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Once, IP Adresses used to 
rule the Internet

• RFC 597 Host Status (1973) 

• RFC 990 (1986) 
- ~10K assigned network numbers 
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Internet Traffic by Network 
 (Petabytes per Month)
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IP Addresses Bashing
• Mobility/Migration: IP adds change over time 

• Multihoming/Replication: Multiple IP adds at same time 

• Routing and name resolution: Scaling and convergence 
time limitations 

• Mobility and multihoming: ID/Loc split architectures 

• Migration and replication: Data-intensive applications?
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Design Usage Mismatch
• Internet was designed for host-to-host 

communication 
- “contact this host…” 

• Internet is mainly used for data access 
- “get me this data.....”
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• Mismatch between usage and design: 
- data migration and replication unnecessarily hard 
- requires Akamai- and BitTorrent-like designs to scale 
- mobility and multi-homing pose problems



Information Centric Networking
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Information Centric 
Network

Focus on  
information objects

Today’s Internet

Focus on 
nodes

In today’s Internet, 
accessing information is  
the dominating use case!

Web CDN P2P
Evolution

•  Considering important requirements
–  Accessing named resources – not 

hosts
–  Scalable distribution through 

replication and caching
–  Good control of resolution/routing 

and access

•  With ubiquitous caching
–  But for all applications
–  And for all users and content/service 

providers

— Patrick Crowley (University of Washington in St. Louis)  
ACM Conference on Information-Centric Networking (ICN-2014) Paris, France

« Named Data Network (NDN) is a general-purpose 
protocol built on requests for named data. » 
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— Glenn Scott (Senior Research Scientist and Principal Engineer at Parc) 
ACM Conference on Information-Centric Networking (ICN-2014) Paris, France

« Content-centric Networking (CCN) is a communication 
architecture based on transferring named data. »



CCN Timeline
• 2005: PARC starts work on ICN 

• 2006: Van Jacobson’s talk at Google 

• 2007: CCN 0.x begins 

• 2009: Seminal CCN Paper at CoNext 2009 

• 2010: NSF-funded NDN project  

• 2013: CCN 1.x begins 

• 2014: NDN 2nd phase (w/o Parc)

1st Dagstuhl Seminar (2010) 
1st SIGCOMM workshop (2011) 
1st CCNxCon (2011) 
1st INFOCOM workshop (2012) 
1st ICNRG meeting (2012) 
1st NDNCom meeting (2014) 
1st ICN Conference (2014)11

CCN Key Tenets
• Content centric paradigm 

- access data objects in a location-independent manner 
- secure the content rather then the connection 
- add general-purpose memory into the network 

• CCN design is not a clean-state approach … 
- not a replacement for IP 
- … but more conventional
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CCN Design Choices
• Which IP engineering principles can remain still valid after 

removing addresses from the Internet? 

• Maximize the reuse of well-tried mechanisms and 
techniques directly borrowed from IP 

- DNS-like naming scheme 

- CIDR-like prefix aggregation 

- Longest prefix match forwarding 

- Link-state protocols (i.e. OSPF) opaque capacities
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Agenda
• CCN object and chunks 

• CCN names format 

• CCN signature 

• CCN packet and messages format 

• Content-based security 

• CCN node model and forwarder 

• CCN routing 

• Application examples 

• Conclusions
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Named Object

File Name

A large object has a CCN publisher-given name
15

Named Chunks

Each network-sized chunk also has a CCN name

File Chunk

File Chunk

File Chunk

File ChunkName/chunk=1

Name/chunk=2

Name/chunk=3

Name/chunk=4

File Name
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Named Chunks

File Name

CCN creates a manifest describing the file

File Chunk

File Chunk

File Chunk

File ChunkName/chunk=1

Name/chunk=2

Name/chunk=3

Name/chunk=4

ManifestName/manifest
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Transport Protocols
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CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0

