
Master Informatique ComNet Communication Networks

ComNet - Lab n°2

Application Layer (1): Telnet, SSH, FTP, TFTP and Web

In Lab n°1, you learned how to use the networking testbed and you used it to generate, capture, and analyze a simple
application layer trace involving web traffic. In Lab n°2, you will explore the application layer in much greater detail, examining
the following protocols: TELNET, SSH, FTP, SFTP, TFTP, and HTTP. For each, you will generate real traffic and capture it
and analyze it using the wireshark/tshark tool. You will also use the IETF RFC (the formal specification) of one of these
protocols, FTP, to help you understand its traffic.

1 Warm-ups exercices (without computer assistance)
1. What is an application layer protocol?

2. Which network-enabled programs do you regularly use? Do you know which are the application layer protocols they use?

3. Which communications model do classical applications tend to employ? Which terms describe the roles of the participants
in such communications?

4. Describe the main categories of network-enabled applications. For each category, indicate typical needs in terms of
bandwidth, the ability to tolerate variation in available bandwidth, sensitivity to losses, and delay constraints.

1/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

2 Remote login

2.1 Reminders

1. What is the purpose of remote login applications?

2. What kinds of information do these applications exchange?

3. What impediments must such applications overcome? Give examples.

4. What kinds of services do these applications require from lower networking layers?

Pseudo tty

tty App.

1

2 3

4 5
6

7

8

910

TELNET
Client

TELNET
Server

2.2 The TELNET protocol

TELNET enables remote login. It is one of the oldest protocols in the TCP/IP protocol suite. (RFC 854 was published in 1983.)
It was designed to work with a large preexisting base of machines and terminal types, and so it allows for negotiation of many
optional parameters in order to accommodate needs at both ends. Typically, these parameters are negotiated at the start of a
TELNET session.

To overcome the potential heterogeneity across hosts involved in a networked exchange, TELNET defines a standard service
called NVT (Network Virtual Terminal), with a character encoding that is close to the 7-bit ASCII encoding for printable
characters. NVT’s encoding is also used for conveying text in other protocols of the TCP/IP suite.

TELNET uses the TCP transport layer in order to ensure reliability. The TCP port number 23 has been allocated for
the server side of TCP connections. TELNET uses in-band control, meaning that parameter negotiation and other aspects of
signalling take place in the same connection as is used for data transfer. Like most of the early TCP/IP protocols, it lacks
security mechanisms. For instance, it does not ensure confidentiality.

In following, you will analyze the two characteristic phases of a TELNET connection: negotiation, and data exchange.

2.2.1 Capturing TELNET traffic

First, you will capture some TELNET traffic in order to understand its basic characteristics. Topology 1 (with client and server
on the same LAN, as described in Lab n°1) is available to you on the networking testbed. Capture traffic using wireshark or
tshark, as follows:

• From PPTI PC N, connect to the three corresponding VMs of the testbed from three separate terminal windows

– access in the “client” vmN1 (window 1) with SSH to etudiant@10.0.7.N1 (use -Y if you want to run GUI client)

– access in the “monitor” vmN2 (window 2) with SSH to etudiant@10.0.7.N2 (use -Y if you want to run wireshark)

– access in the “server” vmN3 (window 3) with SSH to etudiant@10.0.7.N3

• Verify that TELNET is running on the server VM (window 3)

2/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

– look for the TELNET server process, which will either be telnetd (stand-alone) or inetd (a larger network services
process, which runs TELNET if configured to do so in /etc/inetd.conf): ps aux | grep telnetd (or inetd)

– query the VM about its network interfaces, look at the information regarding the interface to the experimental LAN
(/sbin/ifconfig eth1), and verify that its IP address is 10.N.1.N3

• Run the sniffer on 10.0.7.N2 (window 2)

– if you run a graphical sniffer, type: wireshark, then initiate the capture on interface eth1, as previously described

– if you run textual, type tshark -i eth1 -w <myCapture>

• Start a TELNET client on the client VM (window 1)

– type telnet 10.N.1.N3, which should establish a TELNET connection from the client VM to the server VM

– using the TELNET connection, log in to the server VM as etudiant (with the corresponding password), type a few
UNIX commands, and then end the TELNET session (log off with the exit command)

• Observe the trace captured in the wireshark window

• Filter the traffic to keep only TELNET (filter = telnet). Save the filtered trace for later reuse. Keep the application
running in order to conduct the following analysis.

