
Information Centric !
Networking!

MSc in Computer Networking !
January 20, 2017!

Prométhée Spathis
promethee.spathis@upmc.fr!

1!

Salah-Eddine Belouanas
salah-eddine.belouanas@lip6.fr!

Agenda!

•  A Brief History of Networking (+Motivation)!

•  Node Model!

•  Routing!

•  Transport!

2!

A Brief History of Networking!
•  Generation 1: !

The phone system !
(focus on the wires)!

•  Generation 2: !

The Internet !
(focus on the endpoints)!

•  Generation 3? !

dissemination !
(focus on the data)!

3!

The Phone System is not about phones,
it’s about connecting wires to other wires!!

•  The utility of the system depends on running wires
to every home & office!

•  The wires are the dominant cost!

•  Revenue comes from dynamically constructing a
path from caller to callee!

4!

A business model built on
side effects!

•  For a telco, a call is not the conversation you have
with your gf in Marseille, it’s a path between two
end-office line cards!

•  A phone number is not the name of your gf’s
phone, it’s a program for the end-office switch
fabric to build a path to the destination line card!

5!

Some ways to build paths!

6!

Structural problems with !
phone systems!

•  Path building is non-local and encourages
centralization and monopoly!

•  Calls fail if any element in path fails so reliability
goes down exponentially as the system scales up!

•  Data can’t flow until a path is set up so efficiency
decreases when setup time or bandwidth
increases or holding time decreases!

7!

Gen 2: Packet switching!
•  Change point view to focus on

endpoints rather than paths!

•  Data sent in independent
chunks and each chunk
contains the name of the final
destination!

•  (Transitivity) If node gets a
chunk for a different
destination, tries to forward it
using static configuration or
distributed routing
computation!

8!

Packet switching used the existing
wires, it just used them differently!

9!

In 1964 these ideas were ‘lunatic fringe’ — anyone
who knew anything about communications knew this
could never work.!

ARPAnet !
September, 1971!

10!

ARPAnet!
•  The ARPAnet was built on top of the existing phone system!

•  It needed cheap, ubiquitous wires!

•  It needed a digital signaling technology (but not anything
like the state of the art)!

•  At the outset, the new network looked like an inefficient
way to use the old network!

•  The rest of the research community put enormous effort
into the details of circuit switched data. In the end it didn’t
matter!

11!

12!

The CATENET and TCP/IP!
•  Packet switching worked so

well that by 1973 everyone
wanted a network!

•  Each was done as a clean
slate so they didn’t
interoperate!

•  Since Paul Baran had already
abstracted out all the
topological details Vint Cerf
realized that a common
encapsulation & addressing
structure could glue together
arbitrary networks !

13!

Multinetwork Demonstration 1977!

14!

TCP/IP wins!
•  Adaptive routing lets system

repair failures and hook itself
up initially.!

•  Reliability increases
exponentially with system size.!

•  No call setup means high
efficiency at any bandwidth,
holding time or scale.!

•  Distributed routing supports
any topology and tends to
spread load and avoid a
hierarchy’s hot spots. !

15!

TCP/IP issues!
•  “Connected” is a binary attribute: you’re either part of

the internet and can talk to everything or you’re
isolated.!

•  Becoming part of the internet requires a globally
unique, globally known IP address that’s topologically
stable on routing time scales (minutes to hours).!

-  connecting is a heavy weight operation!

-  the net doesn’t like things that move!

16!

•  Like the phone system before it, TCP/IP solved the
problems it set out to solve so well that even today it’s
hard to conceive of an alternative.!

•  TCP/IP’s issues don’t reflect an architectural failing but
rather its massive success in creating a world rich in
information & communication.!

•  When TCP/IP was invented there were few machines
and many users per machine. Today there are many
machines and many machines per user, all with vast
amounts of data to be synchronized & shared. !

•  And that creates an entirely new class of problem . . .!

17!

Once IP Adresses used to
rule the Internet!

• In the ARPANET, addresses were fixed and could actually be used as
"long-lived names"!

• Address 1 is UCLA-NMC [RFC-597, 1973]!

• HOST.TXT file is mapping a static symbol into another static symbol!

• Same with the early Internet!

• 1.0.0.0/8 is BBN-PR [RFC-820, 1982]!

• After the introduction of DNS in 1984 addresses are still very long-lived:
RFCs still contain the static list of assigned addresses!

• estimated number of hosts ≈ 1,000!

• RFC-990 (1986) is the last one to contain a list of assigned addresses !

• estimated number of hosts <≈ 10,000!

18!

Once, IP Adresses used to
rule the Internet!

