
Temporal Matching on Geometric Graph Data?

Timothe Picavet1, Ngoc-Trung Nguyen2, and Binh-Minh Bui-Xuan3

1 ENS Lyon, timothe.picavet@ens-lyon.fr
2 HCM University of Education, trungnn@hcmue.edu.vn
3 LIP6 (CNRS – Sorbonne Université), buixuan@lip6.fr

Abstract. Temporal graphs are the modeling of pairwise and historical
interaction in recordings of a dataset. A temporal matching formalizes
the planning of pair working sessions of a required duration. We depict
algorithms finding temporal matchings maximizing the total workload,
by an exact algorithm and an approximation. The exact algorithm is
a dynamic programming solving the general case in O∗((γ + 1)n) time,
where n is the number of vertices, γ represents the desired duration of
each pair working session, and O∗ only focuses on exponential factors.
When the input data is embedded in an Euclidean space, called geometric
data, our approximation is based on a new notion of temporal velocity.
We revise a known notion of static density [van Leeuwen, 2009] and
result in a polynomial time approximation scheme for temporal geometric
graphs of bounded density. We confront our implementations to known
opensource implementation4.

Keywords: temporal matching · geometric graph · PTAS

1 Introduction

Data collected from automated processes come ordered by the time instants
when they are recorded. Graphs in this context appear in several variants: link
streams [18], time varying [7], temporal [14] or evolving graphs [6]. These struc-
tures occur in the study of transportation timetables [9,15,16], navigation pro-
grams [26], email exchanges [17], proximity interactions [27], and many other
types of dataset [28]. Therein, a pair working session is a repeated interac-
tion of two vertices over a certain amount of time. Pair working helps in op-
timizing global parameters such as total fuel consumption when co-sailing with
Fello’fly [2], or code reliability when running XP agile projects [1].

The total workload of pair working is captured in the notion of a temporal
matching [4]. Given an integer γ, we define formally problem γ-Matching in the
subsequent section; informally, it consists in finding a maximum cardinality set
of compatible pair working sessions, each to be recorded in at least γ consecutive
timestamps in a historical dataset of graphs.

? Supported by Courtanet – Sorbonne Université convention C19.0665 and ANRT
grant 2019.0485.

4 Our source code is available at https://github.com/Talessseed/
Temporal-matching-of-historical-and-geometric-graphs

https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs
https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs

2 T. Picavet et al.

When γ = 1, the problem can be reduced to (classical) static Matching,
which consists in computing a maximum independent edge set of a static graph.
It can be solved in polynomial time by many well known algorithms [8,13,23],
heuristics [11], greedy approximations for large input [31]; as well as in an on-
line algorithmic context [12,22,30]. It is very intriguing to know whether these
enthusiastic results extend to the non-static case of γ-Matching.

Unfortunately, very little positive results are known for the temporal case.
Even when restricting the input to be a path at each instant, one can very
naturally obtain a grid-like structure by folding out a temporal graph instance
over the time dimension. On these structures, careful polynomial and parame-
terized reductions allow to obtain very good hardness results, see e.g. [3,21] and
the extensive bibliography therein. Likewise, γ-Matching is NP -hard as soon
as γ > 1 [4], even on very restricted input instances [20]. To the best of our
knowledge, most notable positive results for γ-Matching are: a fixed param-
eter tractable (FPT [10]) algorithm parameterized by the matching number of
the union graph5 [20], an implemented kernelization producing quadratic ker-
nels [4,5] (in the sense of FPT algorithms), and an implemented 2-approximation
from a greedy approach [5].

Our paper addresses the following question: Would there be fast algorithms
computing γ-Matching on data recorded from human activities? Can they be
implemented? Human data are not artificial, yet very naturally captured by a
geometric graph: an embedding of a vertex set into a Euclidean space, along with
a real number representing the threshold below which an edge exists between two
vertex-points, see e.g. [19]. The formalism is especially useful in transportation
and social networks where geometric proximity implies higher probability of
successful routing, resp. social relationship [24].

Theoretical contribution. In order to obtain good runtime, we consider natural
behaviour of embedded vertex-points. The main crux is to carefully examine
a notion of partial derivative, called velocity. This parameter helps ruling out
unrealistic leaps of a vertex-point from one recorded instant to another. We
revisit, ubiquitously, the parameter control used in [29] which is related to the
(static) density of vertex-points. Then, we present and implement a PTAS for
temporal geometric graphs of bounded velocity and density.

Numerical comparison to previous works. We compare our result to previ-
ously known works. The FPT algorithm given in [20] has not been implemented.
In particular, part of this algorithm relies on complex algorithmic results in
matroid theory. We skip the corresponding analysis. The kernelization imple-
mentation [4,5] helps in reducing the input data, but not in solving the reduced
instance. On instances where we can afford the runtime, we use it as preprocess-
ing step for the PTAS, exactly the same way done for the greedy implementa-
tion [5]. Essentially, the PTAS is compared to the greedy implementation. Our

5 If a temporal graph is considered to be a sequence (Gt)t∈T of graphs over the same
vertex set, then the edge set of the union graph is the union of all edge sets of Gt
for all t.

Temporal Matching on Geometric Graph Data 3

numerical results are in favour of the latter, which finds temporal matching of
size ≈ 10% bigger than the PTAS on generated geometric datasets. Since the
theoretical approximation factor of the greedy algorithm is 2 [4], which is much
worse than the theoretical ratio of the PTAS on our datasets, these experiments
raise the question whether both implementations perform badly, or the greedy
approximation factor is near optimal on geometric data.