2.2.2 Analyzing TELNET negotiation traffic

Parameter negotiation principally takes place at the beginning of a TELNET
connection. Exchanges consist of commands that can be sent either from
the client to the server or in the other direction. A special one-byte escape
character, IAC =0xff, meaning “interpret as command”, is used to signal
that the following bytes are part of a command rather than data. (Note that
IAC is not to be confused with the ASCII escape character 0x1b, which

can be part of the regular data stream. Note also that if 0xff happens
to appear in the data stream, it needs to be doubled, as 0xff 0xff, in
order to be interpreted unambiguously as data by the receiver.) A one-byte
command code follows IAC . Four of the commands have to do with
negotiating options, and they are each followed by a one-byte option code
(see table). These commands are: WILL =0xfb (indicates that an entity
is prepared to apply the specified option, or confirms that the entity has
applied it) WON’T =0xfc (the entity will not apply the option), DO =0xfd
(requests the other entity to apply the specified option), DON’T =0xfe
(requests them not to). For example:

IAC , DO , 24

A typical negotiation might consist of an entity signalling WILL to indicate
that they are ready to apply an option and the other entity responding by
DO , followed by more details regarding how to apply the option. These

details are specified in sub-options, which are signalled by the following
sequence: IAC , SB =0xfa, the byte indicating the option, a byte indicat-
ing either “value required” (0x01) or “value supplied” (0x00), several bytes
containing the value, IAC , SE =0xf0. For example:

IAC , SB , 24 , 0 , ‘V’ , ‘T’ , ‘2’ , ‘2’ , ‘0’ , IAC , SE

(V alue)10 Option name
1 Echo
3 Suppress Go Ahead
5 Status
6 Timing Mark
24 Terminal Type
31 Negotiate About Window Size
32 Terminal Speed
33 Remote Flow Control
34 Linemode
35 X Display Location
36 Environment variables
39 New Environment Option
...

Using wireshark, focus your attention only on the hexadecimal values in the trace, and try to discern which parameters
are being negotiated.

1. Describe which options and sub-options appear in the exchanges.

3/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

2. How much time does the negotiation phase take?

2.2.3 Analyzing the TELNET data exchange

Look beyond the first few negotiation frames.

1. At what point does data start to appear in the TELNET connection?

2. What traffic do you see on the network that relates to the user typing characters on the keyboard as part of the TELNET
session?

3. What do you think of the effectiveness of the protocol?

4. What degree of interactivity does the protocol support?

5. What application level information is conveyed in the data flow?

2.2.4 Wide area TELNET trace (optional. . . you can tackle this on your own if you are well ahead of the other
students)

From a record containing one hour of long distance traffic between the Lawrence Berkeley Laboratory and the rest of the world
in January 1994, find examples of TELNET communications.

These traces, initially in tcpdump format (the standard trace format that wireshark/tshark uses as well), have been
“anonymized”, meaning that IP addresses have been renumbered and packet contents have been deleted. The remaining
information has been recoded in a purely ASCII format.1.

Here’s an excerpt:

8.430376 22 21 23 33281 1
8.437539 3 4 3930 119 47
8.442644 4 3 119 3930 15
8.454895 26 11 4890 23 1
8.459398 5 2 14037 23 0
8.469004 4 23 4464 119 512

The first column contains a timestamp relative to the beginning of the capture (expressed in seconds), the two following
columns are the source and destination addresses renumbered in order of appearance, then there are the port numbers, and
finally the data size (in bytes).

Load the trace tme2-lbl.txt.gz, either from the directory /Infos/lmd/2022/master/ue/MU4IN001-2022oct, or from
the web page http://www-npa.lip6.fr/~fourmaux/Traces/labV8.html, to a local directory (eg. /tmp).2 Then, rather

1The trace lbl-pkt-4 ran from 14:00 to 15:00 on Friday, January 21, 1994 (times are Pacific Standard Time) and captured 1.3 million TCP packets,
the dropping about 0.0007 of the total. The tracing was done on the Ethernet DMZ network over which flows all traffic into or out of the Lawrence
Berkeley Laboratory, located in Berkeley, California. The raw trace was made using tcpdump on a Sun Sparcstation using the BPF kernel packet filter.
Timestamps have microsecond precision. The trace has been "sanitized" using the sanitize scripts. This means that the host IP addresses have been
renumbered, and all packet contents removed. The trace was made by Vern Paxson (vern@ee.lbl.gov). The trace may be freely redistributed.

