ¢ a small constant,
e.g. ¢ = 1.58 for Minimum Dominating Set [42]. Similar results hold for branch-width since
bw(G) < tw(G) + 1 < 1.5bw(G). A drawback of tree-width and branch-width arises with dense
graphs, where their value is high, e.g. the complete graph K,, has tree-width n — 1 and 2/%(5n) ig
thus exponential in n.

*Supported by the Norwegian Research Council, project PARALGO.
*Corresponding author. Tel: (+47) 55 58 40 36. Fax: (4+47) 55 58 41 99.
'We use O* notation that hides polynomial factors.

Preprint submitted to Elsevier May 9, 2011



The introduction of clique-width cw(G) in [12] was in this context a big improvement. A class
of graphs has clique-width bounded by a constant whenever tree-width/branch-width is bounded
by a constant, but cw(K,) = 2. Moreover, given a decomposition of clique-width k¥ many NP-
hard problems can still be solved reasonably fast, e.g. Minimum Dominating Set can be solved in
O*(2**) time [30], very recently improved to O*(22*) [6]. A drawback of clique-width was that
for a long time no algorithm was known for computing a decomposition of low clique-width. This
situation improved in 2005 with an algorithm that in time O*(23C“’(G)) computed a decomposition
of clique-width at most 23¢*(%) [36]. Although this can be far from the optimal clique-width, it
means there are FPT algorithms for all M SOL; problems when parameterized by clique-width [13].

This approximation for clique-width was achieved by introducing a new parameter, the so-called
rank-width rw(G), that is interesting in itself. Firstly, given an n-vertex graph a decomposition of
optimal rank-width can be computed in time O(f(rw(G))poly(n)), for some polynomial function
poly and a function f at least exponential [22]. Secondly, rank-width is potentially much smaller
than clique-width, tree-width and branch-width: for any graph G we have log cw(G) < rw(G) <
cw(@), and rw(G) < tw(G) 4+ 1 and rw(G) < bw(G) [35], in contrast to clique-width where there
exist graphs with cw(G) in 290%(&) [11]. A possible drawback of rank-width is that so far no
well-known NP-hard problems are solvable in time O*(2¢*) on a decomposition of rank-width &,
e.g. for Minimum Dominating Set the fastest runtime is O*(20-7%*+0(%)) [9. 17]. However, note
that for graphs having rank-width much smaller than clique-width and tree-width it will still be
preferable to use rank-width for e.g. Minimum Dominating Set.

In this paper we introduce a graph parameter called boolean-width. Its value is not only smaller
than clique-width but also potentially much smaller than rank-width: logcw(G) < boolw(G) <
cw(@) and logrw(G) < boolw(G) < 0.25rw?(G) + O(rw(G)), with both lower bounds tight to a
multiplicative factor as shown here for Hsu-grid graphs. Very recently, also well-known classes of
graphs, like random graphs and interval graphs, have been shown to have clique-width and rank-
width exponential in their boolean-width [1, 4]. We show that there are NP-hard problems solvable
in time O*(2°*) on a decomposition of boolean-width k, e.g. ¢ = 3 for Minimum Dominating
Set. A drawback of boolean-width is the same as with clique-width: so far the best algorithm for
computing a decomposition of low boolean-width is based on the algorithm for rank-width. It will
in the worst case, and in particular for Hsu-grids, return a decomposition having boolean-width
exponential in the optimal boolean-width.

Our paper is organized as follows. In Section 2 we define boolean-width based on the number
of unions of neighborhoods across the cuts given by a decomposition tree, and argue that it is a
natural parameter if the goal is fast divide-and-conquer algorithms, at least for independence and
domination problems. In Section 3 we compare boolean-width to other width parameters, and in
particular to rank-width. We show that logrw(G) < boolw(G) < 0.25rw?(G) + O(rw(G)). This
means that boolean-width is (constantly) bounded on the same classes of graphs as clique-width and
rank-width, but for higher bounds the situation is different. For a class of graphs C' say parameter
P is logarithmic, resp. polylog, if the value of P for any n-vertex graph G in C' is logarithmic in
n, resp. polylog in n. For example, boolean-width is logarithmic on interval graphs and polylog on
random graphs. Whenever P is logarithmic on C, resp. polylog on C, any algorithm with runtime
0*(20F(@)) | resp. O*(2PW(P(G)) | will on input a graph G in C have polynomial runtime, resp.
quasi-polynomial runtime. From the results depicted in Figure 1 it follows that if any of tree-width,
branch-width, clique-width or rank-width is polylog on a class of graphs then so is boolean-width,
while we show in Section 3 that boolean-width is logarithmic on Hsu-grids but the other parameters



Figure 1: Upper bounds tying parameters tw=tree-width, bw =branch-width, cw =clique-width, rw=rank-width,
and boolw =boolean-width. An arrow from P to @ labelled f(k) means that any class of graphs having parameter
P bounded by k will have parameter @ bounded by f(k) or O(f(k)), and oo means that no such upper bound can
be shown. The results surrounded by a box are shown in this paper. Most bounds are known to be tight, meaning
there is a class of graphs for which the bound is f(k) or Q(f(k)), except for the arrows tw — cw where an Q(2%/2)
bound is known [11], and rw — boolw where an (k) bound is known (Theorem 2 of this paper).

are not even polylog on Hsu-grids. Recent results showing that boolw(G) < bw(G) [1] imply that
if any of tree-width, branch-width, or clique-width is logarithmic on some graph class then so is
boolean-width, but as the Hsu-grids show the converse is not always true.

The question whether logarithmic rank-width implies logarithmic boolean-width is left open,
although in Section 4 we answer negatively a similar question at the level of graph cuts. More
precisely, we show a sequence of bipartite graphs whose adjacency matrices have a Boolean row
space of size equal to the number of their GF(2) subspaces. This result in Boolean matrix theory
implies that the measure for boolean-width can be quadratic in the measure for rank-width, when
restricting to graph cuts. The use of Boolean-sums in the definition of boolean-width means a
new application for the theory of Boolean matrices to the field of algorithms. Boolean matrices
already have applications, e.g. in switching circuits, voting methods, applied logic, communication
complexity, network measurements and social networks [14, 28, 32, 37].

Sections 5 and 6 are devoted to algorithms solving NP-hard problems on an n-vertex graph in
time O(2°*poly(n)) when given a decomposition tree of boolean-width k. Since the goal is to allow
practical implementations of these algorithms we strive for simple descriptions, small constants ¢
and low polynomial functions poly. In Section 5 we give a pre-processing routine setting up a
data structure that will allow runtime at the combine step to be a function of the boolean-width
of the decomposition tree, rather than the number of vertices. In Section 6 we show how to apply
dynamic programming on a decomposition tree while analysing runtime as a function of its boolean-
width. We focus on the Maximum Independent Set problem where we get runtime O(n2k22%) and
Minimum Dominating Set with runtime O(n? + nk2%¢). The algorithms can be deduced from
similar algorithms in [9], that appeared before the introduction of boolean-width. We give the
algorithms here using the new and simpler terminology and show that they have better runtime
due to faster pre-processing and better data structures. We also give algorithms to handle the
vertex weighted cases, also for Max and Min Weight Independent Dominating Set in the same
runtime, and finally the case of counting all independent sets and dominating sets of given size.

The question of efficiently computing a decomposition of low boolean-width is left open. How-
ever, our algorithms take as input an easy-to-build decomposition tree, namely a layout of the input
graph G by a tree having internal nodes of degree 3 and n leaves representing the n vertices of
G, and runtimes are expressed as a function of the boolean-width of the decomposition tree. This



paves the way for applying heuristics to build decomposition trees for boolean-width, as done in
the TreewidthLIB project for tree-width [5], and research on boolean-width heuristics is underway
[25]. We end the paper in Section 7 describing recent results and discuss some open problems.

2. Boolean-width

We deal with simple, loopless, undirected graphs and denote by {u,v} an edge between vertices
u and v. The complement of a vertex subset A of a graph G = (V(G), E(G)) is denoted by
A =V(G)\ A. The neighborhood of a vertex x is denoted by N(z) and for a subset of vertices X
we denote the union of their neighborhoods by N(X) = (J,cx IN(x). A subset of vertices X C V(G)
is an independent set if there is no edge in G between any pair from X . A set X C V(QG) of vertices
is a dominating set of G if X UN(X) = V(G). A cut of G is a 2-partition {4, A} of V(G). Two
vertices x,2' € A are twins across {4, A} if N(z)NA = N(z') N A. A vertex subset X C A is a
twin class of A if X is a maximal set of vertices all of whom are twins across {4, A}. The twin
classes of A form a partition of A. For disjoint vertex subsets A, B of G we denote by G(A, B)
the bipartite graph on vertex set AU B and edge set {{u,v} :u € AAv € BA{u,v} € E(G)}.
We denote by Mg the adjacency matrix of G, and by Mg(A, B) the submatrix of Mg with the
rows indexed by A and the columns by B. To ensure uniqueness of certain algorithms, e.g. for
computing representatives for vertex subsets, we assume a total ordering o on the vertex set of
G which stays the same throughout the entire paper. If vertex u comes before vertex v in the
ordering then we say u is o-smaller than v. For easy disambiguation, we usually refer to vertices
of a graph and nodes of a tree.

We want to solve graph problems using a divide-and-conquer approach. To this aim, we need
to store the information on how to recursively divide the input graph. A standard way to do this
(see branch decompositions of graphs and matroids [18, 36, 41]) is to use a decomposition tree that
is evaluated by a cut function.