•  RFC 597 Host Status (1973)!

•  RFC 990 (1986)!
-  ~10K assigned network numbers !

19!

1 sec! 10 years!1 year!1 day!

update!
frequency!

local!

global!

IP!
(public)!

DHCP!

IP!
(private)!

NAT!

scope!
URL!

keywords!

label!

google!

port/protocol!
numbers!

AS numbers!
EUI-48!

emails!

20!

FQDN!
(private)!

FQDN!
(global)!

•  The raison d’être of today’s
networking, both circuit
switched and TCP/IP is to
allow two machines to have a
conversation!

•  The overwhelming use (>99%
by most measurements) of
today’s networks is for a
machine to acquire named
chunks of data (like web
pages, or email messages)!

21!

Acquiring named chunks of data is not a conversation, it’s a
“dissemination” (the computer equivalent of “Does anybody have the
time?”)!

2
1
!

IP Addresses Bashing!
•  Mobility/Migration: IP adds change over time!

•  NAT/DHCP: IP scope is shrinking!

•  Multihoming/Replication: Multiple IP adds at same time!

•  Routing and name resolution: Scaling and convergence
time limitations!

•  Mobility and multihoming: ID/Loc split architectures!

•  Migration and replication: Data-intensive applications?!

22!

In a dissemination the data
matters, not the supplier!

•  It’s possible to disseminate via conversation and get the
data as a side effect, But:!
!

•  Security is an afterthought. Channels are secured, not
data, so there’s no way to know if what you got is
complete, consistent or even what you asked for.!

•  It’s inefficient (hotspots, poor reliability, poor utilization).!

•  Users have to do the translation between their goal & its
realization and manually set up the plumbing to make
things happen.!

23!

 Dissemination networking!

•  Data is request by name, using any and all means
available (IP, VPN tunnels, multicast, proxies, etc).!

•  Anything that hears the request and has a valid
copy of the data can respond.!

•  The returned data is signed, and optionally
secured, so its integrity & association with name
can be validated (data centric security)!

24!

Design Usage Mismatch!
•  Internet was designed for host-to-host

communication!
-  “contact this host…”!

•  Internet is mainly used for data access!
-  “get me this data.....”!

25!

•  Mismatch between usage and design:!
-  data migration and replication unnecessarily hard!
-  requires Akamai- and BitTorrent-like designs to scale!
-  mobility and multi-homing pose problems!

what would the Internet look like if we designed it
around data access?!

Information Centric Networking!

26!

Content Centric Networking
(CCN): Goals!

•  Create a simple, universal, flexible communication
architecture that:!

-  Matches today’s communication problems!

-  Matches today’s application design patterns!

-  Is at least as scalable & efficient as TCP/IP!

-  Is much more secure!

-  Requires far less configuration!

27!

Universal?!
•  Any architecture that runs over anything is an overlay (IP

is an overlay).!

•  IP started as a phone system overlay; today much of the
phone system is an IP overlay. System theorists would
say ‘IP is universal’.!

•  CCN has the same character: it can run over anything,
including IP, and anything can run over CCN, including
IP.!

•  And CCN has a simpler, more general relationship with
lower layers than IP.!

28!

There are two ways!
to view CCN!

•  a ‘universal’ middleware!

•  an IP for content!

•  The difference between these is deployment time
horizon!

29!

CCN Design Choices!
•  Which IP engineering principles can remain still valid after

removing addresses from the Internet?!

•  Maximize the reuse of well-tried mechanisms and
techniques directly borrowed from IP!

-  DNS-like naming scheme!

-  CIDR-like prefix aggregation!

-  Longest prefix match forwarding!

-  Link-state protocols (i.e. OSPF) opaque capacities!

30!

31!

Timeline of key ICN milestones!

Papers/talks! Projects!

CCN Timeline!
•  2005: PARC starts work on ICN!

•  2006: Van Jacobson’s talk at Google!

•  2007: CCN 0.x begins!

•  2009: Seminal CCN Paper at CoNext 2009!

•  2010: NSF-funded NDN project !

•  2013: CCN 1.x begins!

•  2014: NDN 2nd phase (w/o Parc)!

1st Dagstuhl Seminar (2010)!
1st SIGCOMM workshop (2011)!
1st CCNxCon (2011)!
1st INFOCOM workshop (2012)!
1st ICNRG meeting (2012)!
1st NDNCom meeting (2014)!
1st ICN Conference (2014)!32!

Interest/Data packets!

33!

!
Content Name!

!
Selector!

!
!

Nonce!

!
Content Name!

!

!
Signature!

!

!
Signature Information!

