
A novel Hybrid CDN-P2P mechanism
For effective real-time media streaming

 Duyen Hoa HA
Université Pierre et Marie Curie

4 Place Jussieu
telephone: +33 6 23 51 01 83

tyt_g207@yahoo.com

Thomas Silverton
Université Pierre et Marie Curie

4 Place Jussieu

Thomas.Silverton@lip6.fr

Olivier FOURMAUX
Université Pierre et Marie Curie

4 Place Jussieu

Olivier.Fourmaux@lip6.fr

ABSTRACT
In the early years, with the help of high-speed and broadband
networking, the content delivery service has been grown up
widely. There are a lot of providers for online streaming via
Content Delivery Network (CDN), P2P network or hybrid
CDN-P2P system.

In this paper, we introduce one of new hybrid solution for real
time streaming: novel hybrid CDN-P2P mechanism. Different
from others, our solution works on the application level by
effective management of playing buffer at the peer-side. By
divide the playing buffer into 2 parts, we can profit all the
advantages of CDN servers and P2P network: the
performance of CDN servers and the cheap cost of using peers
to distribute media content.

Keywords
Real time streaming, hybrid P2P-CDN, PeerSim simulator,
streaming buffer manager

1. INTRODUCTION
There are two technologies of delivery content most used: by
using CDN and by using P2P network. In the CDN architecture,
the content is first sent to distributed CDN servers which are
placed in many regions. Whenever a user need a content, a server-
load balancing will search for closest server that have this content
and forward the request to that server. Because of a huge capacity
of disk space and large bandwidth of all the servers in the
network, this architect gives the very good quality of service.
However, CDN servers are usually expensive and difficult to
deploy and maintain.

Several solutions have been found to reduce the number of
deployed servers [2] [4] [5]. However, the provided service still
lacks of quality.

On the other hand, P2P streaming network [7] [8] acts like a de-
centralized system. After receiving the content, a peer should
become a source of that content to other peers who request this.
The higher quantity of active peers, the better delivery service
works. Hence, this architect needs a huge number of participation
and their availabilities.

Therefore, a hybrid CDN-P2P solution is highly recommended to
eliminate all the weak of those two original technologies. By
using this architecture, we can have a cost-effective streaming
system. This type of delivery system (hybrid CDN-P2P
architecture) benefits the advantages of two technologies: use of
CDN server assures the best quality of streaming service and use
of P2P network reduces the price of system. Because of that, we
will have a cost-performance content delivery service.

In a given hybrid CDN-P2P architecture, a CDN server is usually
acts as a component to assure the availability of resource and the
speed of data transaction. In contrast, a peer is not only a request
component but also it supports the CDN server to delivery
content, a huge number of good organized peers can reduce a lot
of server load. In fact, the hybrid CDN-P2P architecture for best
content delivery has been researched in several years [9] [10]
[12]. However, those works just make the implication at the ISP-
side.

In this paper, we propose a new hybrid solution which integrates
both CDN and P2P technologies for live/real time streaming. This
solution is based on the effective management of playing buffer at
the peer-side to best equilibrate the bandwidth used between CDN
side and P2P side. The main idea is to divide the playing buffer
into two parts: CDN priority part and P2P priority part. During the
playback time, lacked packets in the CDN priority part will be
received from CDN servers, and to the contrary, lacked packets in
the P2P priority part will be received from other peers.

The advantages of the proposed mechanism are two folds. First,
this mechanism will help to reduce the playback time by using
CDN servers to get immediately some parts of the needed content
during the playback process. Indeed, Live streaming is time
sensitive and the playback delays are crucial to get a smooth
playback quality. Moreover, the use of P2P technology will help
to alleviate the cost for a Content Provider. The consumed
bandwidth to deliver the content is not only provided by the CDN
but also by all the peers that want to get the content.

Different from other hybrid CDN-P2P systems (which we will
discuss in section 2.3), our mechanism works on application level
so it is easier to deploy and do not need any modification at ISP’s
side.