Definition 1. A decomposition tree of a graph G is a pair (T, ) where T is a tree having internal
nodes of degree three and ¢ a bijection between the leaf set of T" and the vertex set of G. Removing
an edge from T results in two subtrees, and in a cut {4, A} of G given by the two subsets of V(G)
in bijection § with the leaves of the two subtrees. Let f : 2" — R be a symmetric function that is
also called a cut function: f(A) = f(A) for all A C V(G). The f-width of (T,9) is the maximum
value of f(A) over all cuts {A, A} of G given by the removal of an edge of T. We work also on
rooted trees. Subdivide an edge of T to get a new root node r, and denote by 7, the resulting
binary rooted tree. For a node u let the subset of V(&) in bijection ¢ with the leaves of the subtree
of T, rooted at u be denoted by A7, or simply by A, if the choice of subdivided edge and root r
is clear or does not matter. For an edge {u,v} of T, with u being the child of v in 7)., the cut
given by removing edge {u,v} from T can wlog be denoted {A,, A,}.

We define the rooted tree 7). because divide-and-conquer on decomposition tree (7', d) will solve
the problem recursively, following the edges of T, in a bottom-up fashion. In the conquer step we
must combine solutions from two cuts given by the edges from a parent node to its children. The
question of what ’solutions’ we store is related to what problem we are solving. For a cut {4, A}
note that if two independent sets X C A and X’ C A have the same union of neighborhoods across
the cut, i.e. N(X)NA = N(X')NA, then for any Y C A we have X UY an independent set if
and only if X’ UY an independent set. This suggests that when solving independent set problems



we do not need to treat such X and X’ separately, and that we should look for a decomposition
tree minimizing the number of different unions of neighborhoods across the cuts. This minimum
value is given by the boolean-width of the graph.

Definition 2 (Boolean-width). Let G be a graph and A C V(G). Define the set of unions of
neighborhoods of A across the cut {4, A} as

UA) ={Y CA: 3XCA A Y = N(X)n4A}

The bool-dim : 2V(@) — R function of a graph G is defined as bool-dim(A) = logy |[U(A)|. Using
Definition 1 with f = bool-dim we define the boolean-width of a decomposition tree, denoted by
boolw(T, ), and the boolean-width of a graph, denoted by boolw(G).

See Figure 2 for an example of a cut. U(A) is in a bijection with what is called the Boolean row
space of Mg(A, A), i.e. the set of vectors that are spanned via Boolean sum (1+1=1) by the rows
of Mg(A, A), see the monograph [28] on Boolean matrix theory. It is known that |U(A)| = |U(4)],
see [28, Theorem 1.2.3] and hence the bool-dim function is symmetric. The value bool-dim(A)
will be referred to as the boolean dimension of the matrix Mg(A, A) and of the bipartite graph
G(A, A). The Boolean row space of Mg(A, A) may not have a basis of size bool-dim(A), but we
do find representatives of that size; below Lemma 6 shows that for each Y € U(A) we find R C A
with |R| < bool-dim(A) and Y = N(R) N A. Let us consider some examples. If |[U(A)| = 2 then
G(A, A) has boolean dimension 1 and G(A, A) is the union of a complete bipartite graph and some
isolated vertices. If G(A, A) is a perfect matching of G then |U(A)| = 2IV(OI/2 and G(A, A) has
boolean dimension |V(G)|/2. If a graph has boolean-width 1 then it has a decomposition tree
such that, for every cut defined by an edge of the tree, the edges crossing the cut, if any, induce a
complete bipartite graph. Since we take the logarithm base 2 of |U(A)| in the definition of boolean
dimension we have for any graph G that 0 < boolw(G) < |V(G)|, which eases the comparison of
boolean-width to other parameters, and is in analogy with the definition of rank-width given in
Definition 3 below. The boolean-width of a graph is not always an integer; however, most of the
analysis will address the value 200-dim(4) “which is an integer.

In the next sections we compare boolean-width to other graph parameters, but the reader
interested only in algorithms can skip this and go directly to Section 5.

3. Value of boolean-width compared to other width parameters

In this section we compare boolean-width boolw to tree-width tw, branch-width bw, clique-
width cw and rank-width rw. For any graph G, it holds that the rank-width of the graph is
essentially the smallest parameter among tw, bw, cw,rw [35, 36, 41]: we have rw(G) < cw(G) and
rw(G) < bw(G) < tw(G) + 1 for bw(G) # 0. Accordingly, we focus on comparing boolean-width
to rank-width.

Rank-width was introduced in [34, 36] based on the cut-rank : 2V(@) — N function of a
graph G, with cut-rank(A) being the rank over GF(2) of Mg (A, A). To see the connection with
boolean-width note this alternative equivalent definition of rank-width.

Definition 3. Let G be a graph and A C V(G). Let A be the symmetric difference operator,
that applied to a family of sets gives the elements appearing in an odd number of sets. Define the
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Figure 2: Example graph G and A C V(G), with submatrix Mg (A, A), unions of neighborhoods U(A) and U(A)
with bool-dim(A) = log2|U(A)| < 2.33, as defined in Section 2. Note that cut-rank(A) = log2|D(A)| = 3, as
defined in Section 3. Vertex ordering sigma yields twin class representatives T'C'4 and T'Cy, and the list of =4
representatives LR with pointers to list of their neighbors LNR4, as defined in Section 5. Note that {h,b,c}
induces the largest independent set in G among the 7 subsets of A having =4 representative {a,c}. The graph
G(TCa4,TCx) captures the essential information across the cut {A, A}.

set of symmetric differences of neighborhoods of A across the cut {4, A} as

DA)={Y CA: IXCAANY =\ N@z)n4}
reX

The cut-rank : 2V — R function of a graph G is defined as cut-rank(A) = log, |D(A)|. Using
Definition 1 with f = cut-rank we define the rank-width of a decomposition tree, denoted by
rw(T,§), and the rank-width of a graph, denoted by rw(G).

We first investigate the relationship between the bool-dim and the cut-rank functions. Lemma 1
below can be derived from a reformulation of [9, Proposition 3.6]. We give a simplified proof here.
Let

DS(A) ={S C D(A): S is closed under the symmetric difference of its members}.

Lemma 1. [9] For any graph G and A C V(G) it holds that
1
logy cut-rank(A) < bool-dim(A) < logy |DS(A)| < Zcut—rankQ(A) + O(cut-rank(A)).

Proof: Let {a1,aq,..., Qeut-rank( A)} be a set of vertices of A whose corresponding rows in Mg (A, A)
define a GF(2)-basis of Mq(A, A). Then clearly N(a1), N(az), ..., N(Gcu-rank(a)) are pairwise
distinct. This allows to conclude about the first inequality.

To prove the second inequality we first bijectively map U(A) to some family F C 24, then, we
injectively map F to DS(A). Combining these we get |U(A)| = |F| < |DS(A)|, and the desired
inequality follows. We let

F ={Rx : 3X C A such that Rx is the output of the below algorithm on input X}.



Initialize Rx < () and Nx < 0;
For v € A taken in order o on V(G) do:
Let W = N(v) N A;
If WC N(X)NA and W\ Nx # 0 then add v to Ry and add all vertices in W to Nx.

Since the algorithm manipulates N(X) N A but not X, it is clear for all X, X’ C A that if
N(X)NA = N(X')NA then Rx = Rx/. Besides, at the end of the algorithm N(Rx) N A =
Nx = N(X)NA (the first equality is an invariant, and for the second note that the algorithm loops
through all v € X C A). In other words, if Ry = Rx/ then N(X)NA = N(X’)NA. Hence, there
is a bijection between U(A) and F. We now prove that the function f : F — DS(A) given by
f(Rx) = Aclosure({N(z) N A: z € Rx}) is injective, where Aclosure(G) is the unique smallest
family containing G that is closed under the symmetric difference of its members. Let Rx € F and
Rx/ € F such that Rx # Ry/. Then we know from above that N(X)NA # N(X’)N A, and hence
N(Rx)NA # N(Ry/)NA. Therefore, Aclosure({N(x)NA: x € Rx}) # Aclosure({N(z)NA: x €
Rx+}), to conclude the proof of the second inequality in the lemma.

DS(A) is in a bijection with the subspaces over GF(2) of the space spanned over GF(2) by
the rows of Mg(A, A). This space has dimension cut-rank(A) and for the number of subspaces
the third inequality in the lemma is well-known in enumerative combinatorics, and can be derived
from [19]. O

Lemma 1 holds for all edges of all decomposition trees, we therefore have the following corollary.

Corollary 1. For any graph G and decomposition tree (T,d) of G it holds that

logy rw(T, §) < boolw(T,8) < ~rw?(T, ) + O(rw(T, d)),

I N

logy rw(G) < boolw(G) < —rw*(G) 4+ O(rw(QG)).

This corollary can be combined with a result of [22] to get an approximation algorithm for
boolean-width, as follows. Let a graph G have decomposition trees (7,d) and (7”,¢") such that
rw(G) = rw(T,0) and OPT = boolw(G) = boolw(T’,5"). We then have from Corollary 1 that
boolw(T,8) < rw?(T,d) < rw?(T',8") < (2°PT)2. Hence, any decomposition tree of G of optimal
rank-width is also a decomposition tree of boolean-width within 229F7 of the optimal boolean-
width. There is an algorithm to compute a decomposition tree of G of optimal rank-width in
O(f(rw(@)) x |[V(G)|?) time [22]. We thus have the following approximation for boolean-width,
and we will see with below defined Hsu-grid graphs that this approximation bound is essentially
tight for algorithms based on computing optimal rank-width.

Theorem 1. Given an n-vertexr graph G there is an algorithm to compute in O(f(boolw(G))n?)
time a decomposition tree (T, 0) with boolw(T,§) < 22b°0w(G) - for some function f.

We now address the interesting fact that there are graphs whose boolean-width is exponentially
smaller than the value of the other main width parameters. In particular, we show that the lower
bound log, rw(G) < boolw(G) in Corollary 1 is tight to a multiplicative factor, by employing the
graphs used in the definition of Hsu’s generalized join [24] to define the Hsu-grid. Firstly, for all k£ >
1, the Hsu graph H}, is defined as the bipartite graph having color classes Ay = {a1,az,...,a511}
and By = {b1,ba,...,bg1} such that N(a1) = 0 and N(a;) = {b1,ba,...,bi—1} for all i > 2 (an



Figure 3: The Hsu graph Hs, the 4 x 5 grid, and the Hsu-grid HG4 5.

illustration is given in Figure 3). We consider the cut {Ay, Bx}. A union of neighborhoods of
vertices of Ay is always of the form {b1,b9,...,b;}, and as a consequence,

Fact: for any Hsu graph Hy, it holds that bool-dim(Ay) = logy k and cut-rank(Ay) = k.