2The size of the trace is quite large. If you put it in your home directory, which is not on the individual PC that you are using but rather is mounted
via NFS from the PPTI’s servers, you will get very poor response time and risk putting a strain on the system.

4/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

than using wireshark/tshark, which is unable to process this ASCII trace format, use standard UNIX file processing tools (awk,
perl, sed, . . . ) to isolate a TELNET stream and identify its typical characteristics. If you are not yet familiar with UNIX file
processing tools: We expect you to learn on your own how to use one of these tools, taking advantage of resources available
over the web and texts in the library. Your tutor is available to answer your questions that relate to computer networking, but
might not be familiar with the given tool that you choose to employ.

1. Sketch a chronogram of some of the TELNET exchanges included in the trace. What can you say about their level of
interactivity?

2. Is the monitor that is capturing the trace close to the sender?

3. Can you infer anything about the type of information that is exchanged?

2.2.5 Without the testbed. . .

If you have difficulty accessing the networking testbed, or you would simply prefer to work from another machine, you can
download the trace tme2-tel.dmp (similar to the one previously captured) either from the directory /Infos/lmd/2022/
master/ue/MU4IN001-2022oct, or from the web page http://www-npa.lip6.fr/~fourmaux/Traces/labV8.html, and
then analyze it with wireshark (without needing administrator rights).

2.3 The SSH protocol

These days, people typically use SSH for remote login, rather than TELNET, because it provides security mechanisms: authen-
tication, confidentiality, and the integrity of communications. The TCP port number 22 is reserved for SSH servers to receive
connections.

People take advantage of SSH’s security mechanisms for much more than just remote login. An SSH connection can be
used as a secure transport layer for applications. You can, for example, create an SSH connection between your residential host
and the university’s access server, and redirect all the traffic between a local client application at home and and a remote server
in the computer center of the university. It is possible to multiplex multiple application streams over a single SSH connection.

In the following exercise, you will study SSH by attempting to generate the same user level interactions as you did for
TELNET.

2.3.1 Capturing SSH traffic

The aim of this third traffic capture is to understand SSH. On the networking testbed, again using Topology 1 (client and server
on the same LAN), capture SSH traffic using wireshark/tshark:

• From PPTI PC N, if you do not already have three terminal windows open, connected to the client, monitor, and server
VMs, establish these connections now.

• Verify that the SSH server (sshd) is running on 10.0.7.N3 (window 3)

• Start the capture by running the sniffer on interface eth1 of host 10.0.7.N2 (window 2)

• Start an SSH client on 10.0.7.N1 (window 1)

– invoke the client at the command line, establishing a connection to the server by typing: ssh 10.N.1.N3 (this is
the IPv4 address of the server on the experimental LAN)

– log in as etudiant, with the corresponding password, and then type the same UNIX commands that you ran
previously during the TELNET traffic captures

• View the wireshark window to see the traffic captured

• Filter the trace to keep only the SSH traffic (filter = ssh). Save the filtered trace for later reuse. Do not quit the
ssh session, so that you can continue to use it during the following analysis.

5/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

2.3.2 Analyzing the SSH exchange

1. What do you observe at the beginning of the exchange?

2. While you have kept the user level interaction identical to the ones for TELNET, what differences do you notice between
SSH and these protocols at the application data level?

2.3.3 Wide area SSH trace (Optional. . . you can tackle this on your own if you are well ahead of the other students)

1. Identify the SSH communications in the same anonymized trace from Lawrence Berkeley Laboratory that you examined
for the optional TELNET exercises, tme2-lbl.txt.gz.

2.3.4 Without the testbed. . .

If you have difficulty accessing the networking testbed, or you would simply prefer to work from another machine, you can
download the trace tme2-ssh.dmp (similar to the one previously captured) either from the directory /Infos/lmd/2022/
master/ue/MU4IN001-2022oct, or from the web page http://www-npa.lip6.fr/~fourmaux/Traces/labV8.html, then
analyze it with wireshark (without needing administrator rights).

