
Information Centric
Networking

MSc in Computer Networking
January 09, 2015

1

Prométhée Spathis
promethee.spathis@upmc.fr

Once, IP Adresses used to
rule the Internet

• RFC 597 Host Status (1973)

• RFC 990 (1986)
- ~10K assigned network numbers

2

1 sec 10 years1 year1 day

update
frequency

local

global

IP
(public)

DHCP

IP
(private)

NAT

scope
URL

keywords

label

google

port/protocol
numbers

AS numbers
EUI-48

emails

3

FQDN
(private)

FQDN
(global)

Man vs Human
(Billions per Year)

4

4B

9B

13B

18B

22B

Population # of Users Devices

20,6

3,9

7,6

12,4

2,5

7,2

2013 2018

Internet Traffic by Network
 (Petabytes per Month)

5

20PB

40PB

60PB

80PB

2013 2014 2015 2016 2017 2018

Fixed Mobile

6

50PB

100PB

150PB

200PB

2013 2014 2015 2016 2017 2018

Online gaming Internet video
Web, email, and data File sharing

Internet Traffic By Type
 (Petabytes per Month)

IP Addresses Bashing
• Mobility/Migration: IP adds change over time

• Multihoming/Replication: Multiple IP adds at same time

• Routing and name resolution: Scaling and convergence
time limitations

• Mobility and multihoming: ID/Loc split architectures

• Migration and replication: Data-intensive applications?

7

Design Usage Mismatch
• Internet was designed for host-to-host

communication
- “contact this host…”

• Internet is mainly used for data access
- “get me this data.....”

8

• Mismatch between usage and design:
- data migration and replication unnecessarily hard
- requires Akamai- and BitTorrent-like designs to scale
- mobility and multi-homing pose problems

Information Centric Networking

9

Information Centric
Network

Focus on  
information objects

Today’s Internet

Focus on
nodes

In today’s Internet, 
accessing information is  
the dominating use case!

Web CDN P2P
Evolution

•  Considering important requirements
–  Accessing named resources – not

hosts
–  Scalable distribution through

replication and caching
–  Good control of resolution/routing

and access

•  With ubiquitous caching
–  But for all applications
–  And for all users and content/service

providers

— Patrick Crowley (University of Washington in St. Louis)
ACM Conference on Information-Centric Networking (ICN-2014) Paris, France

« Named Data Network (NDN) is a general-purpose
protocol built on requests for named data. »

10

— Glenn Scott (Senior Research Scientist and Principal Engineer at Parc)
ACM Conference on Information-Centric Networking (ICN-2014) Paris, France

« Content-centric Networking (CCN) is a communication
architecture based on transferring named data. »

CCN Timeline
• 2005: PARC starts work on ICN

• 2006: Van Jacobson’s talk at Google

• 2007: CCN 0.x begins

• 2009: Seminal CCN Paper at CoNext 2009

• 2010: NSF-funded NDN project

• 2013: CCN 1.x begins

• 2014: NDN 2nd phase (w/o Parc)

1st Dagstuhl Seminar (2010)
1st SIGCOMM workshop (2011)
1st CCNxCon (2011)
1st INFOCOM workshop (2012)
1st ICNRG meeting (2012)
1st NDNCom meeting (2014)
1st ICN Conference (2014)11

CCN Key Tenets
• Content centric paradigm

- access data objects in a location-independent manner
- secure the content rather then the connection
- add general-purpose memory into the network

• CCN design is not a clean-state approach …
- not a replacement for IP
- … but more conventional

12

CCN Design Choices
• Which IP engineering principles can remain still valid after

removing addresses from the Internet?

