Cache Management for TelcoCDNs

Daphné Tuncer Department of Electronic & Electrical Engineering University College London (UK)

08/01/2016

Agenda

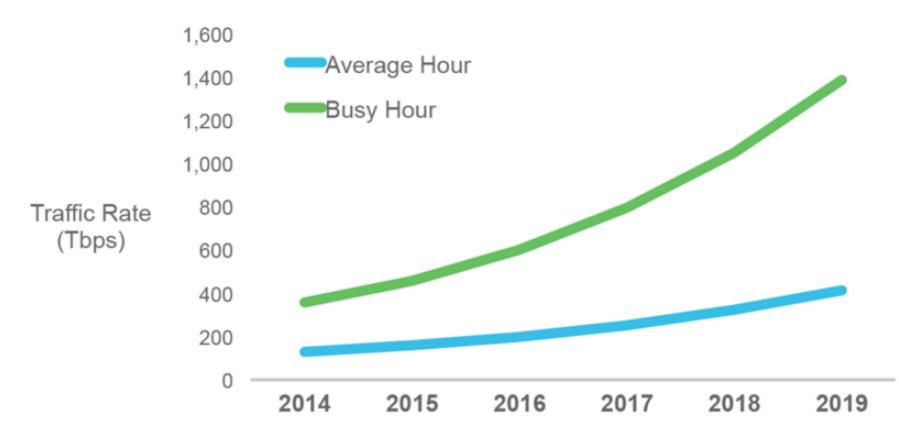
- 1. Internet traffic: trends and evolution
- 2. Content delivery models
- 3. Stakeholders: cooperation and challenges
- 4. ISP caches
- 5. Cache management strategies

Internet traffic forecast

- Based on Cisco VNI 2015 [1]
 - Consumer Internet video traffic will be 80 percent of all consumer Internet traffic in 2019 (64 percent in 2014).
 - Internet video to TV doubled in 2014 and will fourfold by 2019.
 - Consumer VoD traffic will double by 2019.
 - Traffic from wireless and mobile devices will exceed traffic from wired devices by 2019 (33% in 2014 and 66% in 2019).

Internet traffic in volume

• Traffic volume in petabytes (per month)


	2014	2019	Compound annual growth rate
Video	21 624	89 319	+33%
Web, email, data	5 853	16 092	+22%
File sharing	6 090	6 038	0%
Online gaming	27	143	+40%

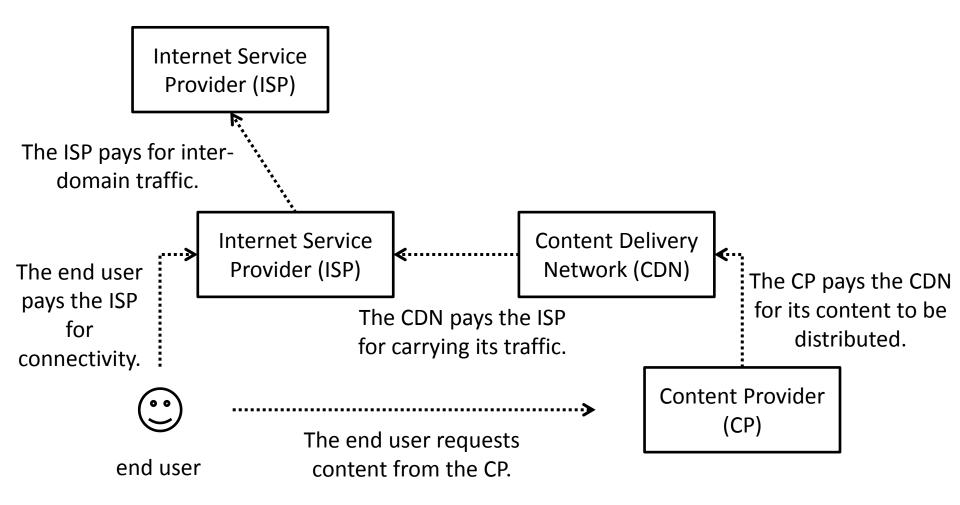
Source: Cisco VNI 2015 [1]