We lift this tightness result on graph cuts to the level of graph parameters in a standard way, by
using the structure of a grid and the concept of a balanced cut (see e.g. [36, 40]): a cut {A, A} of a
graph G is balanced if $|V(G)| < |A| < 2|V(G)|. In any decomposition tree there exists an edge
of the tree which induces a balanced cut in the graph and any balanced cut of a grid will contain
either a large part of some row of the grid, or it contains a large matching using only horizontal
edges. The formal definition of the Hsu-grid is given below while an illustration is given in Figure 3.
Note that graphs with a similar definition have also been studied in relation with clique-width in
a different context [7].

Definition 4 (Hsu-grid HGp,). Let p > 2 and ¢ > 2. The Hsu-grid HG,, is defined by
V(HGpq) ={vij |1 <i<p AN 1<j<gq} with E(HG,,) being exactly the union of the edges
{{vij,vig151 11 <i<p A1 <5 <q} and the edges {{vij,virjp1} |1 <i<id <p A1<j<q}.
We say that vertex v; ; is at the i'® row and the j** column.

We begin with a useful lemma.

Lemma 2. Let p > 2 and q > 2. Let {A, A} be a balanced cut of the Hsu-grid HGpq. Then,
either the cut-rank of A is at least p/4, or HGp4(A, A) contains a q/6-matching as induced
subgraph.

Proof: We distinguish two self-exclusive cases.
e Case 1: for every row 1 < i < p there exists an edge {v; j,v; j+1} crossing {4, A}.

e Case 2: there is a row 1 < ¢ < p containing only vertices of one side of the cut, w.l.o.g.
vij € Aforall 1<j<gq.

In case 1, we can suppose w.l.o.g. that there are at least p/2 row indices i’s for which there
exists j such that v;; € A and v; ;41 € A. Therefore, there are at least p/4 row indices i’s for
which there exists j such that v;; € A and v; j41 € A and that no two rows among those are
consecutive (take every other row). Now we can check that the rank of the bipartite adjacency
matrix of the subgraph of HG)4(A, A) that is induced by the p/4 above mentioned pairs v; ; and
v; j+1 is at least p/4. Hence, the cut-rank of A is at least p/4.

In case 2, from the balanced property of the cut {4, A} we have that there are at least ¢/3
columns each containing at least one vertex of A. Then, for each such column j we can find an
edge {vi;j,vi+1,,} crossing {4, A}. Choosing one such edge every two columns will lead to a ¢/6
matching that is an induced subgraph of HG, 4(A, A). O



Lemma 3 below addresses the tightness of the lower bound on boolean-width as a function of
rank-width. Note its additional stronger property that for a special class of Hsu-grids any decom-
position tree of optimal rank-width has boolean-width exponential in the optimal boolean-width.
Thus we cannot hope that an optimal rank-width algorithm will always return a decomposition tree
whose boolean-width approximates the boolean-width of the graph by some polynomial function.
This means that for approximation of boolean-width via rank-width Theorem 1 is essentially tight.

Lemma 3. For large enough integers p and q. boolw(HG), ;) < min{2log, p,q} and rw(HG, ) >
min{ | §], [§]}. Moreover, if ¢ < |§| then any decomposition tree of HG), of optimal rank-width
has boolean-width at least [E].

Proof:  For simplicity, let m/n denote |7*]. To prove Lemma 3, we will focus on two types of
decomposition trees, that we call horizontal and vertical.

Let the k-comb be the tree we get from adding a new leaf node to each of the £ — 2 inner
vertices in the path on k vertices. The k leaves of the k-comb are thus naturally ordered from left
to right along the path. Let By be a binary tree with k leaves (its shape does not matter). Let
T}, 4 be the tree having pq leaves that we get from identifying each leaf of a p-comb with the root
of a B;. The horizontal decomposition tree (T}, 4,d5) is defined by letting ), induce a bijection
that assigns the leaves of the leftmost copy of B, to the first row of HG), 4, the leaves of the next
copy to the second row, and so on, until the leaves of the rightmost copy of B, that are assigned to
the p’th row of HG), 4. The vertical decomposition tree (1y,p,d,) is defined by letting ¢, induce a
bijection that assigns the leaves of the leftmost copy of B, to the first column of HG), 4, the leaves
of the next copy to the second column, and so on, until the leaves of the rightmost copy of B, that
are assigned to the ¢’th column of HG),,.

It is straightforward to check that the boolean-width of any vertical decomposition tree of HG,, 4
is at most 2logy p and the boolean-width of any horizontal decomposition tree of HG), 4 is at most
q. Therefore, boolw(HG,,) < min{2log,p,q}. Besides, it follows directly from Lemma 2 that
rw(HGp,q) = min{p/4,q/6}.

To prove the last statement of Lemma 3, we note that any horizontal decomposition tree of
HG), 4 has rank-width 2¢, and therefore the rank-width of HG,, , is at most 2¢ < p/4. We consider
a decomposition tree (T,9) of HG), of optimal rank-width, and an edge {u,v} of T" inducing a
balanced cut {4, A} in HG,,. From Lemma 2 and the fact that the rank-width of HG,, is at
most 2q < p/4, HGp,(A, A) has a ¢/6-matching as induced subgraph. Therefore, the value of
bool-dim(A) is at least ¢/6, and the boolean-width of (7)) is at least ¢/6. O

The following theorem sumarizes the tightness bounds on boolean-width as a function of rank-
width. Comparing with Corollary 1 note that the lower bound is tight to a multiplicative factor
while for the upper bound there is a gap between a linear and a quadratic bound.

Theorem 2. For large enough integer k, there are graphs Ly and U of rank-width at least k
such that boolw(Ly) < 2logrw(Ly) + 4 and boolw(Uy) > Lérw(Uk)J.

Proof: We define Lj, as a Hsu-grid HG) 4 such that £ < p/4 < ¢/6 and 2log, p < ¢. Then, from
Lemma 3, we have that rw(Ly) > p/4 > k and boolw(Ly) < 2logy p, which allows to conclude
about Lj. We define Uy, to be the k x k grid. It is known that the rank-width of Uy is k —1 [26].
The same idea as in the proof of Lemma 2 can be used to prove that boolw(Uy) > k/6. O



One of the most important applications of rank-width is to approximate the clique-width cw(G)
of a graph by logs(cw(G)+1)—1 < rw(G) < cw(G) [36]. Although we have seen that the difference
between rank-width and boolean-width can be quite large, we now show that, w.r.t. clique-width,
boolean-width behaves similarly as rank-width.

Theorem 3. For any graph G it holds that log, cw(G) — 1 < boolw(G) < cw(G). For large
enough integer k, there are graphs Ly and Uy of clique-width at least k such that boolw(Ly) <
2logy cw(Ly) + 4 and boolw(Uy) > |2cw(Uy)] — 1.

Proof:  For a proper introduction to clique-width refer to [12]. We will in fact not address directly
clique-width, but a closely related parameter called module-width [39], whose definition is based
on rooted binary trees and twin classes of a subset of vertices. Let (T,d) be a decomposition tree
of G. Let T, be the rooted binary tree we get by subdividing any edge of T for a root r. The
module-width of (7},0), denoted modw(T},d), is the maximum, over all nodes a of T, of the
number of twin classes of A”. Note that A? is not used in this definition and thus the choice of
rooting is important. The module-width of G, denoted modw(G), is the minimum module-width
taken over every decomposition tree (7),0) of G and over the subdivision of every edge e of T' to
obtain a rooted tree 7, [39].

We first prove that logy modw(T;, ) < boolw(T,d). Let {w,a} be an edge in T, with w being
the parent of a. Note from the definition of twins that x € A}, and y € A} belong to the same
twin class of A" if and only if N({z}) N A? = N({y}) N A”. Therefore the number of twin classes
of A7 is at most |U(A%)| = 2bo0kdim(4%) | Since this holds for every edge {w,a} in the trees T' and
T,, it allows to conclude that logy modw (T}, d) < boolw (T, §).

To now prove boolw(T, ) < modw(T,,d), we consider an edge {w, a} with w parent of a in T,
and denote by k the number of twin classes of Aj,. Since twins of A}, have the same neighbors in
A" we can generate at most 2 unions of neighborhoods from k twin classes, that is, |U(A~)| < 2.
In other words, bool-dim(A!) < k, and since this holds for every edge {w,a} in the trees 7' and
T,, it allows to conclude that boolw(T,d) < modw(T,,?).

It is known that for any graph G we have modw(G) < cw(G) < 2 - modw(G) [39]. Combining
with the above bounds we obtain the inequalities in the statement of Theorem 3. Finally, we use the
same graphs L and Uy as in the proof of Theorem 2 and the well-known fact that rw(G) < cw(G)
for any graph G [36] in order to conclude that boolw(Ly) < 2logy cw(Ly)+4. Recall that Uy is the
k x k square grid and so it is known that the clique-width of Uy is at most k + 1 [20]. Combining
this with boolw(Uy) > k/6 allows to conclude. O

It would be nice to close the gap between the linear and quadratic upper bound on boolean-width
as a function of rank-width, i.e. by either improving the bound boolw(G) < trw?(G) + O(rw(G))
in Corollary 1 or alternatively showing its tightness. We show in the next section tightness of
quadratic upper bound on bool-dim as a function of cut-rank. However, we have not been able to
lift this result on graph cuts to the level of graph parameters by using the structure of a grid, so
we leave this as an open question.

Question: Is the boolean-width of every graph subquadratic in its rank-width?