• Maximize the reuse of well-tried mechanisms and
techniques directly borrowed from IP

- DNS-like naming scheme

- CIDR-like prefix aggregation

- Longest prefix match forwarding

- Link-state protocols (i.e. OSPF) opaque capacities

13

Agenda
• CCN object and chunks

• CCN names format

• CCN signature

• CCN packet and messages format

• Content-based security

• CCN node model and forwarder

• CCN routing

• Application examples

• Conclusions

14

Named Object

File Name

A large object has a CCN publisher-given name
15

Named Chunks

Each network-sized chunk also has a CCN name

File Chunk

File Chunk

File Chunk

File ChunkName/chunk=1

Name/chunk=2

Name/chunk=3

Name/chunk=4

File Name

16

Named Chunks

File Name

CCN creates a manifest describing the file

File Chunk

File Chunk

File Chunk

File ChunkName/chunk=1

Name/chunk=2

Name/chunk=3

Name/chunk=4

ManifestName/manifest

17

Transport Protocols

18

I

I
C

C
I

I
C

C

I

I C

C I

I C
C

Core exchange parallel requests

I

I C

C I

I C
C

M

use of manifests

CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0

19

Ordered labeled sequence of binary segments

CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0

20

Ordered labeled sequence of binary segments

global routable
name segments

CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0

21

global routable
name segments

application
dependent name

segments

Ordered labeled sequence of binary segments

CCN Names Format

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0

22

global routable
name segments

protocol dependent
name

segments

Ordered labeled sequence of binary segments

application
dependent name

segments

/upmc/spathis/ccn/tutorial/slide13/v=2/c=0

CCN Names Qualifier

23

ContentObjectHash KeyId

secure cryptographic
hash of the Content

Object message

Identifier of the Content
Objet publisher

Interests can identify content hash or publisher’s key

Secure Single Chunk

CCN names and signs every chunk

File Chunk

File Chunk

File Chunk

File Chunk

24

/parc/ccnx/spec/c=1

Signature

Data
(optionally encrypted)

Secure Whole Object via Manifest

CCN names and signs the file via a manifest

File Chunk

File Chunk

File Chunk

File Chunk

25

/parc/ccnx/spec/manifest

Signature

List of chunks
(optionally encrypted)

Manifest

Secure Whole Object via Manifest

Indirectly sign every chunk through the manifest

File Chunk

File Chunk

File Chunk

File Chunk

26

/parc/ccnx/spec/c=1
<hash chunk1>

Data
(optionally encrypted)

Manifest

Packet Format

27

0 8 16 24 32

Static Header

Optional Headers

Message

Validation

Static Header

28

0 8 16 24 32

Static Header

Optional Headers

Message

Validation

Static Header

29

0 8 16 24 32

Version

Hop Limit

Message Type

Reserved

Message Length

Optional Header Length

Packet Format

30

0 8 16 24 32

Static Header

Optional Headers

Message

Validation

Optional Header

31

0 8 16 24 32

Option Type Option Length

Option Value

Option Type Option Length

Option Value

Packet Format

32

0 8 16 24 32

Static Header

Optional Headers

Message

Validation

Validation

33

0 8 16 24 32

 Optional CCN Validation Algorithm TLV

 Optional CCN Validation Payload TLV

Packet Format

34

0 8 16 24 32

Static Header

Optional Headers

Message

Validation

CCN Message

35

0 8 16 24 32

Message Type

Name Type

Message Length

Name Length

Name

Message specific TLVs

CCN Message

36

0 8 16 24 32

Version

Hop Limit

Message Type

Reserved

Message Length

Optional Header Length

Option Type Option Length

Option Value

Message Type

Name Type

Message Length

Name Length

Name

Message specific TLVs

 Optional CCN Validation Algorithm TLV

 Optional CCN Validation Payload TLV (required ValidationAlg)

Interest Message

37

0 8 16 24 32

T_INTEREST

T_NAME

Interest Length

Name Length

Name

Optional Metadata TLV(s)

Optional Payload TLV

Content Object Message

38

0 8 16 24 32

T_CONTENT_OBJECT

T_NAME

Content Object Length

Name Length

Name

Optional Metadata TLV(s)

Content Object Payload TLV

Quick Example Break

39

/upmc/spathis/ccn/index.html/manifest/c0

/upmc/spathis/ccn/index.html/manifest/c0
c0/h6245
c1/h9243

Request the list of chunks for the main webpage
Each chunk identified with a hash