Note: $1PB = 10^{15}$ bytes

Bandwidth requirements

• Busy-hour compared with average Internet traffic growth

Source: Cisco VNI 2015: The Zettabyte Era - Trends and Analysis [2]


Content delivery network

- Content distribution mainly relies on Content Delivery Networks (CDNs)
 - A CDN can be defined as "a large, geographically distributed network of specialized servers that accelerate the delivery of web content and rich media to internet-connected devices", Akamai [3].
- Example of Akamai
 - More than 175,000 servers in more than 100 countries
- Content delivery network traffic will deliver over half of all the Internet video traffic by 2019 [1].

Content distribution solutions

- Commercial CDNs
 - > ex: Akamai Technologies, Limelight Networks, Fastly, etc.
- ISP-operated CDNs
 - ex: AT&T Inc., Level 3 Communications, Deutsche Telekom, NTT, Telefonica, etc.
- Content provider-operated CDNs
 - > ex: Netflix
- Peer-to-peer CDNs
 - ex: Coral Content Distribution Network

Stakeholders

CDN management operations

- Content placement
 - Decide on the distribution of content items in the different server locations.
- Server selection
 - Decide how to serve client requests.
- Usually taken without or with only limited knowledge of the underlying network conditions
 - Exert enormous strain of ISP networks

Impact for the ISP

- External costs
 - Internet tie costs
 - Decreasing trend but still significant given volume of traffic carried by CDNs
- Internal costs
 - Internal network upgrades
 - Upgrading a single router can amount in the order of tens of thousand dollars

Quality of Experience degradation

- Degradation of the Quality of Experience (QoE)
- Congestion and network failure lead to video playback issues (slow start, pixilation *etc.*) and buffering
- Severe effects on user experience
- The end user is more likely to contact his/her ISP than Netflix!

User (in)tolerance and QoE expectation

 Effect of poor resolution and/or frequent interruption on user

Tolerance (in min)	Percentage of abandonment
0 min	33%
1-4 min	43%
5-10 min	14%
11-30 min	5%
30+ min	3%

Source: Conviva 2015 [5]

ISP network caches

- Two solutions [4]
 - Partner caching
 - Transparent caching

Partner caches

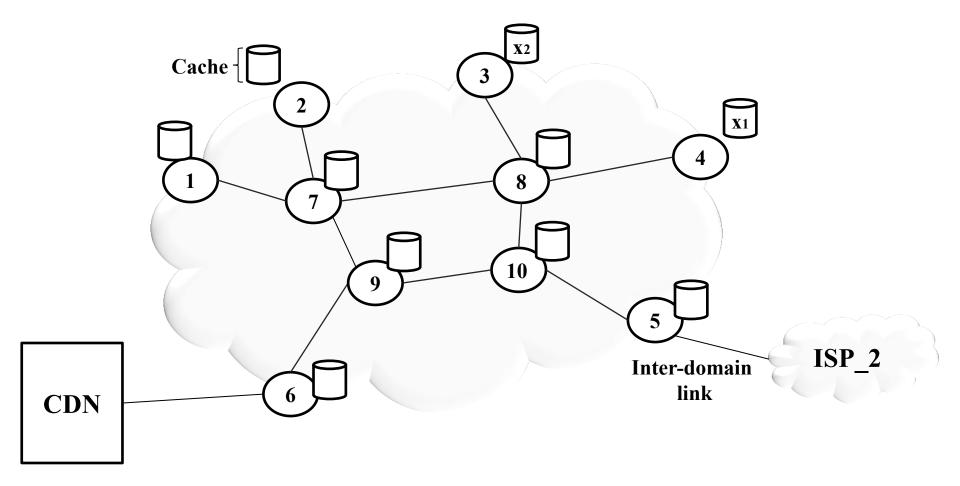
- The CP installs caches in the ISP's network
- Caches are owned and maintained by the CP
- Reduction of traffic on interconnect links
- Internal traffic reduction strongly depends on the number of partner caches
- Example: Netflix via OpenConnect