We devise and implement an optimal solution for the general case of γ-
Matching terminating in reasonable time on parts of our datasets, that is,
in O∗((γ + 1)n) time where n is the number of vertices and O∗ only focuses
on exponential factors. The PTAS and the greedy experimental approximation
ratios are then determined, which average at 1.02-approximation from optimal.

We present in Section 2 the formal framework of problem γ-Matching.
Section 3 presents a PTAS solution for the case of temporal geometric graphs of
bounded velocity and density. Section 4 presents a FPT solution for the general
case. Due to space restriction, properties marked with (?) are given without
proof, and only the essential numerical experiments are summarised in Section 5.

2 Pair working sessions in historical graph data

Every graph G = (V,E) in this paper is simple, loopless and undirected. We also
note V (G) = V and E(G) = E. When, and only when, u 6= v ∈ V , we abusively
note uv = vu = {u, v} ∈

(
V
2

)
the edge between u and v.

Graph data collected over a duration of time are formalized as a triple L =
(T, V,E), called link stream, such that T ⊆ N is an interval, V a finite set of
vertices, and E a lexicographically ordered subset of T ×

(
V
2

)
called recorded

edges. We also note T (L) = T , V (L) = V and E(L) = E.
Pairwise collaborations over a duration are defined as γ-edges, with γ an

integer. A γ-edge Γ ⊆ E(L) is a subset of γ consecutive edges recorded in E(L),
namely Γ = {(i, uv) ∈ E(L) : t ≤ i < t+ γ} for t ∈ T (L) and u 6= v ∈ V (L). We
also note such γ-edge Eγ(t, uv).

We note Eγ(L) the set of all γ-edges of L. Two γ-edges Γ, Γ ′ ∈ Eγ(L) are
dependent if there exist instant i and vertices u 6= v, u 6= w, such that (i, uv) ∈ Γ
and (i, uw) ∈ Γ ′; the two γ-edges are independent otherwise. In planning pair
working sessions, a conflict-free planning is called a γ-matching, and defined as
a set of pairwise independent γ-edges. The following problem is NP -hard for
γ > 1 [4], even on very restricted classes of link streams [20].

Problem γ-Matching:
Input: a link stream L
Output: a γ-matching of maximum cardinality in L.

Geometric model: Let L be a link stream. The subgraph Gt of L induced at
time t ∈ T (L) is defined as V (Gt) = V (L) and E(Gt) = {uv : (t, uv) ∈ E(L)}.
For d ∈ N, graph G is a unit ball graph if there exists a point set {cv : v ∈
V (G)} ⊆ Rd, called set of centers, such that E(G) = {uv : u 6= v∧‖cu−cv‖ ≤ 1}.
Link stream L is a unit ball stream if the subgraph of L induced at any time

4 T. Picavet et al.

t ∈ T (L) is a unit ball graph. In this case, we denote the center of vertex v
at time t in L as cv(t). L has velocity ν if ‖cv(t + 1) − cv(t)‖ ≤ ν for every
t ∈ T \ {max(T)} and v ∈ V (L). We also refer to balls as intervals when d = 1
and disks when d = 2.

Line graph extrapolation: γ-Matching links itself to MaximumIndepen-
dentSet on the following input. The γ-line graph Lγ of a link stream L is defined
as V (Lγ) = Eγ(L) and E(Lγ) = {{Γ, Γ ′} : Γ and Γ ′ are dependent γ-edges}.
By definition, solving γ-Matching on a link stream is equivalent to solving
MaximumIndependentSet on its γ-line graph.

3 Approximation for unit ball streams

In this section, we use velocity and extend van Leeuwen approximation [29,
Theorem 6.3.8, page 74] for MaximumIndependentSet on unit disk graphs to
the γ-line graph of a unit ball stream L. Since the γ-line graph is not necessarily
a unit ball graph, our main idea is to examine the middle of the two vertex-
points of every γ-edge Γ ∈ Eγ(L): the middle point can not vary much because
of velocity. Corollary 1 below is crucial to our approach.

For a γ-edge Γ = Eγ(t, uv) ∈ Eγ(L) between u 6= v ∈ V (L) starting at time
t ∈ T (L), the (middle) center cΓ is defined as the middle point of the centers of
u and v recorded at the starting time t of the γ-edge, cΓ = 1

2 · (cu(t) + cv(t)).
Using velocity of the centers, which can only move γ−1 times while maintaining
the existence of Γ , we refer to the normalized center of Γ as cΓ = 1

1+(γ−1)ν · cΓ .

Proposition 1. In a unit ball stream, if Γ and Γ ′ are dependent γ-edges, then
‖cΓ − cΓ ′‖ ≤ 1.

Proof. Let Γ = Eγ(t, uv) and Γ ′ = Eγ(t′, u′v′). Because of dependency, we
suppose w.l.o.g. that u = u′, and t ≤ t′ ≤ t + γ − 1. We note from Euclidean
triangular inequality that ‖cΓ −cΓ ′‖ ≤ ‖cΓ −cu(t)‖+‖cu(t)−cu(t′)‖+‖cu(t′)−
cΓ ′‖. Now, ‖cΓ−cu(t)‖ ≤ 1

2 because ‖cu(t)−cv(t)‖ ≤ 1. Since u = u′, we deduce

likewise that ‖cu(t′) − cΓ ′‖ ≤ 1
2 . Finally, ‖cu(t) − cu(t′)‖ =

∥∥∥∥ t
′−1∑
i=t

(
cu(i + 1) −

cu(i)
)∥∥∥∥ ≤ t′−1∑

i=t

‖cu(i+ 1)− cu(i)‖ ≤ (t′ − t)ν ≤ (γ − 1)ν. ut

Since the normalized centers are uniquely computed from their starting in-
stant, this is also a fast checking method for independent γ-edges. We refer to
the unit ball graph having as geometric model the set of normalized centers of
all γ-edges of L the normalized γ-line graph of L.