19

Ordered labeled sequence of binary segments

CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0
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Ordered labeled sequence of binary segments

global routable 
name segments



CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0
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global routable 
name segments

application 
dependent name 

segments

Ordered labeled sequence of binary segments

CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0
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global routable 
name segments

protocol dependent  
name  

segments

Ordered labeled sequence of binary segments

application 
dependent name 

segments



/upmc/spathis/ccn/tutorial/slide13/v=2/c=0

CCN Names Qualifier
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ContentObjectHash KeyId

secure cryptographic 
hash of the Content 

Object message

Identifier of the Content 
Objet publisher

Interests can identify content hash or publisher’s key

Secure Single Chunk

CCN names and signs every chunk

File Chunk

File Chunk

File Chunk

File Chunk
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/parc/ccnx/spec/c=1

Signature

Data 
(optionally encrypted)



Secure Whole Object via Manifest

CCN names and signs the file via a manifest

File Chunk

File Chunk

File Chunk

File Chunk
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/parc/ccnx/spec/manifest

Signature

List of chunks 
(optionally encrypted)

Manifest

Secure Whole Object via Manifest

Indirectly sign every chunk through the manifest

File Chunk

File Chunk

File Chunk

File Chunk
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/parc/ccnx/spec/c=1 
<hash chunk1>

Data 
(optionally encrypted)

Manifest



Packet Format
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Static Header
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Optional Header Length

Packet Format
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Optional Header
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Option Type Option Length

Option Value

Option Type Option Length

Option Value

Packet Format
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Validation
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 Optional CCN Validation Algorithm TLV 

 Optional CCN Validation Payload TLV

Packet Format
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CCN Message
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Message Type

Name Type

Message Length

Name Length

Name

Message specific TLVs

CCN Message
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Version

Hop Limit

Message Type

Reserved

Message Length

Optional Header Length

Option Type Option Length

Option Value

Message Type

Name Type

Message Length

Name Length

Name

Message specific TLVs

 Optional CCN Validation Algorithm TLV 

 Optional CCN Validation Payload TLV (required ValidationAlg)



Interest Message
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T_INTEREST

T_NAME

Interest Length

Name Length

Name

Optional Metadata TLV(s)

Optional Payload TLV

Content Object Message
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T_CONTENT_OBJECT

T_NAME

Content Object Length

Name Length

Name

Optional Metadata TLV(s)

Content Object Payload TLV



Quick Example Break
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/upmc/spathis/ccn/index.html/manifest/c0

/upmc/spathis/ccn/index.html/manifest/c0
c0/h6245 
c1/h9243 

Request the list of chunks for the main webpage 
Each chunk identified with a hash

Quick Example Break
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/upmc/spathis/ccn/index.html/c0/h6245

/upmc/spathis/ccn/index.html/c0/h6245

/upmc/spathis/ccn/index.html/c1/h9243

/upmc/spathis/ccn/index.html/c1/h9243

Request each chunk using name and hash



Quick Example Break
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/upmc/spathis/ccn/style.css/manifest/c0

/upmc/spathis/ccn/style.css/manifest/c0
… 

Retrieve references

/upmc/spathis/ccn/logo.gif/manifest/c0

/upmc/spathis/ccn/tutorial.ppt/manifest/c0

Securing Content
Content Packet = 〈 name, data, signature 〉 

• Integrity & authenticity 
- Is it a complete, uncorrupted copy of what the publisher sent? 

• Origin Authentication 
- Is the publisher one the receiver is willing to trust to supply this 

content? 

• Correctness 
- Is this content an answer to the question the receiver asked.

42



Publishing and Verifying Content
M(N,C,P) =〈 N, C, SignP (N, C) 〉 

• A content publisher  
- determines the name of its content (how it will be found) 

- generates a digital signature over that name and the content 

• A content consumer, given N, must be able to retrieve  
- the content C, the authenticator SignP (N, C) 
- sufficient supporting information to determine what public key to 

use and where to find a copy 
➡User-friendly mechanisms to manage public and private keys 
➡Easy to deploy mechanisms to determine trust in keys and content
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Content-based Security
• Security travels with the content 

- Content can be authenticated by any node (public key signatures)  

- Secure caching: can get content from anyone with a copy, and still 
authenticate it 