Transparent caches

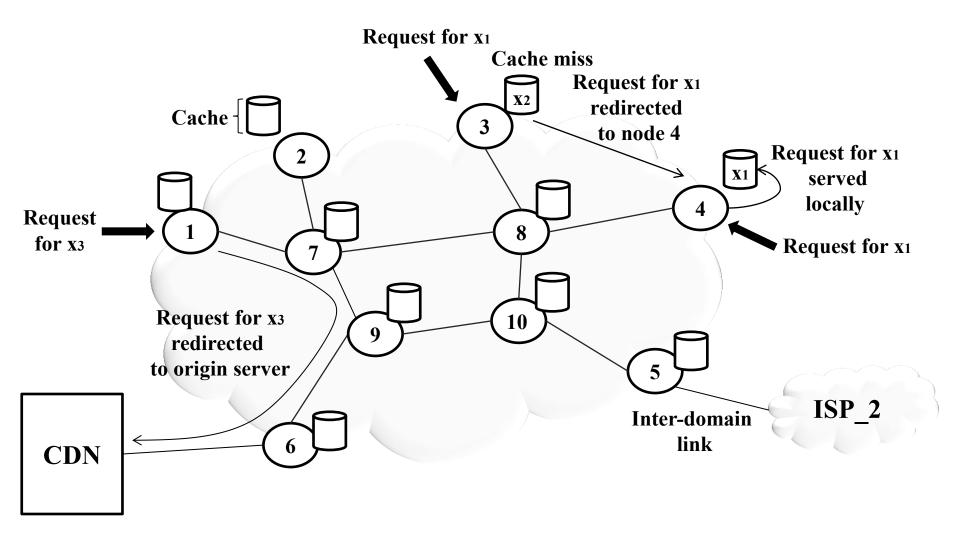
- The ISP deploys its own caches used to locally cache most popular content items
- Caching decision based on content popularity
- Control messages between the client and the CP
 - Video statistics, ad views etc.
 - Essential for the CP's business
- Example: Mediacom using Qwilt

Partner caches vs. transparent caches (1/2)

	Partner caches	Transparent caches
Equipment cost	Free for the ISP	Investment needed by the ISP
Content coverage	 Can only cache content of specific CP Good option only if one CP dominates 	 Transparent to the CPs Best option if many CPs of equal importance


Partner caches vs. transparent caches (2/2)

	Partner caches	Transparent caches
Source of revenue	No additional source of revenue for the ISP	New models involving the ISP
External and internal costs	Address external cost only (transit cost)	Address both external and internal (i.e. upgrade) costs


New technological opportunities

- Decreasing cost storage module
 - Enable network devices (i.e. access point, set-top boxes etc.) to be equipped with storage modules
- Programming interfaces to network devices
- Virtualisation
 - Not only compute and storage resources but also network resources
 - > Offer flexibility in managing the resources

Cache management strategies

Cache management strategies

Content placement

- How to distribute the content items in the different cache locations?
 - Constrained by the available caching capacity
 - Traffic cost equal zero if infinite capacity (unrealistic!!)
- Optimisation/Performance objective(s)
 - Reduce transit cost
 - Reduce internal traffic cost
 - > Optimise use of internal network resources
 - ▶ etc.
- Reactive vs. proactive strategies

Reactive content placement (1/2)

- Each cache autonomously decides on the content items to replace based on a given replacement policy.
- Dynamic system
 - Apply insertion and eviction decisions based on the content popularity evolution at each location
- Examples
 - Least Frequently Used (LFU)
 - Least Recently Used (LRU)

Reactive content placement (2/2)