4. The cardinality of the Boolean space can equal the number of GF(2) subspaces

We prove in this section that the quadratic upper bound on bool-dim as a function of cut-rank
from Lemma 1 is tight. More precisely, we exhibit a graph G and A C V(G) where |U(A4)| =
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|IDS(A)|, leading to bool-dim(A) = log, |DS(A)| = O(cut-rank*(A)). Note that U(A) is in a
bijection with the Boolean space spanned over the Boolean algebra by the rows of Mg(A, A). The
question of the possible cardinalities of the Boolean space of a given {0, 1}-matrix has been studied
by several researchers, see [44] and the bibliography therein. Recall that

DS(A) ={S C D(A) : S is closed under the symmetric difference of its members}

is in a bijection with the vector subspaces over GF(2) of the vector space spanned over GF(2)
by the rows of Mg(A, A). Tt follows from Definition 3 that this space has dimension, or rank,
k = cut-rank(A). The fact that the number of its vector subspaces is therefore ©(k?) is well-
known in enumerative combinatorics — sum of Gaussian binomials — and derivable from a recursion
formula in [19]. The following are the important graphs and cuts.

Definition 5. For any integer k > 1 the graph Ry is defined as a bipartite graph having color
classes A = {ag: S C{1,2,...,k}} and B ={bs: S C{1,2,...,k}} such that as and by are
adjacent if and only if |SNT| is odd.

For an example, note that Ro is the disjoint union of 2 isolated vertices and a cycle of length
6. The “natural” cut of the bipartite graph Ry given by {A, B} has cut-rank k and was used
in [9] to give an alternative characterization of the graphs of rank-width at most k. The graph
Ry helps in characterizing rank-width since any bipartite graph induced by a cut of cut-rank k
is, after removing twins, an induced subgraph of Rj. Let us remark that the graph Rj; has many
interesting properties, and that graphs with a similar definition based on a parity check appear in
the book of Alon and Spencer [2] and recently also in a paper by Charbit, Thomassé and Yeo [10].
Observation 1 and its Corollary 2 are two important properties of Ry, whose proofs are essentially
a straightforward parity check.

Observation 1. [t holds for any pair of vertices ag and ar of Ry that N(as)AN (ar) = N(asar)-
The same holds for bg and bp.

In terms of linear algebra, Observation 1 tells us that the GF(2) sum of the two rows in
Mp, (A, B) corresponding to ag and ap will result in the one corresponding to agar. This helps
as a shortcut when dealing with adjacency issues in Rj. For any set family G, we let Aclosure(G)
be the unique smallest family containing G that is closed under the symmetric difference of its
members. By convention we let ) € Aclosure(G) for all G. In particular, Aclosure() = {0} =

Aclosure({0}).
Corollary 2. It holds for any vertex subset X C A of Ry that

Aclosure({N(ag): as € X}) C {N(ag): as € A}.

Note that ay is a vertex of Ry and that N(ag) = 0. In terms of linear algebra, Corollary 2
tells us in particular that the row space over GF(2) of Mp, (A, B) is exactly the set of rows of
Mp, (A, B): roughly, when using Observation 1, we never “go outside” Ry by creating a fictive
vertex because agar is a vertex of Ry . Before proving the main claim of the section, we need the
following tool.

Lemma 4. Consider the graph Ry and any X C A such that
{N(az): az € X} = Aclosure({N(az): az € X}). Then, for any as € A with N(ag) C N(X)
we have ag € X .

11



Proof: Let F = {N(az): az € X}. We note a technical remark. From F = Aclosure(F) we
have that () € F. The only vertex in A having an empty neighborhood is ay. Therefore, we always
have ay € X . We conduct a proof by induction on the notion of the dimension of F. For a family
G closed under the symmetric difference of its members, we let Bg be the smallest subfamily of
G such that G = Aclosure(Bg), and define the dimension dim(G) of G as the cardinality of Bg.
Note by the minimality of Bg that () ¢ Bg. Let us prove Lemma 4 by induction on p = dim(F).

If p=0, then By =0, which means F = {(}. Therefore, X = {ag}, and so N(X) ={. The
only vertex in A having an empty neighborhood is ag. In particular, N(ag) C ) will directly mean
as = ap € X.

If p =1 then F\{(} is a singleton. So X contains only one non-trivial vertex, say X = {ag, ar}
with T'# 0. If ag = ay then trivially ag € X so we suppose ag # ag. Since X has so few members
N(ag) € N(X) simply means N(as) C N(ar). If S\T # 0, we define W = {i} with i € S\T. If
S C T, wedefine W = {i,j} with i € S and j € T'\'S. In both cases we have by € N(ag)\N(ar),
contradicting to the fact that N(ag) C N(ar). Hence, S =T, which in particular means ag € X.

We now assume that Lemma 4 holds whenever dim(F) < p— 1, with p — 1 > 1, and want
to prove that it also holds for the case where dim(F) = p. In particular p > 2 and by this fact
X \{ap} contains at least two vertices. Like before, if ag = agy then trivially as € X so we suppose
as # ag. Let ar be a vertex in X such that ar # ag, and ap # ag. If T\ S # 0, we define
W = {i} with i € T'\ S, otherwise ' C S and we define W = {i, 5} with i € S\T and j € T, so
that in any case we have by € N(ar)\ N(ag). Let X' ={az € X : by ¢ N(az)}.

We want to first prove that N(as) € N(X’). Assume for a contradiction that there exists
by € N(ag)\ N(X'). Then, we have by, by, and byaw are three distinct vertices (because
bw # by ). Observation 1 tells us that N (bywaw’) = N(bw )AN (by-), and therefore we deduce
bwaw' € N(ag) \ N(X'). (It is easier here to see the property by looking at the corresponding
{0,1} values in the matrix Mg, and use the “GF(2) sum” N(bwaw’) = N(bw)AN (byy) on the
coordinates ag and ay, for every az € X'.) Since {by,bwaw'} C N(ag) € N(X), there exist
vertices ay € X \ X' and ay € X \ X’ such that both |[UNW’| and |V N (WAW’)| are odd. Note
that not belonging to X’ means both |[UNW/| and |V N W] are odd. Hence, U and V cannot be
equal because on the one hand we can deduce that |[U N (WAW’)| is even (from the facts |[UNW]|
odd and |U N W'| odd), while on the other hand we know that |V N (WAW’)| is odd. But then
[(UAV)NW]| is even and [(UAV)NW’| is odd (a parity check or alternatively we can according to
Observation 1 check the “GF(2)” sum N(ayay) = N(ay)AN(ay) inside Mp, at the coordinates
bw and by ). That [(UAV)NW| is even means apay is a member of X’ because apay is not
adjacent to by, and clearly N(ayay) = N(ay)AN(ay) belongs to F by the symmetric difference
closure of F. That |(UAV) N W’| is odd means apay is adjacent to by. This contradicts the
assumption by € N(ag) \ N(X’). Hence, N(as) C N(X').

We now want to prove that 7' = {N(az): az € X'} is closed under the symmetric difference
of its members. Pick N(az) and N(az/) therein: both of them belong to F, so from Observation 1
and the fact F is closed under symmetric difference, we deduce that N(azaz/) € F, in other words
azaz € X . Besides, note that we can also write X' = {az € X, |W N Z| is even} and it is clear
that if both |WNZ| and [WNZ'| are even, then |W N (ZAZ’)| is even. Hence, F' is closed under
the symmetric difference of its members. We also check that dim(F’) < p—1. Indeed, F' C F, so
we only need to show that Aclosure(F) properly contains Aclosure(F'). We consider ap: clearly
N(ar) € F. Recall that by € N(ar) \ N(ag) and that ' = {N(az): az € X Nbw ¢ N(az)}.
Therefore every member N(az,) € Aclosure(F’) is such that by ¢ N(agz,). Since by € N(ar),
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we deduce N(ar) ¢ Aclosure(F'). Hence, dim(F') < p— 1. Now, we can conclude by applying
the inductive hypothesis on F. O]

Theorem 4. For the cut given by the bipartite graph Ry, it holds that |U(A)| = |DS(A)| and hence
bool-dim(A) = logy |DS(A)| = O(cut-rank?(A)).

Proof: As mentioned before, cut-rank(A) is the dimension of D(A) and thus logy |[DS(A)| =
O(cut-rank?(A)) follows from [19]. Since by definition bool-dim(A) = log, |[U(A)| it remains only
to show |U(A)| = |DS(A)|. We do this by giving the following bijection between the two sets. Let

f:24 = 22” pe defined as fY)={N(as): bs ¢ Y}. We claim that the restriction of f to U(A)
is a bijection between U(A) and DS(A).

By definition, it is clear that f(Y) C D(A) for all Y C 24. It can also be checked that the sets
N(ag), taken over all ag € A, are pairwise distinct. Therefore, f is a well-defined injection from
24 into 2P(4) | Let us show that the image of U(A) by f is included in DS(A). Let Y € U(A)
and let X C A be such that Y = N(X). Let N(ag) € f(Y) and N(ar) € f(Y). By definition,
neither bg nor by belong to N(X). In particular, for every ay € X, we have that both |[S N W]|
and |T'NW| are even, which also means [(SAT)NW]| is even. This implies bgar ¢ N(X). Hence,
N(asar) € f(Y). From Observation 1 we have N(asar) = N(as)AN (ar). Hence, f(Y) is closed
under the symmetric difference of its members. In other words, f(Y) € DS(A). (Note that since
Y € U(A), we have by ¢ Y, hence ) = N(ag) € f(Y).)