Corollary 1. The normalized γ-line graph of a unit ball stream is a unit ball
graph having the γ-line graph as partial subgraph. Any independent set of the
γ-line graph is also an independent set of its normalized graph

Temporal Matching on Geometric Graph Data 5

We now adapt the notion of density [29] to the normalized γ-line graph of
a unit ball stream L of dimension d. Let A ⊆ Eγ(L). We refer to the set of all
γ-edges of A starting at time t ∈ T (L) as At = {Eγ(t, uv) ∈ A : u 6= v ∈ V (L)}}.
The thickness of A is the maximum cardinality of such a set, taken over every
possible starting time, that is, θ(A) = max{|At| : t ∈ T (L)}.

In the sequel, all cubes are axis-aligned cubes. For a unit d-cube U ⊆ Rd, we
denote AU = {Γ ∈ A : cΓ ∈ U}. The density of A is the maximum thickness of
such a set, taken over every possible unit d-cube, that is, ρ(A) = max{θ(AU) :
U ⊆ Rd a unit d-cube}. The density of L is ρ(L) = ρ(Eγ(L)).

We will describe in Lemma 1 a decrementing process for the Euclidean space
dimension. Informally, this is a partial density relaxing the first dimension of
the unit d-cubes to infinite unit cuboids. For a unit (d − 1)-cube H ⊆ R(d−1),
we denote AH = {Γ ∈ A : cΓ ∈ R ×H} (we replace the unit d-cube U in the
definition of density by the infinite unit cuboid R ×H). The partial density of
A (w.r.t. the first dimension) is the maximum thickness of such a set, taken
over every possible infinite unit cuboids, that is, ∂ρ(A) = max{θ(AH) : H ⊆
R(d−1) a unit (d− 1)-cube}. We observe when d = 1 that the partial density is
the thickness.

For a γ-edge Γ ∈ Eγ(L), let xΓ denote the projection of cΓ on the first
dimension, that is, cΓ = (xΓ , . . .). A decomposition path X is a set of scalars or-
dered increasingly, X = {x1, x2, . . . , x|X|}. We define the incomplete partition of
A by X (w.r.t. the first dimension), noted PX(A) = (P0(A), P1(A), . . . , P|X|(A)),

as follows. Firstly, P0(A) = {Γ ∈ A : xΓ < x1 − 1
2}. For 0 < i < |X|, Pi(A) =

{Γ ∈ A : xi + 1
2 ≤ xΓ < xi+1 − 1

2}. Finally, P|X|(A) = {Γ ∈ A : x|X| +
1
2 ≤ xΓ }.

Basically, this is a partition of the Euclidean space into |X|+ 1 parts called
slab decomposition [29]. PX(A) corresponds to the γ-edges inside each part,
while those incident to the boundaries are removed. From Proposition 1, two
γ-edges of different parts are independent. Hence, PX(A) can also be seen as
a partial decomposition tree for the pathwidth [25] of the (normalized) γ-line
graph of L. In the rest of this section, we describe a way to compute such a set
X.

Lemma 1. Let L be a link stream with density ρ. Let Eγ = Eγ(L) and mγ =
|Eγ |. Let fL be a big enough integer, fL ≥ ρ. Then, we can compute in time
polynomial in mγ a decomposition path X = {x1, x2, . . . , x|X|}, in such a way
that the incomplete partition PX(Eγ) satisfies:

– P0(Eγ) = P|X|(Eγ) = ∅,
– ∀0 < i < |X| − 1, fL ≤ ∂ρ(Pi(Eγ)) < fL + ρ,
– 0 ≤ ∂ρ(P|X|−1(Eγ)) < fL + ρ,

– x|X| − x|X|−1 ≥ fL
ρ .

Proof. We would like to scan the γ-edges of Eγ in such a way to only increase
the partial density. The main crux is to process greedily along the same x-axis
w.r.t. which the partial density is defined: informally, the infinite unit cuboids
R×H with H a unit (d− 1)-cube can be seen as FIFO strips along this x-axis.

6 T. Picavet et al.

Formally, sort Eγ = {Γ1, Γ2, . . . , Γmγ} so that xΓ1
≤ xΓ2

≤ · · · ≤ xΓmγ . In
the following, i and P are auxiliary variables containing an index and a set of
centers, respectively. Initialize i ← 1, P ← ∅, define xi = xΓ1 minus one unit,
and increment i. For all Γ ∈ Eγ in increasing order, if the partial density ∂ρ(P)
is strictly less than fL, add Γ to P along with all other Γ ′ with xΓ = xΓ ′ ,
skipping the partial density check for these Γ ′. We call this step (Add). Else,
create a new boundary by defining xi = xΓ , emptying P , and incrementing i.
At the end of the iteration process, define xi to be the last seen xΓ plus one unit
(in order to avoid coinciding with the previous xi). Finally, increment i again
and define xi to be an arbitrarily big number so that it satisfies the last item of
Lemma 1. Partial density checks can be done in polynomial time in mγ because
of Procedure 1 described below. Hence, the overall process is polynomial in mγ .