Advantages

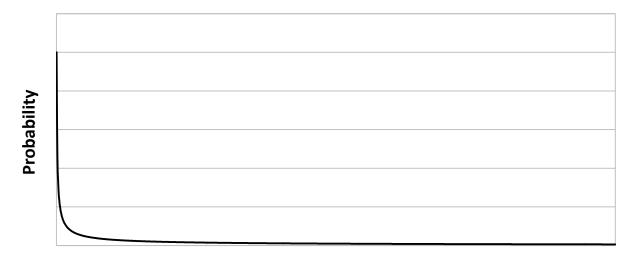
- Very low complexity
- Uncoordinated and local decisions
- Relatively good cache hit ratio

• Drawbacks

- Can have an impact on network cost (i.e. link utilisation)
- Cannot avoid few cache misses when a content becomes suddenly popular

Proactive content placement (1/2)

- The operator periodically decides on the location of the content items in the available caching location.
- The placement decisions are taken based on the prediction of content popularity for the next configuration period.
- New configurations are applied at medium to long timescale (in the order of few hours)
 - Generally once a day at night time during period of low resource utilisation

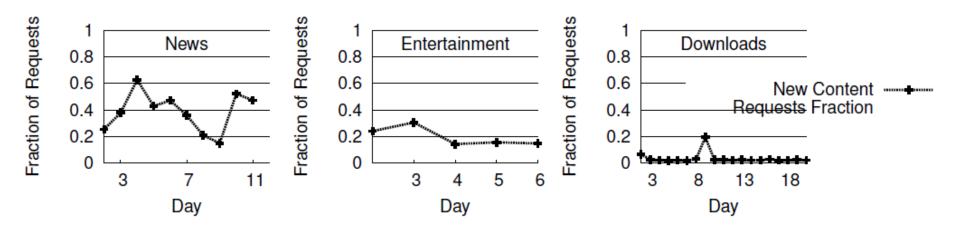

Proactive content placement (2/2)

Advantages

- Fewer cache misses by provisioning the caches in anticipation to surge in popularity
- The network cost can be taken as an optimisation parameter in the placement algorithm
- Drawbacks
 - The performance depends on the accuracy of prediction strategy
 - Higher management complexity
 - Migration overhead when provisioning the caches

Content popularity

The popularity is defined both temporally and spatially
 Number of requests per content item (long tail distributed)



Rank

Content items requested at each location

Content popularity evolution

• The evolution of the popularity of an item over time strongly depends on the content type.

Source: A. Sharma et al. "Distributing Content Simplifies ISP Traffic Engineering," SIGMETRICS '13 [6].

Example of series

- To which extent do series viewers stick to a series?
- Behaviour of the viewers of series 1 (S1) when series 2 (S2) is released

Viewer behaviour	Percentage	
Watch S1 and 2 together	59%	
Put S1 on hold	25%	
S2 replaces S1 if S2 is great	11%	
Abandon S1	4%	

Source: Conviva 2015 [5]

Predicting content popularity

- Limit of any prediction strategies
 - Some contents are inherently unpredictable

Proactive approaches (1/2)

• Problem formulation

Given a set of M caches and a set of X contents, determine

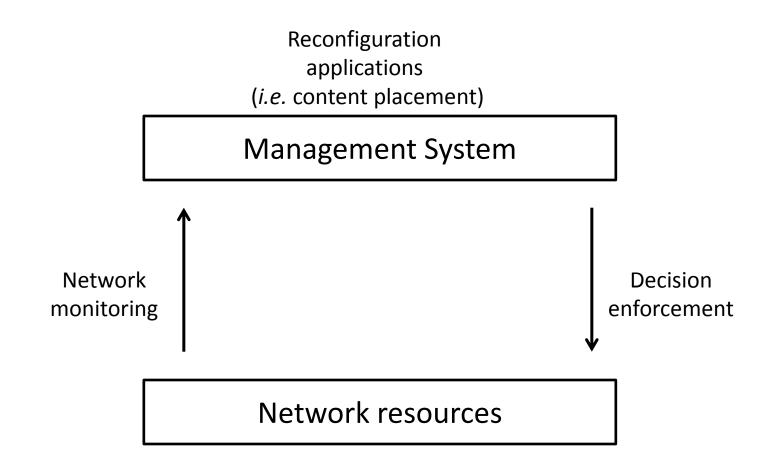
- the number of copies of each content item to store in the network
- the location of each copy

in order to satisfy an optimisation objective.