The rest of this document is organized as follow: we present
related works of media streaming service in section 2. We
introduce in section 3 our mechanism of manager playing buffer.
In section 4, we present the simulator we use to validate our new
mechanism and in section 5 we present the results of our solution.
Finally, we discuss and conclude this work in section 6.

2. RELATED WORKS
2.1 Content Delivery Network
The Content Distribution Network (CDN) is the most used
technology for real time content distribution. CDN servers are set
of dedicated servers which have a very large bandwidth and a
huge capacity of storage so that they can deliver data to large
amount of users over the internet. These servers are often
organized at a hierarchic structure and are placed in multiple
locations over multiple backbones. We call CDN servers as
distributed. There are three kinds of servers: server to get and
convert media from media source to small chunks (encoder
server), server to distribute data in the network (transport server)
and edge server to transfer media to end-user (edge server) [2].

Figure 1 illustrates architecture of a content delivery network of
Akamai. An encoder server is usually close to the content
resource (television channels, radio channels …) to get the content
fastest while the transport server must have a very large capacity
of storage because it has to store many distributed data. The rest
of CDN network are edge server which is closest to end user. In a
hierarchic architecture, an edge server is a leaf which manager its
end user. There are also several tracker servers to balance server-
load between servers in the network. Sometime, we can use any
given server to do this task.

Once the end-user requests for a content, the tracker server will
detect the edge server which has the needed content and closest to
this user. Then all the request of media will be transferred to that
edge server. Whenever an edge server can not provide the content,
it will hand-over the request to another edge server or it get it-self
content from network. This task of organization is done by server-
load balancing which use one or more “layer 4-7 switches”. For
example, in the system of content distribution of Akamai, they use
DNS forwarding mechanism to redirect request come from clients
to equilibrate server-load between CDN servers and to make the
content distribution more effective.

In a CDN network, to enhance the quality and the reliability,
provider can also use some fault tolerant server or backup server
[11] to assure that there is always response of a given request and
there is no sudden break data transfer. This is one of reason why a
CDN network is usually cost too much but can have a best quality
streaming service.

Figure 1: Akamai content delivery network [2]

2.2 P2P streaming
Nowadays, we use even P2P architecture to delivery media
content [6] [8]. In a system of media streaming via peer-to-peer
network, there is also a media server to get media from media

source and distribute to the network so that this content is
distributed by all the participants (called audiences).

A mesh-pull P2P live streaming architect often has three major
components:

 The streaming peer node includes streaming engine and
media player

 The channel streaming server converts the media
content into small chunks, each chunk composed by
some piece.

 The tracker server provides streaming channel, peer and
chunk information for each peer node to join the
network.

Figure 2: P2P streaming process [8]

When a peer joins the streaming network, it first downloads the
list of distributed channels. Then, after select a channel to play, it
is registered in the track server. From now, like other peers
already registered to the same channel, it participates in the
process of streaming the media. During the media playing
process, this peer downloads list of pieces available in others
peers to know which is the best peer to response the request of
lack pieces in his playing buffer. P2P streaming network works in
the de-centralized mode, however, there are also some server
called tracker server to store peers and channels information. A
tracker server can be a normal computer which has a limited
capacity of storage but a fast internet connection. That is because
information to store is in sample format (text) so that server does
not need a lot of space to store them; in contrast, it needs a high
speed internet connection to send this information as fast as
possible.

The most popular P2P live streaming as we have known is
PPLive. It is reported that PPLive supported 1,480,000 audiences
viewing a live play at the same time with 1 PC serer and 10Mbps
bandwidth. The method they have used is the mechanism of
rejection old chunk in playing buffer.

It is clear that P2P live streaming network can support a large
number of participants but we can not guarantee a demand of high
quality media streaming service.