All parts Pi(Eγ) defined by the computed xi’s have a partial density of at
least fL, except for the first and the last two parts. The only thing left to prove is
∂ρ(Pi(Eγ)) < fL + ρ. By contradiction suppose that the partial density exceeds
that number on some part Pi. This could only happen after adding a set A of
γ-edges in some step (Add). Then, we must have ∂ρ(A) > ρ because adding
γ-edges along the x-axis can only increase the partial density w.r.t. that axis.
Let H be the unit (d−1)-cube such that ∂ρ(A) = θ(AH). Consider then the unit
cube U defined by U =

[
xΓ − 1

2 , xΓ + 1
2

]
×H, with Γ ∈ A. It holds EγU ⊇ AH.

Hence, ρ = ρ(Eγ) ≥ θ(EγU) ≥ θ(AH) = ∂ρ(A) > ρ. Contradiction. ut

Procedure 1: Procedure to calculate the density of a set A of γ-edges

1 ρ← 0
// Each Ci is a normalized center of a γ-edge of A

2 for (C1, C2, ..., Cd) ∈ {cΓ : Γ ∈ A}d do
// We consider the unit hypercube H with Cii as its i-th lowest

coordinate

3 H← [C1
1 , C

1
1 + 1]× · · · × [Cdd , C

d
d + 1]

4 ρ← max{ρ, θ(AH)}
5 return ρ

Due to space restriction, the proof of properties marked with (?) is omitted.

Lemma 2 (?). Keeping the same notations as in the hypothesis of Lemma 1,
we have xi+1 − xi ≥ fL

ρ for any 1 ≤ i < |X|.

Lemma 3 (?). Keeping the same notations as in the hypothesis of Lemma 1,

let k ∈ N be such that k ≤
⌊
fL
ρ

⌋
. Let l = |X|. For s ∈ J0, k − 1K, we define

(P0(s), P1(s), . . . , Pl(s)) = P{x+s:x∈X}(A). Then, we have ∂ρ(Pi(s)) < 2fL for
i ∈ J0, lK and s ∈ J0, k − 1K.

Lemma 4 (?). Keeping the same notations as in the hypothesis of previous
Lemma 3, suppose that for every s ∈ J0, k − 1K and i ∈ J0, lK, Mi(s) is a

Temporal Matching on Geometric Graph Data 7

r-approximation of γ-Matching on Pi(s). Let M(s) = ∪i∈J0,lKMi(s). Then,

γMM∼ = max
s∈J0,k−1K

{M(s)} is a r
(
1− 1

k

)
-approximation of γ-Matching on L.

We will now show an exact algorithm to compute the base case (d = 1) of
the approximation. It is also a correct algorithm for arbitrary link streams.

Algorithm 1 (Exact algorithm for the base case of the PTAS, on input an
arbitrary link stream)
On input any link stream L, we note Eγ(t) the set of all γ-edges starting at
time t ∈ T (L), Eγ(t) = {Eγ(t, uv) ∈ Eγ(L) : u 6= v ∈ V (L)}. By convention,
we note Eγ(t) = ∅ for t /∈ T (L). We proceed by dynamic programming and
store in M(t, S1, S2, . . . , Sγ−1) a γ-matching M of maximum cardinality of the
restriction of L to time instants between 0 and t + γ − 2 where we have for
1 ≤ i ≤ γ − 1 that M∩ Eγ(t− 1 + i) = Si.
If T = S1 ∪ S2 ∪ · · · ∪ Sγ−1 is a γ-matching, we have the following formulae:

– M(0, S1, S2, . . . , Sγ−1) = T
– M(t+1, S1, S2, . . . , Sγ−1) = Sγ−1∪max S0⊆Eγ(t),

S0∪T is a
γ−matching

{M(t, S0, S1, S2, . . . , Sγ−2)}

If T = S1∪S2∪· · ·∪Sγ−1 is not a γ-matching, we let M(t, S1, S2, . . . , Sγ−1) = ∅.
After sequentially filling table M by increasing t, we output the value stored in
M(max(T (L)), ∅, . . . , ∅). A python implementation is available6.

Lemma 5. On input any link stream L = (T, V,E) with γ-edge set Eγ =
Eγ(L), Algorithm 1 computes an optimal solution for γ-Matching on L in
time O(tmaxγ

2θ(Eγ)2γθ(Eγ)), where tmax = max(T (L)).

Proof. We proceed by induction on t. Let P (M, t, S1, S2, . . . , Sγ−1) denote the
fact that M is a γ-matching of maximum cardinality of the restriction of L to
time instants between 0 and t+γ− 2 such thatM∩Eγ(t− 1 + i) = Si for every
1 ≤ i ≤ γ − 1.

Firstly, M(0, S1, S2, . . . , Sγ−1) = S1∪S2∪ · · ·∪Sγ−1 because ∀i ∈ J1, γ − 1K,
M∩ Eγ(i− 1) = Si.

Secondly, let t ∈ T (L), Si ⊆ Eγ(t + i) for each 1 ≤ i ≤ γ − 1, and sup-
pose that the formula is correct for t − 1. For convenience, let T = S1 ∪
S2 ∪ · · · ∪ Sγ−1. We suppose that T is a γ-matching. Otherwise, it’s trivial.
Moreover, let M be such that P (M, t, S1, S2, . . . , Sγ−1) is satisfied and S =
{M(t− 1, S0, S1, S2, . . . , Sγ−2) : S0 ⊆ Eγ(t− 1)∧ S0 ∪ T is a γ −matching}. We
will show that |M| = |M(t, S1, S2, . . . , Sγ−1)|.