!

!
Data!Interest packet!

Data packet!

Interest/Data Exchange!

34!

Request the list of chunks for the main webpage Each
chunk identified with a hash!

/upmc/spathis/ccn/index.html/manifest/c0!

Interest!

/upmc/spathis/ccn/index.html/manifest/c0!

c0/h6245!
c1/h9243!

Data!

Named Object!

File! Name!

A large object has a CCN publisher-given name!
35!

Named Chunks!

Each network-sized chunk also has a CCN name!

File Chunk!

File Chunk!

File Chunk!

File Chunk!Name/chunk=1!

Name/chunk=2!

Name/chunk=3!

Name/chunk=4!

File! Name!

36!

Named Chunks!

File! Name!

CCN creates a manifest describing the file!

File Chunk!

File Chunk!

File Chunk!

File Chunk!Name/chunk=1!

Name/chunk=2!

Name/chunk=3!

Name/chunk=4!

Manifest!Name/manifest!

37!

Transport Protocols!

38!

I !

I !
C !

C !
I !

I !
C !

C !

I !

I ! C !

C !I !

I ! C !
C !

Core exchange! parallel requests!

I !

I ! C !

C !I !

I ! C !
C !

M !

use of manifests!

CCN Names Format!

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0!

39!

Ordered labeled sequence of binary segments!

CCN Names Format!

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0!

40!

Ordered labeled sequence of binary segments!

global routable
name segments!

CCN Names Format!

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0!

41!

global routable
name segments!

application
dependent name

segments!

Ordered labeled sequence of binary segments!

CCN Names Format!

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0!

42!

global routable
name segments!

protocol dependent !
name !

segments!

Ordered labeled sequence of binary segments!

application
dependent name

segments!

Name tree traversal!

43!

upmc !

spathis!

ccn!

tutorial!

slide13!

V2!V1!

RightmostChild!
LeftmostChild!

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0!

CCN Names Qualifier!

44!

ContentObjectHash! KeyId!

secure cryptographic
hash of the Content

Object message!
Identifier of the Content

Objet publisher!

Interests can identify content hash or publisher’s key!

Secure Single Chunk!

CCN names and signs every chunk!

File Chunk!

File Chunk!

File Chunk!

File Chunk!

45!

/parc/ccnx/spec/c=1!

Signature!

Data!
(optionally encrypted)!

Secure Whole Object via Manifest!

CCN names and signs the file via a manifest!

File Chunk!

File Chunk!

File Chunk!

File Chunk!

46!

/parc/ccnx/spec/manifest!

Signature!

List of chunks!
(optionally encrypted)!

Manifest!

Secure Whole Object via Manifest!

Indirectly sign every chunk through the manifest!

File Chunk!

File Chunk!

File Chunk!

File Chunk!

47!

/parc/ccnx/spec/c=1!
<hash chunk1>!

Data!
(optionally encrypted)!

Manifest!

Packet Format!

48!

0! 8! 16! 24! 32!

Static Header!

Optional Headers!

Message!

Validation!

Static Header!

49!

0! 8! 16! 24! 32!

Static Header!

Optional Headers!

Message!

Validation!

Static Header!

50!

0! 8! 16! 24! 32!

Version!

Hop Limit!

Message Type!

Reserved!

Message Length!

Optional Header Length!

Packet Format!

51!

0! 8! 16! 24! 32!

Static Header!

Optional Headers!

Message!

Validation!

Optional Header!

52!

0! 8! 16! 24! 32!

Option Type! Option Length!

Option Value!

Option Type! Option Length!

Option Value!

Packet Format!

53!

0! 8! 16! 24! 32!

Static Header!

Optional Headers!

Message!

Validation!

Validation!

54!

0! 8! 16! 24! 32!

 Optional CCN Validation Algorithm TLV !

 Optional CCN Validation Payload TLV!

Validation!

55!

0! 8! 16! 24! 32!

Validation Alg Type! Integrity Length!

Validation Type! Length!

Validation Type dependent data!

Packet Format!

56!

0! 8! 16! 24! 32!

Static Header!

Optional Headers!

Message!

Validation!

CCN Message!

57!

0! 8! 16! 24! 32!

Message Type!

Name Type!

Message Length!

Name Length!

Name!

Message specific TLVs!

CCN Message!

58!

0 8 16! 24! 32!

Version!

Hop Limit!

Message Type!

Reserved!

Message Length!

Optional Header Length!

Option Type! Option Length!

Option Value!

Message Type!

Name Type!

Message Length!

Name Length!

Name!

Message specific TLVs!

 Optional CCN Validation Algorithm TLV !