Let F € DS(A). In order to conclude Theorem 4, we only need to find a vertex subset
Y € U(A) such that f(Y) = F. It is a basic property in linear algebra that to any such F
can be associated with a basis B C {N(ag) : as € A} so that F = Aclosure(Br). From
Corollary 2, F C {N(as) : as € A}, solet X C A be such that F = {N(ag) : as € X}. We
define Y = {bs : ag ¢ X}, so that we clearly have from definition f(Y) = {N(ag): bs ¢ Y} =
{N(as) : as € X} = F. Thus, the only thing left to show is that Y € U(A). More precisely, we
will prove that Y = N(X'), where X' = {ag: bs ¢ N(X)}.

e Let bg € N(X'). Then, there exists ap € X’ such that |SNT| is odd. By definition of X’,
we know that by ¢ N(X). Since |SNT| is odd (hence ag and by are adjacent in Ry ), we
deduce that ag ¢ X . Then, by definition of Y, we deduce that bg € Y. Hence, N(X') C Y.

e Let bg ¢ N(X'). Then, for every ar € X', |SNT| is even. In other words, for every
br ¢ N(X), |SNT| is even. We can also say: for every by ¢ N(X), br ¢ N(ag). Therefore,
N(ag) € N(X). Lemma 4 then applies and tells us ag € X . This, by definition of Y, means
bs ¢ Y. Hence, Y C N(X').

O

5. A data structure for representatives bounded by boolean-width

In this section we give a pre-processing routine setting up a data structure useful for dynamic
programming on any decomposition tree (7',9) of a given graph G. It will allow runtime at the
combine step to be a function of boolw(T,d), rather than the number of vertices of G. The data
structure is particularly useful when the goal is good runtime as a function of boolean-width. For a
vertex subset A we will give in Definition 7 an equivalence relation on subsets of A, whose classes
will be in a natural bijection with U(A). It has in the worst case 20°°-4m(4) equivalence classes,
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but we show how to represent each of them by a subset of A of size at most |bool-dim(A)|. We
show how to compute these representatives and how to set up a data structure that given X C A
in O(]X|) time will access its representative. This access is a main operation in the inner loop of
many dynamic programming algorithms, and it must be fast if we want good overall runtime.

We begin with a pre-processing step that is useful also outside the context of boolean-width.
Indeed, when solving an optimization problem on a graph G by divide-and-conquer along its
decomposition tree (T, 4), the cuts of G given by edges of T" are crucial. Since T is a tree having
internal nodes of degree three and n = |V(G)| leaves there will be 2n — 3 such cuts. For the
combine step, the important information across a cut {4, A} is captured by the bipartite subgraph
G(A, A) of G. In speeding up the handling of G(4, A), a basic idea is that if two vertices have the
same neighbors in G(A, A) then we access the neighborhood information only for one of them.

Definition 6. Let G be a graph and A C V(G). Denote by TC4 C A the set containing for each
twin class of A the o-smallest vertex of the class. Define ntc(T,d), the number of twin classes of
a decomposition tree (7',9), as the maximum value of |T'Cy4| and |T'C4| taken over all the 2n — 3
cuts {A, A} obtained by removing an edge of T .

See Figure 2 for an example. The measure ntc(T, ) was first introduced in [38, Chapter 6.2]
where it was called the bimodule-width of (7',0). The subgraph G(T'C4,TCy) together with twin
class sizes, is a compact representation of the subgraph G(A4, A), and is stored as Mq(T'Ca,TC5).
Its use allows runtime at each cut to be bounded by a function of ntc(T,d) rather than |V (G)|.
To this purpose we also want a data structure that given any vertex x € A in constant time will
find the vertex y € TCy4 for x and y being in the same twin class of A. For a single cut there is
a simple O(m) time partition refinement algorithm for this task.

Lemma 5. [9] Let G be an n-vertex m-edge graph and (T,0) a decomposition tree of G. We can
in time O(nm) compute for every edge of T' the two vertex sets TCy and TCy associated to the
cut {A, A} given by the edge. We can also in the same time compute for every x € A a pointer to
y € TCy for x and y being in the same twin class of A, and similarly for every x € A.

Note that we can avoid the above O(nm) factor, and in Lemma 10 we will show an alternative
with a faster runtime whenever ntc(T, ) = o(y/m), which typically holds for a good decomposition
tree.

After this first pre-processing step we are ready to consider the main data structure for rep-
resentatives. Recall that one of the motivations behind the definition of boolean-width is that for
many optimization problems two subsets of A having the same neighbors across the cut {4, A} do
not need to be treated separately. This leads to the following equivalence relation on subsets of A,
whose classes are in a natural bijection with U(A).

Definition 7. Let G be a graph and A C V(G). Two vertex subsets X C A and X' C A are
neighborhood equivalent w.r.t. A, denoted by X =4 X', if N(X)\ A= N(X")\ A.

For each equivalence class of =4 we choose one element as a representative for that class. The
representative should be a subset of TC'4 and the lexicographically o-smallest among the sets in
the class having minimum cardinality. More formally we define for A C V(G) the list LR, of all
representatives of =4.
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Definition 8 (List of Representatives of =4 and their Neighbors). Given a graph G and
A C V(G) we define the list LR, of representatives of =4 as the unique family LRy C 24
satisfying:

1) VX C A JR € LRy such that R=4 X
2) VR € LRy, if R=4 X then |R| < |X]|
3) VRe LRy, if R=4 X and |R| = |X| then R lexicographically o-smaller than X .

Let LN R4 be the list containing the unions of neighbourhoods of members of LR4 in G(T'C4,TCy)
i.e. LNRy = {N(R) N TCZ : Re LRA}.

See Figure 2 for an example. Note that LNR, is the projection of U(A) on TC;. It is
straightforward to check that for any R € LRy we have R C TC4 (both LR4 and TCy4 are
defined using o) and that there is a bijection between the members of LR, and the equivalence
classes of =4.

Lemma 6. Let G be a graph, A CV(G) and R € LRy. For any Y,Z C R s.t. Y # Z, we have
Y #4 Z. Thus |R| < |bool-dim(A)].

Proof: Suppose, for a contradiction, that there are Y C R and Z C R such that Y # Z and
Y=4Z. Wlog. Y\Z#( andsolet ve Y \Z. Since Y =4 Z we have N(v)NAC N(Z)NA.
Hence, N(R\ {v}) N A = N(R)N A, contradicting the minimum cardinality of R. Thus, there
are 2/l mutually non-equivalent subsets of R, each yielding a distinct element of U (A). Since
|U(A)| = 2beok-dim(A) we have |R| < |bool-dim(A)]. O

We now describe an algorithm to compute at the same time LR, LN R 4, and pointers between
the two lists in such a way that given an element N of LN R4 we can access the element R of LR 4
such that N = N(R)NA, and vice versa. Firstly, note that by brute force the graph G(T'Cs,TC5)
can be computed in time O(|T'C4| x |[T'C|) after the preprocessing given in the previous section.

Lemma 7. Let G be an n-vertex graph and (T,0) a decomposition tree of G. Assume the pre-
processing described in Lemma 5 has been done. Then, in time O(n - ntc*(T,d) - boolw(T, ) -
2b001w(T’5)) we compute for every cut {A, A} associated to an edge of T the list of representatives
LRy, its neighbor list LNR 4, and pointers such that R € LRy and N € LNR4 point to each
other if and only if N = N(R)N A.

Proof: We describe the operations needed for a cut {A, A} in Algorithm 1. Our global computation
simply repeats this operation over the 2n — 3 cuts given by the edges of T'.

Let us first argue for the correctness of the algorithm. The first iteration of the while-loop will
set {v} as representative, for every v € TCy, and there exist no other representatives of size 1 in
LR, . The algorithm computes all representatives of size ¢ before it moves on to those of size i+ 1.
LastLevel will contain all representatives of size i while NextLevel will contain all representatives
of size i+ 1 found so far. Every representative will be expanded by every possible node and checked
against all previously found representatives. The only thing left to prove is that any representative
R can be written as R’ U {v} for some representative R’'. Assume for contradiction that no R’
exists such that R = R’ U {v}. Then let v be the lexicographically largest element of R, then
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Algorithm 1 List of representatives and their neighborhood
Initialize LR4, LNR4, NextLevel to be empty
Initialize LastLevel = {0}
while LastLevel = () do
for R in LastLevel do
for every vertex v of TC'4 do
R =RU{v}
compute N' = N(R')NTCx
if ' #4 R and N’ is not contained in LNR then
add R’ to both LR4 and NextLevel
add N’ to LNR4 at the proper position
add pointers between R’ and N’
end if
end for
end for
set LastLevel = NextLevel, and NextLevel = ()
end while

R\ {v} can not be a representative so let R” be the representative of [R\ {v}|=,. We know
that R” U {v} =4 R, we know that |R” U {v}| < |R| and that R” U {v} comes before R in a
lexicographical ordering contradicting that R is a representative.

We now argue for the runtime. Let k = bool-dim(A). The three loops are executed once for
each pair consisting of an element R € LR, and a vertex v € T'C'y. The number of representatives
is exactly 2%, while the number of vertices is |T'C4|, hence at most O(|T'C4|2) iterations in total.
Inside the innermost for-loop we need to calculate the neighborhood of R’. Note when processing
R’ that we have already computed N(R), so that we can find N(R') NTCy in O(|TCy|) time.
Then to see if R’ =4 R we compare the two neighborhoods in O(|TC4|) time. Then we want to
check if the neighborhood is contained in the list LN R 4. For fast runtime we can represent LN R 4
using the so-called self-balancing binary search tree (or AVL tree): searching takes logy(2¥) = k&
steps where for each step comparing two neighborhoods takes O(|T'C|) time, yielding O(|TC4|k)
in total. Inserting into the sorted list LN R4 takes O(|T'C4|k) time, and in the other lists O(1)
time. This means all operations in the inner for-loop can be done in O(|TC%|k) time, giving a
runtime of O(|TC4||TC4|k2¥) for each cut {A, A}. O

Given X C A we will now address the question of computing the representative R of [X]=,,
in other words accessing the entry R of LR, such that X =4 R. The naive way to do this is
to search LNR4 for the set N(X) N A. However, we want to do this faster, namely in O(]X|)
time. To this aim we construct an auxiliary data-structure that maps a pair (R, v), consisting of
one representative R from LR, and one vertex from T'Cjy, to the representative R’ of the class

[RU{v}]=,.