≥ We claim that S only contains γ-matchings of the restriction of L to time in-
stants between 0 and t+γ−3, where everyM′ = M(t−1, S0, S1, S2, . . . , Sγ−2) ∈
S is a γ-matching such thatM′∩Eγ(t+i) = Si for every 0 ≤ i ≤ γ−2. This is

6 It is implemented in function base case in https://github.com/Talessseed/
Temporal-matching-of-historical-and-geometric-graphs/blob/master/approx.py

https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs/blob/master/approx.py
https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs/blob/master/approx.py

8 T. Picavet et al.

entirely deduced from the induction hypothesis. Thus, because everyM′ ∈ S
has only edges living in times between 0 and t+γ−3, M(t, S1, S2, . . . , Sγ−1)∩
Eγ(t+γ−2) = Sγ−1. Moreover, M(t, S1, S2, . . . , Sγ−1) is a γ-matching with
only edges living in times between 0 and t + γ − 2. Therefore by definition
of M, |M| ≥ |M(t, S1, S2, . . . , Sγ−1)|.

≤ Let S0 =M∩Eγ(t−1). We can writeM = Sγ−1∪M′ such that P (M′, t−
1, S0, S1, . . . , Sγ−2) is satisfied. Note by induction hypothesis that we have
|M′| = |M(t − 1, S0, S1, . . . , Sγ−2)|. Hence, it follows from the definition
of M(t, S1, S2, . . . , Sγ−1) that |M| = |Sγ−1 ∪M(t − 1, S0, S1, . . . , Sγ−2)| ≤
|M(t, S1, S2, . . . , Sγ−1)|.

We now address complexity issues. Checking if a set is a γ-matching can be
done by Procedure 2. Note that |M| ≤ γ θ(Eγ). Hence, Procedure 2 terminates
in time O(γ2θ(Eγ)). Algorithm 1 iterates over t and the Si’s. Their number is
exactly tmax2γθ(Eγ).

Procedure 2: Procedure to check if M is a γ-matching

1 seen← ∅
2 for Γ = Eγ(t, uv) ∈M do
3 for t′ ∈ Jt, t+ γ − 1K do
4 if (t′, u) ∈ seen ∨ (t′, v) ∈ seen then
5 return false

6 seen← seen ∪ {(t′, u), (t′, v)}
7 return true

Algorithm 2 (Approximation for γ-matching on unit ball streams)
We keep the same notations as in the hypothesis of Lemma 4. If d = 1, we
return the output of Algorithm 1. Otherwise, we compute the sets Mi(s) with
recursive calls on L but with positions in Rd−1: we remove the x dimension by
projecting every cΓ on the hyperplane with equation (x = 0): the input cΓ =
(xΓ , yΓ , zΓ , . . .) is replaced with cΓ ← (yΓ , zΓ , . . .). We return set γMM∼ as
defined in Lemma 4.

We stress on the use of variable fL ≥ ρ. Basically, if we call the approximation
algorithm on a link stream with positions in Rp, our algorithm will also use a

similar value fL ← fp,L with fp,L ≥ ρ. We define fp,L = qd−p+12d−p−1
log(mγ)

γ in
order to obtain the following result.

Theorem 1. Algorithm 2 is polynomial in mγ and is a PTAS for γ-Matching
on unit ball streams of bounded velocity and density ρ embedded in an d-dimension
space. More precisely, for any q ≥ 2ργ, a γ-matching with approximation ratio(

1− 1⌊
q log(mγ)

2ργ

⌋)(1− 1
bqc

)d−1
can be computed in time O∗(qd2d−1mγ

qd2d−1

),

where O∗ only retains exponential factors.

Temporal Matching on Geometric Graph Data 9

Procedure 3: Exact algorithm for the base case of the PTAS (d = 1)

1 Compute Eγ(1), Eγ(2), . . . , Eγ(max(T (L)))
2 Initialize M as ∅ for all elements
3 for Si ⊆ Eγ(i) with 1 ≤ i ≤ γ − 1 do
4 if S1 ∪ S2 ∪ · · · ∪ Sγ−1 is a γ-matching then
5 M(0, S1, S2, . . . , Sγ−1)← S1 ∪ S2 ∪ · · · ∪ Sγ−1

6 for 1 ≤ t ≤ max(T (L))− γ + 1 do
7 for Si ⊆ Eγ(t+ i) with 1 ≤ i ≤ γ − 1 do
8 T ← S1 ∪ S2 ∪ · · · ∪ Sγ−1

9 for S′ ⊆ Eγ(t) do
10 if S′ ∪ T is a γ-matching then
11 N ← Sγ−1 ∪M(t, S′, S1, ..., Sγ−2)
12 M(t+ 1, S1, ..., Sγ−1)← max{M(t+ 1, S1, ..., Sγ−1),N}
13 t← max{−1,max(T (L))− γ + 1}
14 M← ∅
15 for Si ⊆ Eγ(t+ i) with 1 ≤ i ≤ γ − 1 do
16 M← max{M,M(t+ 1, S1, S2, . . . , Sγ−1)}
17 returnM

Proof. First, we must verify our assumptions on the new transformed vertices
each time we do the reduction of dimension. To do so, we need to show that if two
γ-edges have their transformed normalized centers at distance strictly greater
than 1, they must be independent. We prove this by induction on the dimension
p. In dimension d, this is proven following the bounded velocity of the unit ball
stream, cf. Proposition 1. If the dimension p is strictly smaller than d, we suppose
we have proven what we want in dimension p + 1. Let Γ and Γ ′ be two inde-
pendent γ-edges with normalized centers in dimension p+ 1 (xΓ , yΓ , zΓ , ...) and
(xΓ ′ , yΓ ′ , zΓ ′ , ...) respectively. We suppose that ‖(yΓ , zΓ , ...)− (yΓ ′ , zΓ ′ , ...)‖ > 1
in Rp. But then, it also holds that ‖(xΓ , yΓ , zΓ , ...) − (xΓ ′ , yΓ ′ , zΓ , ...)‖ > 1 in
Rp+1. This contradicts the induction hypothesis.