 Optional CCN Validation Payload TLV (required ValidationAlg)!

Interest Message!

59!

0! 8! 16! 24! 32!

T_INTEREST!

T_NAME!

Interest Length!

Name Length!

Name!

Optional Metadata TLV(s)!

Optional Payload TLV!

Content Object Message!

60!

0! 8! 16! 24! 32!

T_CONTENT_OBJECT!

T_NAME!

Content Object Length!

Name Length!

Name!

Optional Metadata TLV(s)!

Content Object Payload TLV!

Quick Example Break!

61!

/upmc/spathis/ccn/index.html/manifest/c0!

/upmc/spathis/ccn/index.html/manifest/c0!

c0/h6245!
c1/h9243!

Request the list of chunks for the main webpage Each
chunk identified with a hash!

Quick Example Break!

62!

/upmc/spathis/ccn/index.html/c0/h6245!

/upmc/spathis/ccn/index.html/c0/h6245!

/upmc/spathis/ccn/index.html/c1/h9243!

/upmc/spathis/ccn/index.html/c1/h9243!

Request each chunk using name and hash!

Quick Example Break!

63!

/upmc/spathis/ccn/style.css/manifest/c0!

/upmc/spathis/ccn/style.css/manifest/c0!

…!

Retrieve references!

/upmc/spathis/ccn/logo.gif/manifest/c0!

/upmc/spathis/ccn/tutorial.ppt/manifest/c0!

CCN Security !
•  Authenticated mappings from names to content!

•  Each CCN packet is signed: !

Signature(Name, Content, SignInfo)!
SignInfo includes : cryptographic digest or fingerprint of
publisher’s key, key or key location !

Content can be authenticated by every node (public key
signatures) !

Different signature algorithm available (security vs performance) !

64!

Securing Content!
Content Packet = 〈 name, data, signature 〉 !

•  Integrity & authenticity!

-  Is it a complete, uncorrupted copy of what the publisher sent?!

•  Origin Authentication!

-  Is the publisher one the receiver is willing to trust to supply this
content?!

•  Correctness!

-  Is this content an answer to the question the receiver asked.!

65!

Publishing and Verifying Content!

M(N,C,P) =〈 N, C, SignP (N, C) 〉!
•  A content publisher !

-  determines the name of its content (how it will be found)!

-  generates a digital signature over that name and the content!

•  A content consumer, given N, must be able to retrieve !
-  the content C, the authenticator SignP (N, C)!

-  sufficient supporting information to determine what public key to
use and where to find a copy!

➡ User-friendly mechanisms to manage public and private keys!

➡ Easy to deploy mechanisms to determine trust in keys and content!

66!

Content-based Security!
•  Security travels with the content!

-  Content can be authenticated by any node (public key signatures) !

-  Secure caching: can get content from anyone with a copy, and still
authenticate it!

-  Confidentiality: encrypt content for access control !

•  Move the security perimeter from the host to the application!

-  Content decrypted only inside the target application!

-  Use of encryption tailored to application needs!

•  Host protection!

-  Harder to mount an attack against a host if you can’t address packets to it!

•  Access control by policy routing!

67!

CCN Forwarder!
•  Routing !

Finding the path alternatives!

•  Strategy !

How to use the alternatives!

•  Forwarding !

Processing a packet based on a strategy !
68!

CCN Forwarder!

69!

 ! !

 ! !

 ! !

 ! !

 ! !

 ! !

1!

2!

3!

Store information about what face !
to follow to find a given name!

Store information about what !
interests are pending!

Buffer content objects for !
potential reuse!

Forwarding Information Base

Pending Interest Table

Content Store

CCN Forwarder!

70!

/upmc! 3!

FIB

 ! !
1!

2!

3!

/upmc/spathis/ccn/tutorial/slide43!

 ! !

CCN Forwarder!

71!

/upmc! 3!

FIB

/upmc/spathis/ccn/tutorial/slide43! 1!

PIT

 ! !

 ! !

1!

2!

3!

/upmc/spathis/ccn/tutorial/slide43!

/upmc/spathis/ccn/tutorial/slide43!

/upmc/spathis/ccn/tutorial/slide43 !

CCN Forwarder!

72!

/upmc! 3!

FIB

1!

PIT

 ! !

 ! !

1!

2!

3!

/upmc/spathis/ccn/tutorial/slide43!1, 2

/upmc/spathis/ccn/tutorial/slide43!

CCN Forwarder!

73!

/upmc! 3!

FIB

/upmc/spathis/ccn/tutorial/slide43! 1, 2!

PIT

 ! !