Lemma 8. Let G be an n-vertex graph and (T,0) a decomposition tree of G. Assume the pre-
processing described in Lemmata 5 and 7 has been done. Then, in time O(n-ntc?(T,d)-boolw(T, §)-
2b0"l“’(T’5)) we compute for every cut {A, A} associated to an edge of T a datastructure allowing,
for any X C A, to access in O(|X|) time the entry R of LRa such that X =4 R.
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Algorithm 2 Initialize datastructure used for finding representative R of [X]=,

Initialize M to a two dimensional table with [LR4| x |TC4| elements.
for every vertex v of TC'y do
for R in LR4 do
R = RU{v}
find Ry in LR4 that is linked to the neighborhood N(R') NTCy; in LNR4
add a pointer from M[R]|[v] to Ry
end for
end for

Algorithm 3 Finding representative R of [X]=,

Initialize R to be empty.

for every vertex u of X do
find v € TC4 with u and v in same twin class of A, using pointer described in Lemma 5
R = M|R][v] for M computed in Algorithm 2

end for

Proof: As with Lemma 7, we only describe the algorithm for a cut {4, A}. The computation
of the datastructure is described in Algorithm 2, while Algorithm 3 describes how to use it. The
idea is to build R from an “incremental” scanning of the elements of X = {z1,22,...,2,} (see
Algorithm 3): an algorithmic invariant is that at step ¢ the value of R is exactly the representative
of {z1,z2,...,2;}. The correctness of this invariant (of Algorithm 3) depends on the correctness
of the computation of table M in Algorithm 2. To prove the latter correctness, just notice that
the algorithm essentially exploites the bijection between the elements of LR4 and LNRy.

Let us analyse the complexity of Algorithm 2. Let k = bool-dim(A). There are two for loops
in the algorithm iterating O(|T'C4|2*) times in total. For each iteration, finding the neighborhood
of R takes O(|TCy4|) time, searching LNRy4 takes O(|TCy4|k), and comparing neighborhoods
takes O(|T'C4|) time, and the remaining operations take constant time. Hence, the runtime is
O(|TC4||TCx|k2%) for each cut {A, A}. The complexity analysis for Algorithm 3 is straightfor-
ward. O

6. Dynamic programming for fast runtime by boolean-width

We show in this section how in general to apply dynamic programming on a decomposition tree
(T, 6) of a graph G while analysing runtime as a function of boolw(T', §). We focus on the Maximum
Indpendent Set (Max IS) and Minimum Dominating Set (Min DS) problems. The algorithms given
for Max IS and Min DS can be deduced from similar algorithms in [9], that appeared before the
introduction of boolean-width. We give the algorithms here using the new and simpler terminology
and show that they have better runtime due to faster pre-processing and better data structures. We
also give algorithms to handle the vertex weighted cases and the case of counting all independent
sets and dominating sets of given size.

Note that we do not assume any further information from the input of (7',d) other than 7'
being a tree with internal nodes of degree three and ¢ a bijection between its leaves and V(G). As
is customary, and as in Definition 1, we first subdivide an arbitrary edge of T" to get a new root
node r, denote by T, the resulting rooted tree, and let the algorithm follow a bottom-up traversal
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of T,. Recall that for a node a of T'" we denote by A, the subset of V(G) in bijection ¢ with the
leaves of the subtree of T, rooted at a. For any dynamic programming on decomposition trees it
is important to keep in mind the below observation, that follows directly from definitions.

Observation 2. If in the tree T, node w has children a and b then {A,, Ay, Ay} forms a 3-
partition of V(G).

Another crucial observation is the coarsening of neighborhood equivalence classes when travers-
ing from a child node a to its parent node w.

Observation 3. Let G be a graph with A, C Ay CV(G) and let XY C A,. If X =4, Y then
X =Ay, Y.

Proof: Since X =4, Y we have N(X)NA, = N(Y)NA,. Since A, C A, we have 4, C 4, and
thus N(X)N A, = N(Y)N A, implying X =4, Y. O

With each node w of T, we associate a table data structure Tab,,. In general, the table will
store optimal solutions to subproblems related to the cut {4, A, }. To simplify the initialization
of T'ab; (for every leaf [ of T,) we assume throughout the section that G has no isolated vertices:
there are straightforward preprocessings in order to remove isolated vertices for any of the problems
we consider.

6.1. Maximum Independent Set

Let us first consider the Maximum Independent Set (Max IS) problem. For Max IS the table
Tab,, is particularly easy to define since it will be indexed by the representatives of the classes of
=4, -

Definition 9. The table Tab,, used for Max IS at a node w of 7, has index set LR4,. For
R € LRy, the table should store

Taby,[R] = Srrclzzx{|5| :S =4, Rand S an IS of G}.

Note that Tab, has exactly 20°0-@m(Aw) entries. For a leaf I of T, A = {3(1)} and =4,
has two equivalence classes: one containing () and the other containing A;, and these are also
the representatives. We initialize tables at leaves of T, brute-force by setting Tab;[0)] = 0 and
Tabi[{6(1)}] = 1. The combine step filling the table at an inner node after tables of its children
have been filled is given in Algorithm 4.

Lemma 9. The Combine step for Max IS is correct.

Proof: Let node w have children a,b and assume Tab,, T'ab, have been filled correctly. We show
that after executing the Combine step in Algorithm 4 the table T'ab,, is filled according to Definition
9. Let R, € LR, and assume [,, C A,, is an IS of G such that R,, =4, [, We first show that
Taby[Ry) > |Lw|. Let I, = I,NA, and I, = I,,N Ay and let R, € LRa,, Ry € LR4, be such that
R, =4, I, and Ry =4, Ip. Thus I,Ul, isan IS in G and R, U Ry, is an IS in G(R,, Rp). Also, I,
and I, are independent sets in G, and therefore Tab,|[R,] > |I,| and Taby|[Rp) > |Ip|. Thus, when
considering the pair R,, R, the combine step will ensure that the entry for the representative of
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Algorithm 4 Combine step for Max IS at node w with children a,b
for all Ry, € LRy, do
initialize Taby,[Ry] =0
end for
for all pairs R, € LRa,, Ry € LRy, do
if Ry URy is an IS in G(R,, Rp) then
find the representative R, of the class [R, U Rp]=,
Taby|Ry)| = maz(Taby[Ry|, Taby[R,] + Taby[Ry))
end if
end for

the class [R, U Rp|=, ~is at least |I,| + [I| = |[|. It remains to show that this representative is
R,. By Observation 3 we have R, =4, I, and Ry =4, I so that R, U Ry =4, I U I,. Since
I, =1, U I, and we assumed R, =4, I, we therefore have R, U Ry, =4, R, as desired.

To finish the correctness proof, we need to show that if Tab,,[R,] = k then there exists I,, C A,
with |I,| =k and I, =4, Ry and I, an IS in G. For this, note that the Combine step increases
the value of Tab,[R,)] only if there exist indices R, € LR, and Ry € LR 4, such that R, U Ry, is
an IS in G(R,, Rp), and R,URy, =4, Ry, and Taby[R,] = ko, and Taby[Ry] = ky, and ke +ky = k.
Since T'ab,, T'aby are filled correctly we have two independent sets I, I, in G with R, =4, I, and
Ry =4, Ip and |I,| = kq and |I| = ky. We claim that I, U I, is the desired I,,. Since R, U R} is
an IS of G(R,, Ry) it is clear that I, Uy is an IS in G of size k, + ky = k. It remains to show that
I,Ul, =4, Ry . By Observation 3 we have R, =4, I, and Ry =4, Ip so that R,URy, =4, 1,U1.
Since we assumed R, U Ry =4, R, we therefore have I, U, =4, R, as desired. O

Theorem 5. Given an n-vertex graph G and a decomposition tree (T,0) of G, we can solve
the Maximum Independent Set problem on G in time O(n(n + ntc(T,6) - k2% + k22%F)) where
k = boolw(T,8). The runtime can also be written O(n?k2%F).

Proof: We start by running, for all cuts {4, A} given by edges of T', the pre-processing routines
described in Section 5. However, for a faster runtime we replace Lemma 5 by below Lemma 10.
That is, we first compute for all such cuts the twin classes T'C' 4 and T'C; as described in Lemma, 10,
for a global runtime in O(n(n + ntc?(T,d))). Second, we compute representatives of neighborhood
equivalence classes LRy, LRz, LNR,, and LN Ry as described in Lemma 7. This takes time
O(n - ntc®(T,8) - k2¥). Third, set up the datastructure for finding a representative of [X]=,
and [Y]=, as described in Lemma 8. This takes the same time as the latter operation, namely
O(n - ntc(T, ) - k2F).

We then perform the dynamic programming described in this section, subdividing an arbitrary
edge of T' by a new root node r to get T, initializing the table for every leaf of T., and traversing
T, in a bottom-up fashion filling the table for every internal node based on already filled tables of
its children. At the root r we have A, = V(G) so that by induction on the rooted tree applying
Lemma 9 the size of the maximum IS in G is found at the unique entry of T'ab, .

The combine step is executed O(n) times and loops over O(22%) pairs of representatives. In each
execution of this loop we must check that there are no edges between R4, and R4, , and this can
be done in time O(k?). Also we must find the representative of the class [R,URy)=, , which using
the data structure of Lemma 8 takes time O(|R, U Ry|) which is O(k) by Lemma 6. The runtime
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is therefore O(n(n + ntc?(T,0) - k2% 4+ k?22%)) | and also O(n?k2%) since ntc(T,§) < min{n, 2"}
and k <n. O

To avoid the nm factor in the runtimes we had to replace the simple computation of twin classes
given by Lemma 5 by the following Lemma.

Lemma 10. Let G be an n-vertex graph and (T,8) a decomposition tree of G. In time O(n(n +
ntc?(T,8))) we compute for every edge of T the two vertex sets TCy and TCx associated to the
cut {A, A} given by the edge. In the same time we compute for every x € A a pointer to y € TCx
for x and y being in the same twin class of A, and similarly for every x € A.