We call the algorithm on a link stream L with positions in Rd initially. L has
mγ γ-edges. Let ρp (p ≤ d) be the maximum density of link stream the algorithm

processes with positions in Rp. We claim that ρp ≤ 2fp+1,L = qd−p2d−p−1
log(mγ)

γ
for p < d. Indeed, if the algorithm processes a link stream with positions in
Rp, then for each Mi(s) considered, we have that ∂ρ(Mi(s)) ≤ ρp−1, because
the partial density is actually a density where one dimension is forgotten. We
conclude with Lemma 3. The conditions on fp,L are also satisfied for p < d.
Indeed, fp,L = 2qfp+1,L ≥ qρp ≥ ρp.

We first address the approximation ratio. We suppose w.l.o.g. that logmγ ≥
1. Recall in Lemma 3 that k was chosen to satisfy k ≤

⌊
fL
ρ

⌋
. For a link stream

L′ with positions in Rp, we choose for the algorithm k =
⌊
fp,L
ρ′

⌋
where ρ′ is

the density of L′. Therefore, when the algorithm is called on a link stream with

positions in Rp, we have for p < d that k =
⌊
fp,L
ρ′

⌋
≥
⌊
fp,L
ρp

⌋
≥
⌊

fp,L
2fp+1,L

⌋
≥ bqc.

10 T. Picavet et al.

Hence, 1− 1
k ≥ 1− 1

bqc −−−−−→q→+∞
1. Combining this with Lemma 4 implies:

1− 1⌊
fd,L
ρ

⌋
 d−1∏
p=1

1− 1⌊
fp,L
ρp

⌋

≥

1− 1⌊
q log(mγ)

2ργ

⌋
 d−1∏
p=1

(
1− 1

bqc

)

=

1− 1⌊
q log(mγ)

2ργ

⌋
(1− 1

bqc

)d−1
−−−−−→
q→+∞

1 if q ≥ 2ργ and logmγ ≥ 1.

Finally, we show that Algorithm 2 is polynomial when q is fixed. Since the
computations when removing a dimension are polynomial in mγ , it is left to
prove that Algorithm 1 also solves the base case in time polynomial in mγ . We

note that θ(Eγ) ≤ ρ0 ≤ qd2d−1 log(mγ)
γ , and combine it with Lemma 5 to obtain:

O
(
tmaxγ

2θ(Eγ)2γθ(Eγ)
)

= O

(
tmaxγ

2qd2d−1
log(mγ)

γ
2γq

d2d−1 log(mγ)

γ

)
= O

(
tmaxγq

d2d−1 log(mγ)2q
d2d−1 log(mγ)

)
= O

(
tmaxγq

d2d−1 log(mγ)mγ
qd2d−1

)
Notice that we can suppose w.l.o.g that each frame of γ consecutive time instants
contains a time-vertex itself contained in a γ-edge. Indeed, if that is not the
case, we can delete time instants where no γ-edges exist, without making two
γ-edges that were independent dependent. Hence, tmax = O(γmγ), implying the
algorithm is polynomial in mγ when q is fixed. Whence, the algorithm is a PTAS
of bounded ρ for all q such that q ≥ 2ργ. ut

4 Exact algorithm for arbitrary link streams

For later use in the numerical analysis, we need to find an optimal solution for
γ-Matching. This section presents an FPT solution for γ-Matching parame-
terized by the vertex number. Without being pushy about the time complexity
“in the big O”, we are demanding on good runtime performance. Our implemen-
tation performs well because with temporal graphs, the vertex number is a very
small FPT parameter compared to the more popularly used size of the output.

We shall store in M(t, A1, A2, . . . , Aγ), for every t ∈ J1, tmax − γ + 1K, a
maximum γ-matching of the restriction of link stream L to time instants between
0 and t + γ − 1, where we remove all timed edges adjacent to the time-vertices
(t + i − 1, u) for all u ∈ Ai. Intuitively, Ai is the set of time vertices at time

Temporal Matching on Geometric Graph Data 11

t+ i− 1 that are endpoints of already used γ-edges beginning at t+ i− 1. The
recursion for M is:

– M(−1, A1, A2, . . . , Aγ) = ∅

– M(t, A1, A2, . . . , Aγ) = max

({
M(t− 1, ∅, A1, A2, . . . , Aγ−1)

}
∪{

{Γ}∪M(t, A1∪{u, v}, A2, . . . , Aγ) : Γ = Eγ(t, u, v) ⊆ L∧u, v /∈
γ⋃
i=1

Ai

})
.

Lemma 6 (?). Keeping the same notations introduced before, M(tmax − γ +
1, ∅, . . . , ∅) is a maximum γ-matching of L.