6/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

10

Remote

system
file

Client
FTP FTP

FTP

Server

interface

Local
F S

TCP control connection
port 21

TCP data connection
port 20

user

����
����

3 File Transfer

3.1 The FTP protocol

3.1.1 Studying RFC 959 (without computer assistance)

In order to understand application-level protocols in these labs, we have so far taken the purely bottom-up approach of looking
at actual application traffic. For our examination of FTP, we start top-down by reading RFC 959, the official standard.3 Start
by downloading the document:

• start a browser and go to the web page http://www.rfc-editor.org/

• click on RFC SEARCH and search for “FTP”

• select RFC 959 from the search results

Open this document and take a quick look at its contents. Then answer the following questions:

1. What can you say about the form of the document? And regarding its structure, what are the different sections of the
document?

2. Describe FTP’s communication architecture. What does it mean when we say that the information flow control is “out of
band”?

3. What are the different commands available to the client?

4. Can you name the different types of errors that can be signalled in FTP? How is error information communicated?

3Standards relating to the Internet are published by the IETF (Internet Engineering Task Force) in documents called RFCs. RFC means Request
For Comments, implying that the documents are still subject to comment, and therefore to change, which many of them indeed are.

7/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

3.1.2 Capturing FTP traffic

The aim of this fourth traffic capture is to understand FTP. On the networking testbed, again using Topology 1 (client and
server on the same LAN), capture FTP traffic using wireshark/tshark:

• From PPTI PC N, if you do not already have three terminal windows open, connected to the client, monitor, and server
VMs, establish these connections now.

• Verify that the FTP server (ftpd) is running on 10.0.7.N3 (window 3)

• Start the capture by running the sniffer on interface eth1 of host 10.0.7.N2 (window 2)

• Start an FTP client on 10.0.7.N1 (window 1)

– invoke the client at the command line, establishing a connection to the server by typing: ftp 10.N.1.N3 (this is
the IPv4 address of the server on the experimental LAN)

– log in as etudiant, with the corresponding password

– navigate through the FTP server’s file system, using the FTP client’s pwd, cd, and dir commands

– choose a file and download it to the client machine, using the FTP client’s get command

– terminate the exchange, using the FTP client’s quit command

• Observe the trace captured in the wireshark window

• Filter the traffic to keep only FTP (filter = ftp or ftp-data). Save the filtered trace for later reuse. Keep the
application running in order to conduct the following analysis.

3.1.3 Analyzing the FTP control connection

Figure out how messages exchanged over network, on the FTP control connection, correspond with what is shown to the user
of the FTP client application.

1. By definition, who initiates the communication between client and server? Can we observe this in the trace?

2. Which FTP client command does the user employ in order to identify him- or herself? What corresponding activity do
you see in the trace?

3. Which FTP client command authenticates the user? Does the password appear in clear on the network?

4. What is the purpose of the command that follows authentication?

5. What purpose does the PORT command serve? Analyze its parameters. Why is it sent at this point in the exchange?

6. The LIST command is used to list the files that are in the current directory on the server. Why is it followed by two
messages sent by the server?

8/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

7. What other commands that you can observe? What are they?

8. When do file transfers take place?

3.1.4 Analyzing the FTP data connection

1. What information is exchanged over the data connection?

2. Which port numbers are used for the data?

3. What do you observe regarding synchronization of messages between the connection control and the data connection?

3.1.5 Wide area FTP trace (Optional. . . you can tackle this on your own if you are well ahead of the other students)

1. Identify the FTP communications in the same anonymized trace from Lawrence Berkeley Laboratory that you examined for
the optional TELNET, RLOGIN, and SSH exercises, tme2-lbl.txt.gz. Be sure to identify both the FTP and FTP-DATA
connections.

2. Draw the chronogram.

3. What can you say about the interactivity of FTP as compared to TELNET?

3.1.6 Without the testbed. . .

If you have difficulty accessing the networking testbed, or you would simply prefer to work from another machine, you can
download the trace tme2-ftp.dmp (similar to the one previously captured) either from the directory /Infos/lmd/2022/
master/ue/MU4IN001-2022oct, or from the web page http://www-npa.lip6.fr/~fourmaux/Traces/labV8.html, then
analyze it with wireshark software (without needing administrator rights).