Proof: It is more convenient to deal with rooted trees here, so we address the rooted tree T, as
in Definition 1. The idea is to proceed in two steps. In the first step we compute in a top-down
traversal of T} the set T'C'y, for every node a of 7T,. Then, in a second top-down traversal of 7,
we compute all sets TC’E.

A refinement operation of an ordered partition P = (P, P, ..., P;) using X as pivot is the
act of splitting every part P; of P into P, N X and P; \ X. With the appropriate use of data
structure [21], such an operation can be implemented to run in O(|X|) time. If the elements of
each P; are initially ordered, the refinement operations will preserve their order. We initialize
P, = {V(G)}, where the elements of V(G) follow in order o. The following claim constitutes the
first top-down traversal of T;..

Claim 10.1. ([8, Lemma 2]) We can compute TC 4, for every a in T, in O(n?) time.

The full proof of Claim 10.1. is given in [8] but let us sketch the idea. If a = r there is nothing
to show, otherwise let w be the parent of a and let b be the sibling of a. Suppose by induction
that the twin-class partition P, = {P1, P»,..., P;} of A, has been computed before a is visited
(when w was visited). Then, refining Py[As] = {P1N Ay, PPN A4, ..., PN Ay} using N(z) N A,
as pivot, for every z € A, will result in exactly the twin-class partition of A,. This idea can be
implemented to run globally in O(n?) time (the main trick is to compute N(z)N A, for any z € A,
since P,[A,] can be computed simply by refining P, using A, as pivot). The implementation
details are described in [8, Section 3]. After this, we scan every class P of P, and pick the first
element of P in order to build the list T'Cy, .

We now compute T'Cz~ for every node a of T, by a second top-down traversal of 7). Recall
w is the parent of a and b. Clearly, A, = A, U A,,. The twin-class partitions P, and Pj of A,
and A have already been computed as described above. By induction we suppose that, before
visiting a, the twin-class partition Pg of A, has also been computed (when w was visited). Pick
one representative vertex per part in P, and put them together in a list R, (we can also use
R, =TC},, ). Likewise, pick one representative vertex per part in P, U Py and put them together
in a list Rg, with additional pointers so that from every element x of Rz we can trace back the
partition class of P, U Py containing x. We then compute H = G(R,, Rz). We now initialize
Pz = {Rg} and, for every z € R,, refine Pz using the neighborhood of z in H as pivot. Finally,
for every class P of Pz, we replace every element z of P by all the elements belonging to the
partition class in P, U Py for which x is representative. It is then straightforward to check that
Pz is now exactly the twin-class partition of A,. After this, we scan every class P of Py and pick
the first element of P in order to build the list T'C4-.

We now analyse the time complexity of the global computation. First we have to run the
algorithm mentioned in Claim 10.1, which takes O(n?) time. For the rest, note that |R,| < ntc(T, )
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and |Rz| < 2 x nte(T,d), i.e. we can compute R,, Rz and H in O(ntc*(T,§)) time (brute-force
adjacency check for H). The time for initializing the data structure for partition refinement, and
for subsequently performing all refinement operations is globally linear in the size of H, namely
in O(ntc?(T,d)). The remaining operations consist basically in following the pointers, whose total
sum is bounded by the size of Rz. Whence, TC7- can be computed in O(ntc*(T,d)) for every
such a, leading to an O(n - ntc?(T,d)) runtime on T}. O

6.2. Counting independent sets

Let « be the size of the max IS in G. Counting the number of independent sets in G of
cardinality k£ for each 0 < k < a can be accomplished by a similar algorithm having runtime with
an additional factor a?. The table T'ab,, must be indexed by LRa, x {0,1,...,|Ay|} and store

Taby [R][k] =|{S:S C A, and S =4, Rand S an IS of G and |S| = k}|.

The initialization at a leaf [ of T} should be:

Tabi[6(1)][0] = 0

Tab[6(D][1] = 1

Taby[P][0] =1

Taby[0][1] =0

The combine step is given in Algorithm 5. Note that two families F,, and Fj of vertex subsets,
taken from two disjoint sets of vertices, can be combined into |F,|*|Fp| larger vertex subsets. Note
also that in the inner loop of the combine step kg, ky < «. The proof of correctness and runtime
remains otherwise much the same.

Algorithm 5 Combine step for Counting number of IS at node w with children a, b
for all R, € LRy, and all k:0 <k <|A,| do
initialize T'aby,[Ry|[k] =0
end for
for all pairs R, € LRa,, Ry € LR4, do
if R,URy is an IS in G(R,, R) then
find maximum k, and kp such that Tab,[R,][ke] > 0 and Taby[Rp][ks] > 0
find the representative R, of the class [R, U Rp]=,
for all pairs 7,7 : 0<1 <k, and 0 < j <k, do
Taby[Ryl[i + j] = Taby[Ry][i + j] + Tabe[Ra][i] * Taby[Ry)[j]
end for
end if
end for

Theorem 6. Given an n-vertex graph G and a decomposition tree (T,9) of G, we can count the
number of independent sets of G of any size in time O(a*n?k2%), where k = boolw(T,§) and o
is the size of the maximum independent set in G .

6.3. Minimum Dominating Set

We want to solve the Minimum Dominating Set (Min DS) problem on a graph G by dynamic
programming along a decomposition tree of G. The algorithm for Min DS is more complicated
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than the one given for Max IS, but its runtime as a function of boolean-width is only slightly higher.
For a cut {A, A} note that, unlike the case of independent sets, a set S of vertices dominating A
will include also vertices of A that dominate vertices of A “from the outside”. This motivates the
following definition.

Definition 10. Let G be a graph and A CV(G). For X CA, Y CA,if AAX CN(XUY) we
say that the pair (X,Y) dominates A.

Note that ’pair domination’ behaves well w.r.t. the neighborhood equivalence classes.

Lemma 11. Let G be a graph and A C V(G). Let X C A, Y)Y C A, and Y =5 Y. Then
(X,Y) dominates A if and only if (X,Y’) dominates A.

Proof: Since (X,Y) dominates A we have A\X C N(XUY). Since Y =4 Y’ we have N(Y)\A =
N(Y'")\ A. Then it follows that A\ X C N(X UY”’), meaning (X,Y’) dominates A. O

We will index the table Tab, at w by two sets: one representing the equivalence class of =4
that partially dominates A “from the inside”, and one representing the equivalence class of =
that dominates the rest of A “from the outside”.

Definition 11. The table Tab,, used for Min DS at a node w of T, has index set LRy4,, x LRy
For Ry, € LRy, and Ry € LRE the table should store

Taby [Ry][Rw] = SHCIHI {IS|: S =4, Ry and (S, Ry) dominates A, }

and oo if no such S exists.

Note that Tab, has exactly 22b00k-dim(Aw) entries. For every node w we assume that initially
every entry of Tab,, is set to co. For a leaf [ of T, we have A; = {§(I)}. Note that =4, has only
two equivalence classes: one containing () and the other containing A;. For =a;, We have the same

situation: one class containing () and the other containing A;. We initialize Tab; brute-force. Let

R be the representative of [A;|=

Tab[][0] = oo

Tab {5 H0] = 1

Tab[{5(1)}[R] =1

Tabi[0][R] = 0.

Let w be a node with two children a and b, and assume that Tab, and Tab, have been
correctly computed. Note that each of them can have up to 220°0w(T9) entries, and therefore a
naive computation of T'ab,, by looping over all pairs of entries in the children tables will result in
a worst case runtime in O(2%00w(T:0)) multiplied by the time spent for finding the right entry of
the parent table Tab, that we want to update. Instead, in Algorithm 6 we apply Observation 2
to give an O*(23b""l“’(T’5)) time algorithm by looping over only 20°01w(T0) entries in each table.

The following lemma will be useful in the correctness proof.

Al

Lemma 12. For a graph G, let A, B,W be a 3-partitioning of V(G), and let S, C A, Sy, C B and
Sw CW. (Sa, SpUSy) dominates A and (Sp,Sa U Sy) dominates B iff (Sq U Sy, Sy) dominates
AUB.

22



Algorithm 6 Combine step for Min DS at node w with children a,b
for all R, € LRy, Ry € LRE do
initialize T'aby[Ry]|[Rw] = 00
end for
for all R, € LRa,, Ry € LRa,, Ry € LR5— do
find the representative Rz of the class [Ry U R@];T
find the representative Rj of the class [R, U RE]EH
find the representative R, of the class [R, U Rp]=,
Tabyw[Ry][Rw) = min(Taby,|[Ry)[Rw), Taba[Ra)[Ra] + Taby[Ry][Ry])
end for

Proof: Let S =85,US,US,. Clearly, (S, SpUS,) dominates A iff A\ S, C N(S). Likewise,
(Sp, Sq U Sy) dominates B iff B\ S, C N(S). Therefore, A\ S, C N(S) and B\ S, C N(S) iff
AUB\ S,US, C N(S) iff (S,USp,Sy) dominates AU B. O

Lemma 13. The Combine step for Min DS is correct.

Proof: Let node w have children a,b and assume Tab,, T'ab, have been filled correctly. We show
that after executing the Combine step in Algorithm 6 the table T'ab,, is filled according to Definition
11. We first show for every R,, € LRy, and Ry € LRAT, that if there is a set Sy, =4,, Ry such
that (Su, Rw) dominates A, then Tab,[R|[Rw] < |Sw|. Let S, = Sy, N A, and Sy = Sy N Ap.
The algorithm loops over all triples of representatives: at some point it will check (Rq, Ry, Rw),
where R, is the representative of [So]=,, and R, is the representative of [Sp]=, . We know that
(S U Sy, Ry) dominates A,, so it follows from Lemma 12 that (S,, Sp U Ry) dominates A,. Note
that Rz as computed in the combine step is the representative of [Sp U Rﬁ]zﬂ so that it follows
from Lemma 11 that (S, Rz) dominates A,. Hence, Tab,|[R,][Ra] < |Sa|. Arguing analogously
we have that Taby[Rp|[R;] < |Sp|. Thus, to conclude that Tab,[Ry][Rw] < [Sa| 4 || = [Sw] all
we need to show is that Ry, =4, Rq U Rp. By Observation 3 we have R, =4, S, and Ry =4, Sp
so that R, U Ry =4, SqUSp. Since S, = S, U S, and we assumed R, =4, Sy, we therefore have
R, U Ry =4, Ry as desired.