Theorem 2 (?). On any n-vertex, m-recorded-edge link stream L with γ-edge
number mγ = |Eγ(L)|, γ-matching can be solved in time O(m+n2+mγ(γ+1)n)
by a dynamic programming filling the above described table M . At the end of the
process, M(tmax − γ + 1, ∅, ..., ∅) stores a maximum γ-matching of L, where
tmax = max(T (L)).

5 Numerical analysis

We implement7 in Python 3 both the PTAS described in Section 3 and the DP
described in Section 4. We compare their numerical results with the JavaScript
implementation of the greedy approximation8 given in [5]. In the latter reference,
the authors use an arbitrary total ordering to sort the γ-edge set, then step by
step try to add each γ-edge to the matching if it does not conflict with the others
that are already present in the matching.

Our experiments are run on a standard laptop with i5 6300HQ 4 cores
@2.3GHz and 8Gb memory @2133Mhz. We place automatic timeouts so that
the computation stops after spending 100 (one hundred) seconds on an instance.
In general, the greedy implementation returns instantaneously, while the PTAS
and the DP take much more time. All our computations add up to ≈ 400 hours
CPU time over the 4 cores. In what follows, we totally skip the discussion about
computing time, and solely focus on approximation ratio.

5.1 PTAS vs. greedy

Theoretically, the greedy implementation is a 2-approximation [4]. The theoret-
ical approximation ratio of the PTAS is as follows: it is 1.27 for unit interval
streams of velocity 5 and density 5; and is 1.38 for unit disk streams of veloc-
ity 2 and density 4. Both values are very far from the theoretical ratio of the
greedy implementation. Accordingly, we would like to confirm that information

7 Our source code is available at https://github.com/Talessseed/
Temporal-matching-of-historical-and-geometric-graphs

8 The source code of [5] is available at
https://github.com/antoinedimitriroux/Temporal-Matching-in-Link-Streams

https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs
https://github.com/Talessseed/Temporal-matching-of-historical-and-geometric-graphs
https://github.com/antoinedimitriroux/Temporal-Matching-in-Link-Streams

12 T. Picavet et al.

Fig. 1. (Left) Mean of the outputted values of PTAS vs. greedy on 4 generated datasets
of unit ball streams; (Right) Mean and standard deviation of the approximation ratio
of PTAS vs. greedy, when compared to the optimal values, on ≈ 90% of the datasets
in the left figure. In one of the 4 datasets, we do not have any reliable approximation
ratio because the optimal computation runs out of time on most instances.

on artificially generated data. In the following, we choose the value of q to be

the biggest integer from
⌈

2γρ
log(mγ)

⌉
to
⌈

2γρ
log(mγ)

⌉
+ 10 that does not result in a

timeout.

Hypothesis 1: PTAS finds better solution than greedy on unit ball streams of
well chosen velocity and density. Our methodology is to generate four different
datasets, cf. Figure 1 (left). We run both implementations on these, and record
the outputted γ-matching size.

Discussion: Hypothesis 1 is not confirmed in our setting. Our experimental
results are in favour of the greedy implementation, which performs ≈ 10% better
than the PTAS, especially when the density is high. This is surprising in the sense
that very good conditions for PTAS are met: low dimension of the Euclidean
space (good runtime), controlled velocity and density (good approximation ra-
tio), and varying number of vertices (to rule out the help of kernelization [4,5], at
least on parts of the dataset). While it does not completely refute Hypothesis 1
in other settings, our numerical analysis implies at least two possibilities: either
both implementations find solutions half the size of the optimal values, or their
solutions are near optimal (or they are somewhere in between).

Hypothesis 2: both approximation factors in previous experiment are close to
optimal. We address the dynamic programming explained in Section 4. Since
the runtime of its implementation is very long, we can only obtain the answer
for ≈ 90% of the datasets described in the above experiment. Our results are
presented in Figure 1 (right).

Discussion: likely validation of Hypothesis 2. Our experimental results show
that PTAS and greedy find solutions that are more than ≈ 95% of the optimal
values, with a deviation less than ≈ 5% of the mean, on ≈ 90% of the unit ball
streams presented in the previous experiment. We conclude that Hypothesis 2
seems to be valid on our generated input.

Temporal Matching on Geometric Graph Data 13

6 Conclusion and perspectives

We introduce the notion of velocity in a temporal geometric graph. Revisiting van
Leeuwen theorem on static geometric graphs of bounded density [29, Theorem
6.3.8, page 74], we extend their PTAS to temporal geometric graphs of bounded
density and bounded temporal velocity. Our study case is γ-Matching [4], a
temporal version of (static) graph matching [13]. Implementation works show
that a known greedy implementation [5] finds better approximated solutions by a
factor of ≈ 10%, when compared to the PTAS. Theoretically, the approximation
factor is 2 for the greedy algorithm and between 1.27 and 1.38 for the PTAS
on our datasets. This raises the question whether the greedy factor 2 is tight
on temporal geometric graphs. As a byproduct for obtaining parts of the above
numerical analysis, we devise a simple dynamic programming formula solving
optimally the general case in FPT time parameterized by the number of vertices.
Since vertices are in small number compared to recordings of edges in a temporal
graph, our dynamic programming could be of independent practical interest.

Acknowledgements: We are grateful to Hai Bui Xuan for helpful discussion
and pointers. We are grateful to the anonymous reviewers for their helpful com-
ments which greatly improved the paper.