 ! !

1!

2!

3! /upmc/spathis/ccn/tutorial/slide43!

 !
 !

CS

CCN Forwarder!

74!

/upmc! 3!

FIB

/upmc/spathis/ccn/tutorial/slide43! 1, 2!

PIT

/upmc/spathis/ccn/tutorial/slide43!

 ! !

 ! !

 !

CS

1!

2!

3! /upmc/spathis/ccn/tutorial/slide43!

CCN Forwarder!

75!

/upmc! 3!

FIB

/upmc/spathis/ccn/tutorial/slide24! 1, 2!

PIT

/upmc/spathis/ccn/tutorial/slide43!

 ! !

 ! !

 !

CS

1!

2!

3!

/upmc/spathis/ccn/tutorial/slide43!

/upmc/spathis/ccn/tutorial/slide43!

 ! !

CCN Forwarder!

76!

/upmc! 3!

FIB

 ! !

PIT

/upmc/spathis/ccn/tutorial/slide43!

 ! !

 ! !

 !

CS

1!

2!

3!

/upmc/spathis/ccn/tutorial/slide43!

/upmc/spathis/ccn/tutorial/slide43!

CCN Node Model!

77!

 ! !

 ! !

 ! !

 ! !

 ! !

 ! !

1!

2!

3!

Longest matching prefix
on names!
Managed by external
routing protocols !

State for reverse-path
forwarding!

Long-term packet memory!

FIB

PIT

CS

CCN Node Model!

78!

CS! PIT! FIB!
Interest!

add incoming face! drop Interest!

forward!

PIT!
Data!

drop Data packet!CS!

forward!

cache!

Interest satisfied by CS!

79!

CS! PIT! FIB!
Interest!

PIT!

CS!

CS miss - Interest already in
PIT!

80!

CS! PIT! FIB!
Interest!

add incoming face!
if not listed!

PIT!

CS!

CS miss, PIT miss, no route
in FIB for Interest!

81!

CS! PIT! FIB!
Interest!

drop Interest!

PIT!

CS!

add incoming face!

CS miss, PIT miss, route match in
FIB - Forward via Strategy!

82!

CS! PIT! FIB!
Interest!

forward!

PIT!

CS!

add incoming face!

PIT miss for Content!

83!

CS! PIT! FIB!
Interest!

add incoming face! drop Interest!

forward!

PIT!
Data!

drop Data packet!CS!

PIT match - Remove PIT entry, store
copy in CS, reverse-path Forward!

84!

CS! PIT! FIB!
Interest!

add incoming face! drop Interest!

forward!

PIT!
Data!

CS!

forward!

cache!

CCN Stateful Data Plane!
•  Named-based anycast and multicast delivery !

-  Reverse-Path Forwarding!
-  Scalable content distribution !
-  Multipath forwarding !

•  Content Store!
-  Offload sources for popular content!
-  Retransmission buffer!

85!

CCN Data Plane Resilience!
•  CCN content delivery is a 2-step process:!

-  Interest forwarding to set up state!
-  Content traversal of interest path in reverse!

•  Content not forwarded w/out interests (i.e., request) for it!
-  Multiple interests for same content are collapsed and one!
-  copy of content per “interested” interface is returned!

•  Interest forwarding state eliminates looping, allows exploitation of
topological redundancies and multipath forwarding!

•  Content packets measure quality of selected (interest) paths !
• Forwarding plane can incorporate congestion and fault mitigation

into path decisions!
• Content caching increases availability & mitigates DoS attacks!

86!

CCN Forwarding Strategy!
•  Each entry can have a list of

output interfaces !

•  Need for forwarding policies!

87!

/upmc! 1,3,5!

FIB

 ! !

CCN at UPMC (2):!
Content Centricity in Constrained !

Cellular-Assisted D2D Communications!

88!

ANR DataTweet!

CCN at UPMC (1):!
Vehicular Named Data Networking!

Implemented a Linux-based NDN daemon, with
enhancement to WiFi broadcast support!

89!

Takeaways!
•  CCN node is as simple as an IP node:!

-  same memory requirements!

-  same computational requirements (with option to increase
security)!

•  CCN does near optimal content distribution. !

•  Security, delivery efficiency, mobility and disruption tolerance
than TCP/IP !

•  CCNx, NDN: Tools for experimenting new apps in emerging
environments !

90!

Information Centric Networking!
MSc in Computer Networking !

January 20, 2017!

Prométhée Spathis
promethee.spathis@upmc.fr!

91!

Salah-Eddine Belouanas
salah-eddine.belouanas@lip6.fr!

Thank You !!!!