Quick Example Break

40

/upmc/spathis/ccn/index.html/c0/h6245

/upmc/spathis/ccn/index.html/c0/h6245

/upmc/spathis/ccn/index.html/c1/h9243

/upmc/spathis/ccn/index.html/c1/h9243

Request each chunk using name and hash

Quick Example Break

41

/upmc/spathis/ccn/style.css/manifest/c0

/upmc/spathis/ccn/style.css/manifest/c0
…

Retrieve references

/upmc/spathis/ccn/logo.gif/manifest/c0

/upmc/spathis/ccn/tutorial.ppt/manifest/c0

Securing Content
Content Packet = 〈 name, data, signature 〉

• Integrity & authenticity
- Is it a complete, uncorrupted copy of what the publisher sent?

• Origin Authentication
- Is the publisher one the receiver is willing to trust to supply this

content?

• Correctness
- Is this content an answer to the question the receiver asked.

42

Publishing and Verifying Content
M(N,C,P) =〈 N, C, SignP (N, C) 〉

• A content publisher
- determines the name of its content (how it will be found)

- generates a digital signature over that name and the content

• A content consumer, given N, must be able to retrieve
- the content C, the authenticator SignP (N, C)
- sufficient supporting information to determine what public key to

use and where to find a copy
➡User-friendly mechanisms to manage public and private keys
➡Easy to deploy mechanisms to determine trust in keys and content

43

Content-based Security
• Security travels with the content

- Content can be authenticated by any node (public key signatures)

- Secure caching: can get content from anyone with a copy, and still
authenticate it