References

1. XP. http://www.extremeprogramming.org.
2. Airbus Industrie. Fello’fly demonstrator. Dubai Airshow 2019.
3. E.C. Akrida, G.B. Mertzios, P.G. Spirakis, and V. Zamaraev. Temporal vertex

cover with a sliding time window. Journal of Computer and System Sciences,
107:108–123, 2020.

4. J. Baste and B.-M. Bui-Xuan. Temporal matching in link stream: kernel and
approximation. In 16th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization, 2018.

5. J. Baste, B.-M. Bui-Xuan, and A. Roux. Temporal matching. Theoretical Computer
Science, 806:184–196, 2020.

6. B.-M. Bui-Xuan, A. Ferreira, and A. Jarry. Computing shortest, fastest, and fore-
most journeys in dynamic networks. International Journal of Foundations of Com-
puter Science, 14(2):267–285, 2003.

7. A. Casteigts, P. Flocchini, E. Godard, N. Santoro, and M. Yamashita. Expressivity
of time-varying graphs. In 19th International Symposium on Fundamentals of
Computation Theory, pages 95–106, 2013.

8. M. Cygan, H.N. Gabow, and P. Sankowski. Algorithmic applications of Baur-
Strassen’s theorem: Shortest cycles, diameter, and matchings. Journal of the ACM,
62(4):28:1–28:30, 2015.

9. J. Dibbelt, T. Pajor, B. Strasser, and D. Wagner. Connection scan algorithm.
ACM Journal of Experimental Algorithmics, 23, 2018.

10. R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer, 1999.
11. F. Dufossé, K. Kaya, I. Panagiotas, and B. Uçar. Approximation algorithms for

maximum matchings in undirected graphs. In SIAM Workshop on Combinatorial
Scientific Computing, 2018.

http://www.extremeprogramming.org

14 T. Picavet et al.

12. C. Dürr, C. Konrad, and M.P. Renault. On the Power of Advice and Random-
ization for Online Bipartite Matching. In 24th Annual European Symposium on
Algorithms, volume 57 of LIPIcs, pages 37:1–37:16, 2016.

13. J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

14. T. Erlebach, M. Hoffmann, and F. Kammer. On Temporal Graph Exploration.
In 42nd International Colloquium on Automata, Languages, and Programming,
volume 9134 of LNCS, pages 444–455, 2015.

15. L. Foschini, J. Hershberger, and S. Suri. On the complexity of time-dependent
shortest paths. Algorithmica, 68(4):1075–1097, 2014.

16. D. Kempe, J. Kleinberg, and A. Kumar. Connectivity and inference problems
for temporal networks. Journal of Computer and System Sciences, 64(4):820–842,
2002.

17. B. Klimt and Y. Yang. Introducing the Enron Corpus. In CEAS, 2004.
18. M. Latapy, T. Viard, and C. Magnien. Stream graphs and link streams for the

modeling of interactions over time. Social Network Analysis and Mining, 8(61),
2018.

19. T.A. McKee and F.R. McMorris. Topics in Intersection Graph Theory. SIAM
Monographs on Discrete Mathematics and Applications, 1999.

20. G.B. Mertzios, H. Molter, R. Niedermeier, V. Zamaraev, and P. Zschoche. Comput-
ing Maximum Matchings in Temporal Graphs. In 37th International Symposium on
Theoretical Aspects of Computer Science, volume 154 of LIPIcs, pages 27:1–27:14,
2020.

21. G.B. Mertzios and P.G. Spirakis. Strong bounds for evolution in networks. Journal
of Computer and System Sciences, 97:60–82, 2018.

22. S. Miyazaki. On the advice complexity of online bipartite matching and online
stable marriage. Information Processing Letters, 114(12):714–717, 2014.

23. M. Mucha and P. Sankowski. Maximum matchings via Gaussian elimination. In
45th Annual IEEE Symposium on Foundations of Computer Science, pages 248–
255, 2004.

24. M. Penrose. Random Geometric Graphs. Oxford University Press, 2003.
25. N. Robertson and P.D. Seymour. Graph minors. I. Excluding a forest. Journal of

Combinatorial Theory, Series B, 35(1):39–61, 1983.
26. F.J. Ros, P.M. Ruiz, and I. Stojmenovic. Acknowledgment-based broadcast proto-

col for reliable and efficient data dissemination in vehicular ad-hoc networks. IEEE
Transactions on Mobile Computing, 11(1):33–46, 2012.

27. P.-U. Tournoux, J. Leguay, F. Benbadis, V. Conan, M.D. De Amorim, and J. Whit-
beck. The Accordion Phenomenon: Analysis, Characterization, and Impact on
DTN routing. In 28th IEEE Conference on Computer Communications, 2009.

28. I. Tsalouchidou, R. Baeza-Yates, F. Bonchi, K. Liao, and T. Sellis. Temporal
betweenness centrality in dynamic graphs. International Journal of Data Science
and Analytics, pages 1–16, 2019.

29. E.J. van Leeuwen. Optimization and Approximation on Systems of Geometric
Objects. PhD thesis, Utrecht University, 2009.

30. Y. Wang and S.C.-W. Wong. Two-sided Online Bipartite Matching and Vertex
Cover: Beating the Greedy Algorithm. In 42nd International Colloquium on Au-
tomata, Languages, and Programming, volume 9134 of LNCS, pages 1070–1081,
2015.

31. S. Wøhlk and G. Laporte. Computational comparison of several greedy algorithms
for the minimum cost perfect matching problem on large graphs. Computers and
Operations Research, 87(C):107–113, 2017.

	Temporal Matching on Geometric Graph Data