3.2 The SCP and SFTP protocols

There are several protocols for secure transmission of files. The scp application is client software that is part of the SSH suite,
enabling transfer of files to an sshd server. From the user’s perspective, scp functions similarly to rcp (the UNIX remote file
copy command, which is part of the r* family of commands). There is also an sftp client that functions similarly to FTP,
while connecting through an SSH tunnel to its dedicated counterpart, the sftp-server.

3.2.1 Capturing SCP and SFTP traffic

The aim of this fifth traffic capture is to understand secure file transfer. On the networking testbed, again using Topology 1
(client and server on the same LAN), capture either SCP or SFTP traffic using wireshark/tshark:

• From PPTI PC N, if you do not already have three terminal windows open, connected to the client, monitor, and server
VMs, establish these connections now.

• Verify that the SCP server (sshd) or SFTP server (sftp-server) is running on 10.0.7.N3 (window 3)

• Start the capture by running the sniffer on interface eth1 of host 10.0.7.N2 (window 2)

9/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

• Start an SCP or SFTP client on 10.0.7.N1 (window 1) and retrieve from the server the file previously transferred as
part of the FTP exercise

SCP type scp etudaint@10.N.1.N3:<remote_file> <local_file> and then authenticate yourself

SFTP type sftp 10.N.1.N3 and then authenticate yourself and type the same commands you previously executed
during the FTP traffic capture

• Observe the trace being captured in the wireshark window

• Filter traffic to keep only the secure file transfer traffic (filter = ssh). Save the filtered trace for later reuse. Keep
the application running in order to conduct the following analysis.

3.2.2 Analyzing the SCP or SFTP traffic exchange

1. Recap how the SCP and SFTP protocols work.

2. Can you establish a correspondence between the commands that are typed by the user and the frames that are exchanged
over the network?

3. What differences do you see with FTP?

3.2.3 Without the testbed. . .

If you have difficulty accessing the networking testbed, or you would simply prefer to work from another machine, you can
download the trace tme2-scp.dmp (similar to the one previously captured) either from the directory /Infos/lmd/2022/
master/ue/MU4IN001-2022oct, or from the web page http://www-npa.lip6.fr/~fourmaux/Traces/labV8.html, and
then analyze it with wireshark (without needing administrator rights).

10

...

...
2o2o

ACK 0

RRQ config0 octet0
2o No 1 Mo 1

DATA

DATA

512o

2o2o

ACK

2o2o

ACK
2o 2o

2o2o

X

Y

X

Y
0−511o

�������������
�������������
�������������
�������������

�������
�������
�������

�������
�������
�������

����
����

3.3 The TFTP protocol

3.3.1 Capturing TFTP traffic

The aim of this last traffic capture is to understand TFTP (Trivial File Transfer Protocol). On the networking testbed, again
using Topology 1 (client and server on the same LAN), capture TFTP traffic using wireshark/tshark:

• From PPTI PC N, if you do not already have three terminal windows open, connected to the client, monitor, and server
VMs, establish these connections now.

• Verify that the TFTP server (tftpd) is running on 10.0.7.N3 and the directory is configured for the transfers (window 3).
Look for the files inside this directory.

• Start the capture by running the sniffer on interface eth1 of host 10.0.7.N2 (window 2)

• Start a TFTP on 10.0.7.N1 (window 1)

– invoke the client at the command line by typing: tftp 10.N.1.N3 (this is the IPv4 address of the server on the
experimental LAN)

10/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

– download a file to the server with the get command

– terminate the exchange with the quit command

• View the wireshark window to see the traffic captured

• Filter the trace to keep only the TFTP traffic (filter = tftp). Save the filtered trace for later reuse. Do not quite
the tftp session, so that you can continue to use it during the following analysis.

3.3.2 Analyzing the TFTP exchange

1. Recap how the TFTP protocol works.

2. Can you establish a correspondence between the commands that are typed by the user and the frames that are exchanged
over the network?