- Confidentiality: encrypt content for access control  

• Move the security perimeter from the host to the application 

- Content decrypted only inside the target application 

- Use of encryption tailored to application needs 

• Host protection 

- Harder to mount an attack against a host if you can’t address packets to it 

• Access control by policy routing

44



CCN Forwarder
• Routing  

Finding the path alternatives 

• Strategy  

How to use the alternatives 

• Forwarding  

Processing a packet based on a strategy 
45

CCN Forwarder
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1
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3

Store information about what face  
to follow to find a given name

Store information about what  
interests are pending

Buffer content objects for  
potential reuse

Forwarding Information Base

Pending Interest Table

Content Store



CCN Forwarder
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CCN Forwarder
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/upmc/spathis/ccn/tutorial/slide2

CCN Forwarder
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CCN Forwarder
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CCN Forwarder
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CCN Forwarder
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CCN Forwarder
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CCN Node Model
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CCN Node Model
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CS PIT FIB
Interest

add incoming face drop Interest

forward

PIT
Data

drop Data packetCS

forward

cache

Interest satisfied by CS
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CS PIT FIB
Interest

PIT

CS



CS miss - Interest already in 
PIT
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CS PIT FIB
Interest

add incoming face 
if not listed

PIT

CS

CS miss, PIT miss, no route 
in FIB for Interest
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CS PIT FIB
Interest

drop Interest

PIT

CS

add incoming face



CS miss, PIT miss, route match 
in FIB - Forward via Strategy
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CS PIT FIB
Interest

forward

PIT

CS

add incoming face

PIT miss for Content
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CS PIT FIB
Interest

add incoming face drop Interest

forward

PIT
Data

drop Data packetCS



PIT match - Remove PIT entry, store 
copy in CS, reverse-path Forward
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CS PIT FIB
Interest

add incoming face drop Interest

forward

PIT
Data

CS

forward

cache

CCN Stateful Data Plane
• Named-based anycast and multicast delivery  

- Reverse-Path Forwarding 
-  Scalable content distribution  
-  Multipath forwarding  

• Content Store 
- Offload sources for popular content 
- Retransmission buffer

62



CCN Data Plane Resilience
• CCN content delivery is a 2-step process: 

- Interest forwarding to set up state 
- Content traversal of interest path in reverse 

• Content not forwarded w/out interests (i.e., request) for it 
- Multiple interests for same content are collapsed and one 
- copy of content per “interested” interface is returned 

• Interest forwarding state eliminates looping, allows exploitation of 
topological redundancies and multipath forwarding 

• Content packets measure quality of selected (interest) paths  
• Forwarding plane can incorporate congestion and fault mitigation 

into path decisions 
• Content caching increases availability & mitigates DoS attacks
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CCN Routing
• Multiple copies of Content Objects 

- Opportunist replication, caching, or migration 

• How to route towards one or all copies of the same 
object? 

- Source does not know any instances  

- Source knows all instances 

- In-between: Designated representative

64



Remember Multicast
• Flood and Prune (PIM-DM) 

- Reach all possible destinations, prune all except instances 

• Link-state Multicast (MOSPF) 

- Topology is known so the location of the instances  

- Compute the source-tree to all instances 

• Core-based Trees (aka PIM-SM) 

- Rendez-vous point in-between the source and the instances  

- Compute the tree rooted at the RV point

65

CCN Current Routing Proposals 

• Network topology and location of all instances 
known 

- Named-data Link State Routing Protocol (NLSR) 

• w/o knowing all, flooding, or predefined core
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Named Link-State Routing 
NLSR Protocol (ICN’13)

• Naming routers and routing process 

/<network>/<site>/<router>/NLSR 

• Link-state advertisements  

- Adjacency LSAs (Neighbor 1 Name, Link 1 Cost, ...) 

/<LSA-prefix> /<site>/<router>/LsType.1/<version> 

- Prefix LSAs (isValid, name prefix)  
- )

/<LSA-prefix>/<site> /<router>/LsType.2/LsId.<ID>/
<version> 

67

LSDB Synchronization
• Use of CCNx synchronization protocol 

- LSDB seen as a CCNx repository, collections of named data 

- Detection of inconsistencies through periodic exchanges of LSDB hashes

68

Table 1: Contents of an LSA
Type Content
Adjacency LSA # Active Links (N), Neighbor 1 Name, Link 1

Cost, ..., Neighbor N Name, Link N Cost
Prefix LSA isValid, Name Prefix

our implementation uses CCNx Sync [5] and Repo [5] to dissem-
inate LSA data, and CCNx repo imposes a constraint that all the
data to be synchronized must share a common name prefix, our
current implementation is confined to using a common prefix for
the LSAs generated by all the routers. We name each LSA us-
ing the common prefix /<network>/NLSR/LSA (we call this
<LSA-prefix>), and append /<site>/<router> to this pre-
fix to differentiate LSAs originated by different NLSR routers.