To finish the correctness proof, we need to show that if Tab,[R,][Ry| = k then there exists
Sy C Ay, with |Sy| = k and S, =4, Ry such that (Sy, Rw) dominates A,, in G. For this note
that, from the Combine step and assumed correctness of children tables, there must exist indices
R, € LR, and Ry € LRy, , with S, =4, R, and S, =4, R}, such that (S,, Rz) dominates A, , and
(Sp, Ry;) dominates A, and [SqUSy| = s, and with Rg the representative of [Rj, U Ry =, and Ry
the representative of [RaURE]EH. We claim that S,US} is the desired S,,. Since (SpURzw) =1, Ra
and (S, Rz) dominates A, it follows from Lemma 11 that (S, S, U Ry) dominates A,. Likewise,
(Sp, SqURw) dominates Ap. We deduce from Lemma 12 that (S,US}y, Ry) dominates A,UA, = Ay, .
It remains to show that S, US, =4,, Ry. By Observation 3 we have R, =4, S, and Ry =4, Sp so
that R, U Ry =4, SqUSy. Since we assumed R, U R, =4,, R, we therefore have S, U S, =4, Ruw
as desired. d

Theorem 7. Given an n-vertex graph G and a decomposition tree (T,8) of G, the Minimum

Dominating Set problem on G can be solved in time O(n(n + ntc®(T, ) - k2F + k223%)) where
k = boolw(T,8). The runtime can also be written O(n? + nk23%).
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Proof: 'We start by running, for all cuts {4, A} given by edges of T', the pre-processing routines
described in Section 5, with Lemma 5 being replaced by Lemma 10. These operations take time
O(n - ntc(T, §) - k2¥) (see proof of Theorem 5).

We then perform the dynamic programming described in this section, subdividing an arbitrary
edge of T' by a new root node r to get T, initializing the table for every leaf of T., and traversing
T, in a bottom-up fashion filling the table for every internal node based on already filled tables of
its children. At the root r we have A, = V(G) so that by induction on the rooted tree applying
Lemma 9 the size of the maximum IS in G is found at the unique entry of T'ab, .

The combine step is executed O(n) times and loops over O(23%) triplets of representatives. In
each execution of this loop we must find the representative for R, URw, R,URw, and R,URy. Each
of the three is of size O(k), so finding their representatives using the data structure of Lemma 8
takes O(k) time (see Lemma 6). The runtime is therefore O(n(n + ntc?(T,d) - k2% 4 k23F)), and
also O(n? 4+ nk23%) since ntc(T,5) < 2F. O

6.4. Counting dominating sets
Counting the number of dominating sets in G of cardinality k for each 0 < k < n can be

accomplished by a similar algorithm having runtime with an additional factor n?. The table Tab,,
should be indexed by LRa, x LRz—x{0,1,...,n} and store

Taby[Ry|[Rwllk] = |{S:S C Ay and S =4, Ry, and (S, Ry) dominates A, and |S| = k}|.

The initialization at a leaf [ of T, sets all entries to zero except (for R the representative of

[AI]ETl):
Taby[6(D)]0][1] =1
Tab[6(D][R][1] =1
Taby[0][R][0] = 1
The Combine step is given in Algorithm 7. There are four things to consider for the correctness.
All sets S we count have to be partial dominating sets, we must keep track of their sizes correctly,
we must not leave out any such set and we must not count any such set twice. All these except not
counting twice follow easily. Let us therefore argue that no dominating set is counted twice. We do
this by induction on the decomposition tree from the leaves to the root. Assume for contradiction
that there is an entry T'aby, Ry, Ry] with some set S counted twice, while tables T'ab, and Taby
at children of w are correct. The combine step loops over all triples R,, Ry, Rw and Ry is used
in the index of the update so Rz must have been the same in any update counting S. Note also
that S uniquely defines the two representatives R, and Ry (since the representative for S N A,,
respectively SN A, is unique), and S also uniquely defines the integers k, and k;. But then there
is only a single triple R,, Ry, Rw and unique integers kq, kp that could have resulted in an update
of Taby|Ry, Rw| counting the set S so correctness follows.

Theorem 8. Given an n-vertex graph G and a decomposition tree (T,9) of G, we can count the
number of dominating sets of G of any size in time O(n3k2%F), where k = boolw(T, d).

6.5. Independent Dominating Sets

Combining the requirements of independence and domination in the definition of tables and
in the algorithm we can solve both the Minimum and Maximum Independent Dominating Set
problems. Note for the runtime given in Theorem 5 that O(n(n + ntc®(T, ) - k2F + k222%)) is
bounded by O(n? + nk2%) since nte(T,6) < 2F.
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Algorithm 7 Combine step for Counting number of dominating sets at node w with children a,b
for all Ry, € LRa,,, Ry € LRz, k€[0,n] do
initialize T'aby [Ry][Rw|[k] =0
end for
for all R, € LR4,, Ry € LRa,, Ry € LR5 - do
find the representative Rz of the class [Ry U Rygl=
find the representative Ry of the class [Rq U Ryl=

find the representative R, of the class [R, U Rp]=,
for k,=0to k, <n do
for k, =0 to ky, <n do
Tabay [ Ruo) [Ros][Fa + ]+ = Taba[Ra][Ral[ka] x Taby[Ry)[R5][ks)
end for
end for
end for

| &

<

Corollary 3. Given an n-vertex graph G and a decomposition tree (T,0) of G, we can solve the
Minimum Independent Dominating Set and Mazimum Independent Dominating Set problems on G
in time O(n? + nk23%), where k = boolw(T, ).

6.6. Weighted cases

If the input graph G comes with a weight function on the vertices w : V(G) — R we may wish
to find the independent set with largest sum of weights, or the dominating set with smallest sum of
weights. This can be accomplished in the same runtime as Max IS and Min DS and requires only
a very small change to the algorithm. For S C V(G) let w(S) = X,csw(v). The tables must store

For Max weighted IS: Tab,[R] = max {w(S) : S =4, R and S an IS of G}

SCAy

For Min weighted DS: T'ab,,[R][R] = Srggl {w(S): S =4, R and (S, R') dominates A, }
and the algorithms remain the same. Likewise for finding an independent dominating set with
smallest or largest weight.

7. Conclusion and Perspectives

Since the first introduction of boolean-width at IWNPEC 2009 (essentially an extended abstract
of this paper) several new results have appeared that we now summarize. Using the pre-processing
routines described in Section 5 of this paper, algorithms with runtime O*(QC‘kQ) have been given for
a large class of vertex subset and vertex partitioning problems (the so-called (o, p)-problems and
D,-problems [43]) for problem specific constants ¢ [1], given a decomposition tree of boolean-width
k.

For several classes of perfect graphs, like interval graphs and permutation graphs, it has been
shown that boolean-width is logarithmic and that a decomposition witnessing this can be found
in polynomial time [4]. On the other hand rank-width, and hence the other main parameters,
can on these graph classes have value proportional to the square root of the number of vertices.
Additionally, for these graph classes the above-mentioned vertex subset and partitioning problems
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will have runtime O*(2¢%), yielding the first polynomial-time algorithms for the weighted versions
of all those problems on e.g. permutation graphs.

Recent results tie boolean-width nicely to tree-width and branch-width by showing that for
any graph we have boolw(G) < tw(G) + 1 and boolw(G) < bw(G) for bw(G) # 0 [1]. For a
random graph G on n vertices it has been shown that whp boolw(G) = ©(log?n) [1], this in
contrast to rw(G) = tw(G) = w(G) = cw(G) = nte(G) = modw(G) = O(n) [27, 29, 31].
Moreover, a decomposition tree witnessing the polylog boolean-width of a random graph can be
found in polynomial time, so that we get quasi-polynomial time algorithms for the above-mentioned
problems on input a random graph.

An important question concerns the practical applicability of boolean-width. The divide-and-
conquer algorithms given here are practical and easy to implement. A heuristic for computing
a decomposition tree of low boolean-width has been implemented and experiments made on the
graphs in TreewidthLIB show that boolean-width could indeed have practical applicability [25].

There are many questions about boolean-width left unanswered. It is known that the boolean-
width of a graph is smaller than its tree-width, branch-width and clique-width, but it is not clear
how high the boolean-width can be as a function of its rank-width. Is boolean-width linear in
rank-width, or subquadratic in rank-width, for every graph? It has been shown that a k x k grid
has rank-width exactly k — 1 [26]. We have seen that its boolean-width lies between & (see
Theorem 2) and k + 1 (derived from the upper bound given by clique-width), but it would be nice
to close this gap and find its exact value.

On the theoretical side it would be nice to improve on the 2200w () _approximation to opti-
mal boolean-width of Theorem 1 that applies the algorithm computing a decomposition tree of
optimal rank-width of [22]. Note that the runtime of that approximation algorithm is FPT when
parameterized by boolean-width of the input graph. The best we can hope for is an FPT algorithm
computing optimal boolean-width, but any algorithm computing a decomposition tree of boolean-
width polynomial in the optimal boolean-width would be nice. It seems such an algorithm will
require some new techniques, as indicated by the tightness of Theorem 1 adressed in Lemma 3 and
also the fact that bool-dim is not a submodular function [33]. The graphs of boolean-width at most
one are exactly the graphs of rank-width at most one, i.e. the distance-hereditary graphs. What
about the graphs of boolean-width at most log, 3, do they also have a nice characterization, and
can they be recognized in polynomial time? More generally, is there an alternative characterization
of the graphs of boolean-width at most logs k for any integer k, for example by a finite list of
forbidden substructures, like minors for tree-width and vertex-minors for rank-width?
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