2.3 Hybrid CDN-P2P architecture
Both the two above technologies have their advantages and
disadvantages. A CDN can assure the quality of service by using
distributed CDN servers with high bandwidth and large capacity
of storage. But these servers often cost too much. In contrast, a
P2P Live streaming system is much cheaper but the speed of
media streaming depends on the number of joined peers and their
availability of content resource, internet connection. PPlive can be

used in cases which need to serve a huge number of audiences in
the same time; however, they can not assure the quality of service
and can not serve a special requirement of high definition content.
Therefore, hybrid CDN-P2P architecture is indispensable to have
the best solution for content streaming, in particular for live
streaming service.
Using hybrid architecture CDN-P2P for data streaming service
has been proposed by many researchers [1] [9] [10] [12]. These
enterprises of data streaming: Akaima, Verisign, CacheLogic,
Grid Network, Joost have deployed their own CDN-P2P services
as well for several years. The principle idea is to equilibrate load
of CDN and P2P network.

The best known is the streaming service using CDN-P2P hybrid
architect launched by Akamai. In their system, they use CDN
servers and P2P network to distribute separately content. During
the streaming session, their tracker server always checks the load-
balance between CDN servers and P2P network. This server will
do a “hand over process” to balancing the load of two content
resources (CDN servers and P2P network). The figure 3
demonstrates this process.

Figure 3: Hand-over between CDN and P2P network [1]

Different from those providers, we propose a new hybrid CDN-
P2P mechanism which acts on the effective management of
playing buffer at the client-side. Our motivation of this solution is:
data slots in buffer which is near the play side must be ready
before the scheduled playing times and data slots in the rest of
buffer can be filled later. Therefore, we consider the part which is
near the play side has more priority of filling data and others have
less priority.

Figure 4: streaming process

From that, we simply treat the playing buffer as two parts: CDN
server’s priority part and priority part for peers in P2P network.
The CDN server priority part is the part of buffer whose data slot
must be received as soon as possible to assure the media playback

in time. In the other hands, the P2P network priority is a part of
buffer whose data slot can be received later.

Furthermore, in the streaming network, CDN server is always
ready of resource and of higher transaction speed than a peer is.
Hence, during a media streaming session, all the requests in the
CDN server priority part will be transmitted to CDN servers to
assure the scheduled playback time. Request of the rest of playing
buffer will be transmitted to other peers.

In this system, we do not need the server-load balancing to
equilibrate CDN and P2P network but we use peers in network to
involve to this task.

Detail of this mechanism is described in the section 3.

3. BUFFER MANAGEMENT IN CDN-P2P
HYBRID SYSTEM
As we have already mentioned above, our solution is based on the
effective management of playing buffer. We now introduce our
new organized buffer. In this section, we will present our new
playing buffer map and present how this buffer works during a
media streaming session then describe why this solution can make
a cost-effective streaming system.

3.1 Buffer map
Based on structure of P2P streaming architect, we propose a new
mechanism for integration of P2P and CDN to make the cost-
effective real time media distribution via internet.

As we have mentioned above, our hybrid solution is done by the
effective management of playing buffer at the peer-side. We now
describe the buffer map used:

100011010110011010011………000101001111111111

Figure 5: playing buffer map

In a streaming network, the media data is usually organised,
transmitted and cached as a unit called chunk. Chunk is usually
uploaded to network by a media server, each with a sequence
number so that they can be played in correct ordered by a media
player. In our system, for flexible transmission of data, we divide
chunk into smaller units called pieces. Then, each chunk has the
same number of ordered pieces. A media player can only play out
a chunk if all the pieces of that chunk are sent to the media player.

The peer’s local buffer has a length of L piece. That means at any
given time, a peer can stores up to L pieces of data. Figure 2
present a buffer map. A buffer map is a presentation of a buffer
window which contains data in a unit of piece. Each slot of buffer
map is equal to a slot of buffer window, value 1 in buffer map

Buffer window

Playable pieces

chunk size

Start point of buffer

P2P network CDN network

mean that the slot correspondent in buffer window is filled with
data, value 0 mean that data is not received.