- Confidentiality: encrypt content for access control

• Move the security perimeter from the host to the application

- Content decrypted only inside the target application

- Use of encryption tailored to application needs

• Host protection

- Harder to mount an attack against a host if you can’t address packets to it

• Access control by policy routing

44

CCN Forwarder
• Routing

Finding the path alternatives

• Strategy

How to use the alternatives

• Forwarding

Processing a packet based on a strategy
45

CCN Forwarder

46

1

2

3

Store information about what face
to follow to find a given name

Store information about what
interests are pending

Buffer content objects for
potential reuse

Forwarding Information Base

Pending Interest Table

Content Store

CCN Forwarder

47

/upmc 3

FIB

1

2

3

/upmc/spathis/ccn/tutorial/slide24

CCN Forwarder

48

/upmc 3

FIB

/upmc/spathis/ccn/tutorial/slide43 1

PIT

1

2

3

/upmc/spathis/ccn/tutorial/slide43

/upmc/spathis/ccn/tutorial/slide43

/upmc/spathis/ccn/tutorial/slide2

CCN Forwarder

49

/upmc 3

FIB

1

PIT

1

2

3

/upmc/spathis/ccn/tutorial/slide431, 2

/upmc/spathis/ccn/tutorial/slide43

CCN Forwarder

50

/upmc 3

FIB

/upmc/spathis/ccn/tutorial/slide43 1, 2

PIT

1

2

3 /upmc/spathis/ccn/tutorial/slide43

CS

CCN Forwarder

51

/upmc 3

FIB

/upmc/spathis/ccn/tutorial/slide43 1, 2

PIT

/upmc/spathis/ccn/tutorial/slide43

CS

1

2

3 /upmc/spathis/ccn/tutorial/slide43

CCN Forwarder

52

/upmc 3

FIB

/upmc/spathis/ccn/tutorial/slide24 1, 2

PIT

/upmc/spathis/ccn/tutorial/slide43

CS

1

2

3

/upmc/spathis/ccn/tutorial/slide43

/upmc/spathis/ccn/tutorial/slide43

CCN Forwarder

53

/upmc 3

FIB

PIT

/upmc/spathis/ccn/tutorial/slide43

CS

1

2

3

/upmc/spathis/ccn/tutorial/slide43

/upmc/spathis/ccn/tutorial/slide43

CCN Node Model

54

1

2

3

Longest matching prefix
on names
Managed by external
routing protocols

State for reverse-path
forwarding

Long-term packet memory

FIB

PIT

CS

CCN Node Model

55

CS PIT FIB
Interest

add incoming face drop Interest

forward

PIT
Data

drop Data packetCS

forward

cache

Interest satisfied by CS

56

CS PIT FIB
Interest

PIT

CS

CS miss - Interest already in
PIT

57

CS PIT FIB
Interest

add incoming face
if not listed

PIT

CS

CS miss, PIT miss, no route
in FIB for Interest

58

CS PIT FIB
Interest

drop Interest

PIT

CS

add incoming face

CS miss, PIT miss, route match
in FIB - Forward via Strategy

59

CS PIT FIB
Interest

forward

PIT

CS

add incoming face

PIT miss for Content

60

CS PIT FIB
Interest

add incoming face drop Interest

forward

PIT
Data

drop Data packetCS

PIT match - Remove PIT entry, store
copy in CS, reverse-path Forward

61

CS PIT FIB
Interest

add incoming face drop Interest

forward

PIT
Data

CS

forward

cache

CCN Stateful Data Plane
• Named-based anycast and multicast delivery

- Reverse-Path Forwarding
- Scalable content distribution
- Multipath forwarding

• Content Store
- Offload sources for popular content
- Retransmission buffer

62

CCN Data Plane Resilience
• CCN content delivery is a 2-step process:

- Interest forwarding to set up state
- Content traversal of interest path in reverse

• Content not forwarded w/out interests (i.e., request) for it
- Multiple interests for same content are collapsed and one
- copy of content per “interested” interface is returned

• Interest forwarding state eliminates looping, allows exploitation of
topological redundancies and multipath forwarding

• Content packets measure quality of selected (interest) paths
• Forwarding plane can incorporate congestion and fault mitigation

into path decisions
• Content caching increases availability & mitigates DoS attacks

63

CCN Routing
• Multiple copies of Content Objects

- Opportunist replication, caching, or migration

• How to route towards one or all copies of the same
object?

- Source does not know any instances

- Source knows all instances

- In-between: Designated representative

64

Remember Multicast
• Flood and Prune (PIM-DM)

- Reach all possible destinations, prune all except instances

• Link-state Multicast (MOSPF)

- Topology is known so the location of the instances

- Compute the source-tree to all instances

• Core-based Trees (aka PIM-SM)

- Rendez-vous point in-between the source and the instances

- Compute the tree rooted at the RV point

65

CCN Current Routing Proposals

• Network topology and location of all instances
known

- Named-data Link State Routing Protocol (NLSR)

• w/o knowing all, flooding, or predefined core

66

Named Link-State Routing
NLSR Protocol (ICN’13)

• Naming routers and routing process

/<network>/<site>/<router>/NLSR

• Link-state advertisements

- Adjacency LSAs (Neighbor 1 Name, Link 1 Cost, ...)

/<LSA-prefix> /<site>/<router>/LsType.1/<version>

- Prefix LSAs (isValid, name prefix)
-)

/<LSA-prefix>/<site> /<router>/LsType.2/LsId.<ID>/
<version>

67

LSDB Synchronization
• Use of CCNx synchronization protocol

- LSDB seen as a CCNx repository, collections of named data

- Detection of inconsistencies through periodic exchanges of LSDB hashes

68

Table 1: Contents of an LSA
Type Content
Adjacency LSA # Active Links (N), Neighbor 1 Name, Link 1

Cost, ..., Neighbor N Name, Link N Cost
Prefix LSA isValid, Name Prefix

our implementation uses CCNx Sync [5] and Repo [5] to dissem-
inate LSA data, and CCNx repo imposes a constraint that all the
data to be synchronized must share a common name prefix, our
current implementation is confined to using a common prefix for
the LSAs generated by all the routers. We name each LSA us-
ing the common prefix /<network>/NLSR/LSA (we call this
<LSA-prefix>), and append /<site>/<router> to this pre-
fix to differentiate LSAs originated by different NLSR routers.

3.2 LSAs
NLSR is designed to propagate two types of LSAs – Adjacency

LSA and Prefix LSA. The Adjacency LSA is used to advertise all
active links connecting one NDN router to its neighbors. The Prefix
LSA, on the other hand, is used to advertise a name prefix that has
been registered with the router. Their contents are shown in Table 1.