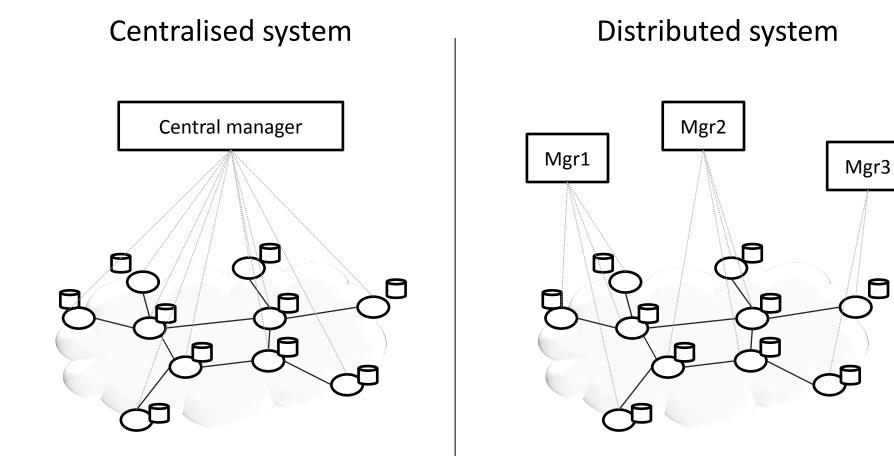
• Family of facility location problems

Proactive approaches (2/2)

- Different options to solve the problem
 - Integer Linear Programming (ILP)-based approaches
 - + Optimal solution for the input parameters
 - Does not scale well
 - Heuristics (e.g. greedy approaches)
 - + Computationally more efficient than ILP approaches
 - Sub-optimal solutions
- CDNs usually apply proprietary algorithms (*e.g.* Akamai, Netflix)


Performance metrics

- Performance metrics can be divided into network metrics and cache metrics
- Network metrics
 - Link utilisation
 - Delay
- Cache metrics
 - Cache hit ratio
 - Content replication degree
 - Cache occupancy ratio


Management system

• How to implement cache management applications?

Management system model

Centralised vs. distributed management (1/2)

D. Tuncer

Centralised vs. distributed management (2/2)

	Advantages	Limitations
Centralised management	Easy to implement Optimal solution	Single point of failure Does not scale well Not appropriate for dynamic system
Distributed management	Scale well Suitable for dynamic system	Higher implementation complexity Coordination

References

[1] *Cisco Visual Networking Index: Forecast and Methodology*, 2014-2019, White Paper

[2] *Cisco Visual Networking Index: The Zettabyte Era -Trends and Analysis*, 2014-2019, White Paper

[3] *Akamai Technologies*, https://www.akamai.com/us/en/resources/content-distribution-network.jsp

[4] Colin Dixon, *Handling the explosion of online video: why caching is the key to containing costs*, October 2013, nScreenMedia

[5] Conviva.com, Binge Watching, The New Currency of Video Economics, 2015

[6] A. Sharma et al. "Distributing Content Simplifies ISP Traffic Engineering," in proc. ACM SIGMETRICS '13, 2013, pp. 229–242.

Dr. Daphné Tuncer Department of Electronic & Electrical Engineering University College London United-Kingdom d.tuncer@ee.ucl.ac.uk http://www.ee.ucl.ac.uk/~dtuncer/