3.2 LSAs
NLSR is designed to propagate two types of LSAs – Adjacency

LSA and Prefix LSA. The Adjacency LSA is used to advertise all
active links connecting one NDN router to its neighbors. The Prefix
LSA, on the other hand, is used to advertise a name prefix that has
been registered with the router. Their contents are shown in Table 1.

An Adjacency LSA has the name format /<LSA-prefix>
/<site>/<router>/LsType.1/<version>, where <router>
is the name of the router that originates the LSA and <version> in-
dicates the ordering in the various versions of a particular LSA as
it changes over time. It is currently implemented as the LSA orig-
ination times in microseconds from epoch time. However, similar
to OSPF, sequence numbers can also be used for this purpose. As
shown in Table 1, the Adjacency LSA contains all the active links
of a router, each associated with a neighboring router’s name and
a link cost. It is created at router startup time and whenever there
is any status change in a router’s links, as detected by periodical
“info” Interest messages (Section 3.5).

A Prefix LSA has the name format /<LSA-prefix>/<site>
/<router>/LsType.2/LsId.<ID>/<version>. Note that
each Prefix LSA advertises one name prefix. Since one router may
have multiple name prefixes registered with it, it needs to announce
multiple Prefix LSAs, using a unique LSA ID1 in their name to
differentiate them. The rationale for this design decision is that
bundling all the name prefixes of a router in a single LSA may make
it too large to be transported in one message and also inefficient to
update (even if only one prefix is added or removed, all the other
prefixes in the same LSA need to be advertised again). Each Prefix
LSA contains a flag isValid (set to 1 initially) and the name prefix
to be advertised (Table 1). When a name prefix is de-registered,
NLSR updates the corresponding prefix LSA by setting isValid to
0, and disseminates the new LSA to other nodes. An NLSR node
receiving this LSA will delete this name prefix from its LSDB and
update its FIB accordingly.

In order to remove obsolete LSAs caused by router crashes, ev-
ery router periodically refreshes each of its advertised LSAs by
generating a newer version. Every LSA has a lifetime associated
with it, and will be removed from the LSDB when the lifetime ex-
pires. Therefore if a router crashes, its LSAs will not persist in other
routers’ LSDBs. Note that route calculation should not be impacted
by the obsolete LSAs in NLSR – if a router crashes, its neighbors
will update the status of their LSAs so traffic will not be directed
over those links. Since we do not use the refreshes to handle packet
losses or state corruption (CCNx Sync handles it) and the obsolete

1The LSA ID can be manually configured or calculated based on
the name prefix (e.g., a hash of the name prefix).

Figure 1: LSA dissemination from router to router via CCNx
Sync/repo (dotted line represents periodic messages.)

LSAs do not affect route calculation, these refreshes should be sent
at a relatively long interval, e.g., on the order of days.

3.3 LSDB Synchronization
To simplify our design conceptually, we decided to view the

LSDB as a collection of data, and the LSA dissemination prob-
lem as a data synchronization problem of the LSDBs maintained
by the routers. Routers periodically exchange their hashes of the
LSDB to detect inconsistencies and recover from them. This hop-
by-hop synchronization approach avoids unnecessary flooding to
the network – when the network is stable, only one hash, instead
of all the LSAs, is exchanged between neighbors. Moreover, it is
also receiver-driven, meaning that a router will request LSAs only
when it has CPU cycles. Thus it is less likely a router will be over-
whelmed by a flurry of updates.