An Adjacency LSA has the name format /<LSA-prefix>
/<site>/<router>/LsType.1/<version>, where <router>
is the name of the router that originates the LSA and <version> in-
dicates the ordering in the various versions of a particular LSA as
it changes over time. It is currently implemented as the LSA orig-
ination times in microseconds from epoch time. However, similar
to OSPF, sequence numbers can also be used for this purpose. As
shown in Table 1, the Adjacency LSA contains all the active links
of a router, each associated with a neighboring router’s name and
a link cost. It is created at router startup time and whenever there
is any status change in a router’s links, as detected by periodical
“info” Interest messages (Section 3.5).

A Prefix LSA has the name format /<LSA-prefix>/<site>
/<router>/LsType.2/LsId.<ID>/<version>. Note that
each Prefix LSA advertises one name prefix. Since one router may
have multiple name prefixes registered with it, it needs to announce
multiple Prefix LSAs, using a unique LSA ID1 in their name to
differentiate them. The rationale for this design decision is that
bundling all the name prefixes of a router in a single LSA may make
it too large to be transported in one message and also inefficient to
update (even if only one prefix is added or removed, all the other
prefixes in the same LSA need to be advertised again). Each Prefix
LSA contains a flag isValid (set to 1 initially) and the name prefix
to be advertised (Table 1). When a name prefix is de-registered,
NLSR updates the corresponding prefix LSA by setting isValid to
0, and disseminates the new LSA to other nodes. An NLSR node
receiving this LSA will delete this name prefix from its LSDB and
update its FIB accordingly.

In order to remove obsolete LSAs caused by router crashes, ev-
ery router periodically refreshes each of its advertised LSAs by
generating a newer version. Every LSA has a lifetime associated
with it, and will be removed from the LSDB when the lifetime ex-
pires. Therefore if a router crashes, its LSAs will not persist in other
routers’ LSDBs. Note that route calculation should not be impacted
by the obsolete LSAs in NLSR – if a router crashes, its neighbors
will update the status of their LSAs so traffic will not be directed
over those links. Since we do not use the refreshes to handle packet
losses or state corruption (CCNx Sync handles it) and the obsolete

1The LSA ID can be manually configured or calculated based on
the name prefix (e.g., a hash of the name prefix).

Figure 1: LSA dissemination from router to router via CCNx
Sync/repo (dotted line represents periodic messages.)

LSAs do not affect route calculation, these refreshes should be sent
at a relatively long interval, e.g., on the order of days.

3.3 LSDB Synchronization
To simplify our design conceptually, we decided to view the

LSDB as a collection of data, and the LSA dissemination prob-
lem as a data synchronization problem of the LSDBs maintained
by the routers. Routers periodically exchange their hashes of the
LSDB to detect inconsistencies and recover from them. This hop-
by-hop synchronization approach avoids unnecessary flooding to
the network – when the network is stable, only one hash, instead
of all the LSAs, is exchanged between neighbors. Moreover, it is
also receiver-driven, meaning that a router will request LSAs only
when it has CPU cycles. Thus it is less likely a router will be over-
whelmed by a flurry of updates.

Our current implementation uses the CCNx synchronization pro-
tocol, or Sync [5], to disseminate the LSAs to the neighboring
routers. Sync is associated with the CCNx repository (or Repo).
It allows applications to define collections of named data in a repo,
called slices, which are kept in sync with identically defined slices
in neighboring repos. Sync computes a hash tree over all the data
in a slice and exchanges the root hash between neighbors to detect
inconsistencies. If the hash values do not agree, two neighboring
nodes then exchange the hash values of nodes on the next tree level
until they detect the specific leaf nodes (data) causing the problems.
They then exchange the data to reach consistency.