3. What differences do you see with FTP?

3.3.3 Without the testbed. . .

If you have difficulty accessing the networking testbed, or you would simply prefer to work from another machine, you can
download the trace tme2-tft.dmp (similar to the one previously captured) either from the directory /Infos/lmd/2022/
master/ue/MU4IN001-2022oct, or from the web page http://www-npa.lip6.fr/~fourmaux/Traces/labV8.html, and
then analyze it with wireshark (without needing administrator rights).

11/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

Disk Disk HTTP
Server

HTTP
Server

Browser
program

Hyperlink


to xyz.com

Hyperlink


to abc.com

HTTP used over
this TCP connection

The Internet

Client
Server

abc.com
Server

xyz.com
Current page
displayed by
browser

4 Web traffic

4.1 Exercices (without computer assistance)

1. Describe the steps involved in downloading a webpage. Suppose you want to retrieve a page composed of an HTML file
and two small-sized objects stored on the same server. Excluding the transmission time for these objects, specify the delay
necessary to obtain the page. Illustrate your answers with chronograms.

2. What optimizations introduced with HTTP 1.1 do today’s webservers employ to reduce exchange latency? For the example
provided above, illustrate your answer with a chronogram.

3. Another way to reduce the response time is through cache memory. Describe where this mechanism is employed and for
which kinds of objects it makes sense.

12/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

4.2 The HTTP protocol

4.2.1 Capturing HTTP traffic

The aim of this last traffic capture is to understand HTTP. On the networking testbed, again using Topology 1 (client and
server on the same LAN), capture HTTP traffic using wireshark/tshark:

• From PPTI PC N, if you do not already have three terminal windows open, connected to the client, monitor, and server
VMs, establish these connections now.

• Verify that the HTTP server (apache2) is running on 10.0.7.N3 (window 3)

• Start the capture by running the sniffer on interface eth1 of host 10.0.7.N2 (window 2)

• Use an HTTP client on 10.0.7.N1 (window 1)

– run the client, type: firefox and open the page la page http://10.N.1.N3

– or, in text mode: wget -p --no-proxy http://10.N.1.N3

• View the wireshark window to see the traffic captured

• Filter the trace to keep only the HTTP traffic (filter = http). Save the filtered trace for later reuse. Keep the client
running so that you can continue to use it during the following analysis.

4.2.2 Analyzing the HTTP request

1. Are you able to observe the means by which the page described in our example, above, is retrieved?

2. What parameters are negotiated between client and server?

3. What optimizations are implemented to accelerate the download of web pages?

4. Can you display the webpage based on the trace?

4.2.3 Making a new web page (optional. . . tackle this only if you are ahead of the other students)

To learn more about HTTP, you can study traces based upon additional webpages that you create, to be served from the
etudiant account of the server VM.

To enable webpages to be served from this account, create the public_html directory with appropriate rights in the account’s
home directory. Use the following UNIX command: cd ; mkdir ~/public_html ; chmod 755 ~/public_html

In the public_html directory, you will place files that the browser will be able to access at the following URL: http:
//10.N.1.N3/~etudiant/.

Create a very simple web page composed of:

13/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

• 1 very simple HTML file (if you are not already familiar with basic HTML, you can easily find examples on the web)

• 3 small images (you can transfer these via SCP from the PPTI host to the public_html directory)

Repeat the traffic capture from section 4.2.1 by using the browser to access the new webpage that you just created. Then
answer the questions from section 4.2.2 for this new capture.

4.2.4 Without the testbed. . .

If you have difficulty accessing the networking testbed, or you would simply prefer to work from another machine, you can
download the trace tme2-htt.dmp (similar to the one previously captured) either from the directory /Infos/lmd/2022/
master/ue/MU4IN001-2022oct, or from the web page http://www-npa.lip6.fr/~fourmaux/Traces/labV8.html, and
then analyze it with wireshark (without needing administrator rights).

14/15 Lab n°2 v8.3



Master Informatique ComNet Communication Networks

5 Before leaving the room
• If you have saved some traces on the monitor VM, do not forget to transfer them back to your PPTI user account. Type

the following command on a local terminal of the PPTI host: scp etudiant@10.0.7.N2:<trace> <dest>

• Before closing your connections to the virtual machines, be sure to restore them to the state in which you found them,
removing any modifications you might have made.

15/15 Lab n°2 v8.3