Our current implementation uses the CCNx synchronization pro-
tocol, or Sync [5], to disseminate the LSAs to the neighboring
routers. Sync is associated with the CCNx repository (or Repo).
It allows applications to define collections of named data in a repo,
called slices, which are kept in sync with identically defined slices
in neighboring repos. Sync computes a hash tree over all the data
in a slice and exchanges the root hash between neighbors to detect
inconsistencies. If the hash values do not agree, two neighboring
nodes then exchange the hash values of nodes on the next tree level
until they detect the specific leaf nodes (data) causing the problems.
They then exchange the data to reach consistency.

Figure 1 shows how an LSA is disseminated in the network. To
synchronize the slice containing LSAs, the Sync protocol periodi-
cally sends special Interest messages, called Root Advise, with the
combined hash value of the slice to the neighboring nodes (step 1).
When Router A’s NLSR creates an LSA and writes it in the Sync
slice (step 2), its hash value becomes different from that of Router
B, which causes Router A’s Sync to reply to the Root Advise Inter-
est from Router B with the new hash value of its local slice (step 3).
Router B’s Sync then compares the hashes and recursively requests
for the next level hashes that cause the differences. Eventually,
Router B’s Sync identifies the data that needs to be synchronized
(LSAs in the context of NLSR) and retrieves them using Interest
messages (step 4 and 5). The Sync on Router B then sends the data
name to the local NLSR agent (step 6), which fetches the data from
the local repo (step 7 and 8) and updates its LSDB (step 9).

Each Root Advise Interest has a lifetime and a new Root Advise
is sent when the lifetime expires. Such periodic transmission is de-
signed to handle the loss of Root Advise Interests, and thus reduce



Distance-based Content Routing 
DCR (ICN’14)

• Establish a lexicographic ordering of distances to multi-
instantiated destination 

• The name of a router “speaking for” a destination 
instance (called anchor) is an attribute used in the 
ordering 

• Routers choose what to share with their peers (e.g., “the 
best distance according to the lexicographic ordering”) 

• Lexicographic ordering among instances defines an 
instance where a DAG spanning all instances is rooted

69

• Lexicographic ordering based on hop count to instance, ID of instance’s 
anchor , sequence number from anchor 

• Route to some nearest instances w/o knowing all, flooding, or predefined core

70
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•  Routing to all instances
•  We can build a routing structure spanning all instances, w/o knowing all 

instances, flooding, or pre-defining a “core”

Example: DCR
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Vehicular Named Data Networking
Implemented a Linux-based NDN daemon, with 
enhancement to WiFi broadcast support

71

Car A:  Publisher (Owner of dataA) 

Car B: Mule 

Car C: Mule 

Car D: Consumer 

Interest packet 

Data Packet 

Three NDN entities 
•  Publisher: A car generating data 
•  Consumer: A car requesting data 
•  Mule: A car caching and forwarding data 
A car can have more than one role at a time. 

NDN A NDN#backbone#

NDN B 

Mobile'NDN'with'
infrastructure'

support'(over'IP)'

Mobile'NDN'without'
infrastructure'

support'(non:IP)'

Content Centricity in Constrained  
Cellular-Assisted D2D Communications
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D2D content 
dissemination 

Low rate 
access channel 

Content available for retrieval  

User interested in content 

Backhaul network 

ANR DataTweet



Key Issues
• Define Autonomous Systems for CCN, incorporate routing 

policies and an inter-domain trust model 

• Applying CCN to solve real networking problems 

- Internet is already information-centric 

• youtube, netflix, amazon, facebook 

• new generations of applications 

- Solving info distribution problems via IP point-to-point 
communication, as we do today, is complex & error-prone 
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Analogy with TCP/IP in the 80s
• Promising new technology 
• Largely unknown outside its small community 
• Federal funding led TCP/IP to its success 

- BSD development, NSFnet 
- Various research projects over Internet 

• A number of problems exposed and resolved through larger scale 
experimentation 

- DNS development 
- Congestion control 
- Evolution of the routing system 
- …
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Takeaways
• Recognizing the right communication abstraction  

• CCN focuses on retrieving data rather than 
conceptualizing communication between hosts  

• Security, delivery efficiency, mobility and disruption 
tolerance than TCP/IP  

• CCNx, NDN: Tools for experimenting new apps in 
emerging environments  
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