Figure 1 shows how an LSA is disseminated in the network. To
synchronize the slice containing LSAs, the Sync protocol periodi-
cally sends special Interest messages, called Root Advise, with the
combined hash value of the slice to the neighboring nodes (step 1).
When Router A’s NLSR creates an LSA and writes it in the Sync
slice (step 2), its hash value becomes different from that of Router
B, which causes Router A’s Sync to reply to the Root Advise Inter-
est from Router B with the new hash value of its local slice (step 3).
Router B’s Sync then compares the hashes and recursively requests
for the next level hashes that cause the differences. Eventually,
Router B’s Sync identifies the data that needs to be synchronized
(LSAs in the context of NLSR) and retrieves them using Interest
messages (step 4 and 5). The Sync on Router B then sends the data
name to the local NLSR agent (step 6), which fetches the data from
the local repo (step 7 and 8) and updates its LSDB (step 9).

Each Root Advise Interest has a lifetime and a new Root Advise
is sent when the lifetime expires. Such periodic transmission is de-
signed to handle the loss of Root Advise Interests, and thus reduce

Distance-based Content Routing
DCR (ICN’14)

• Establish a lexicographic ordering of distances to multi-
instantiated destination

• The name of a router “speaking for” a destination
instance (called anchor) is an attribute used in the
ordering

• Routers choose what to share with their peers (e.g., “the
best distance according to the lexicographic ordering”)

• Lexicographic ordering among instances defines an
instance where a DAG spanning all instances is rooted

69

• Lexicographic ordering based on hop count to instance, ID of instance’s
anchor , sequence number from anchor

• Route to some nearest instances w/o knowing all, flooding, or predefined core

70

Copyright © 2014 Palo Alto Research Center, Inc., All Rights Reserved

•  Routing to all instances
•  We can build a routing structure spanning all instances, w/o knowing all

instances, flooding, or pre-defining a “core”

Example: DCR

17

 g

 a

 l

 p

 k

 c e

w

 v

b

 h

 f

 d

(u, 2)
(d, 3)
(o, 3)

(u, 1)
(d, 3)

(d, 2)
(u, 2)

(d, 3)
(o, 4)

(d, 1)

 m
 r

(d, 1)

(o, 3)
(d, 4)

(d, 3)
(o, 4)

 o

 y

 x

z

(d, 1)

(d, 2)

(d, 0)

(o, 1)
 (o, 2) (d, 1)

(d, 2)

(d, 2)
(u, 2)

u

 i

(u, 0)
(d, 4)

(u, 1)
(o, 2)
(d, 4)

(o, 2)
(u, 3)
(d, 4)

(o, 1)
(u, 2)
(d, 5)

 s

(o, 2)

 t

(o, 2)

(o, 0)
(d, 6)

Vehicular Named Data Networking
Implemented a Linux-based NDN daemon, with
enhancement to WiFi broadcast support

71

Car A: Publisher (Owner of dataA)

Car B: Mule

Car C: Mule

Car D: Consumer

Interest packet

Data Packet

Three NDN entities
•  Publisher: A car generating data
•  Consumer: A car requesting data
•  Mule: A car caching and forwarding data
A car can have more than one role at a time.

NDN A NDN#backbone#

NDN B

Mobile'NDN'with'
infrastructure'

support'(over'IP)'

Mobile'NDN'without'
infrastructure'

support'(non:IP)'

Content Centricity in Constrained
Cellular-Assisted D2D Communications

72

D2D content
dissemination

Low rate
access channel

Content available for retrieval

User interested in content

Backhaul network

ANR DataTweet

Key Issues
• Define Autonomous Systems for CCN, incorporate routing

policies and an inter-domain trust model

• Applying CCN to solve real networking problems

- Internet is already information-centric

• youtube, netflix, amazon, facebook

• new generations of applications

- Solving info distribution problems via IP point-to-point
communication, as we do today, is complex & error-prone

73

Analogy with TCP/IP in the 80s
• Promising new technology
• Largely unknown outside its small community
• Federal funding led TCP/IP to its success

- BSD development, NSFnet
- Various research projects over Internet

• A number of problems exposed and resolved through larger scale
experimentation

- DNS development
- Congestion control
- Evolution of the routing system
- …

74

Takeaways
• Recognizing the right communication abstraction

• CCN focuses on retrieving data rather than
conceptualizing communication between hosts

• Security, delivery efficiency, mobility and disruption
tolerance than TCP/IP

• CCNx, NDN: Tools for experimenting new apps in
emerging environments

75