We call the beginning point of media starting to play is “start
point”. Hence, the playable media called “v” is the numbers of
contiguous pieces from the beginning of buffer. A section of
continuous data becomes playable if its length is more than the
length of a chunk which can be played on media player in each
scheduled time. We named the chunk size “u” the number of slot
of media data. After each play out, the buffer is moved forward u
slot, in other words, the value of start point is increased by u.

We consider these notions:

 L: length of buffer in number of piece that the buffer
can store in same time.

 LCDN: length of buffer part of playing buffer which is
reserved to CDN servers.

 LP2P: length of buffer part of playing buffer which is
reserved to peers

 v: playable length: number of continuous pieces from
the beginning of buffer

 u: chunk size: number of piece in each play out.

 p: start point. This value determines the beginning of
stream that this peer joins to the streaming. It is
measured by the sequence of next chunk to be played.
p = 0 if a peer starts from the beginning of media
stream.

 N: number of chunk maximum that a playing buffer can
store. Furthermore, as playing buffer can buffer up to L
piece, we have then:

3.2 Buffer management – streaming process
The playing buffer is now treated as two parts: part which is
reserved to CDN servers (has length LCDN) and part which
reserved to peers (has length LP2P). We have a buffer map with
two parts too. (Ref. figure 4). The streaming process of media
content is:

 Consider that our peers have been registered to the list
of playing content A.

 At any instant, the media player of this peer checks its
buffer to know the current buffer map. Then it will send
this map to others peers. By that way, the latest buffer
information of peers in the network is distributed to
each other. This work is done frequently to make sure
that each peer knows the newest buffer map of other
peers. Otherwise, information distributed in network
would be useless.

 During the streaming, in parallel with sending buffer
information to neighbors, the media player query
positions of lacked pieces in order to know lack pieces
in buffer and to know to whom it will send the request
of each piece. If a lacked piece is in the priority buffer
part of CDN, it will send the request of this piece to

CDN servers. Otherwise, the request will be sent to
others peers who have that piece available in their
buffer. The idea of this division is: there is a part of
buffer which must fulfill pieces in shortest time in order
to play out media in time. So, all request of piece went
from this section must be responded as fast as possible.
Of course, there is a part of buffer which we can fulfill
pieces slower.

Table 1: Table captions should be placed above the table

Definition Description

CDN buffer Buffer part of peer which is more priority to
CDN servers

P2P buffer Buffer part of peer which is more priority to
others peers

piece A packet of data (video or audio)

piece size Size of piece in number of byte

chunk A group of continuous packets could be
played on peer’s application

chunk size Number of continuous packets in a chunk

 Data request

 Data transfer

 The rest of buffer is reserved to P2P network because
the schedule play times of these media chunk are later
than whom in CDN priority part so they do not need to
receive pieces so early. By using this architect, we can
profit the CDN servers to keep the playing plan in time.
Moreover, the P2P network also much reduce charge of
CDN. As we can see, CDN servers just have to fulfill
some lack pieces because almost all slots in the CDN
part have been filled by P2P network before.

 Once the first u slot of buffer has been filled, we can
play out the media. The play times are already
scheduled depending on codec of media source. At
these times, the media player checks the buffer map to
know that if it can play out a chunk of media. If yes, the
media data will be played on the peer machine and the
media player moves forward the buffer map to next
chunk. It means that the chunk which has been played
will be taken out of buffer. Otherwise, play times are
delayed and re-scheduled. We call the delay time d.
Hence, di is the delay time of i-th chunk. The first chunk
scheduled is the chunk from start point of the media
stream. Our estimation is: di = 0 for every value of i. In
others words, there is no delay in playing media.

3.3 P2P percentage in buffer map and
requirement of tolerant
One of the most important things in our solution is the rate of P2P
part and CDN part in the buffer map. We must choose the best
rate so that we can profit the advantages of all the two
components (CDN and P2P). The choice of P2P-CDN rate

depends on the number of CDN used in the system and number of
peers participates into the streaming process. The percentage of
CDN part is always much less than which of P2P. In general, this
percentage must satisfy these conditions:

 Length of CDN part is always higher than length of a
play out chunk. In others words, LCDN >= u

 At the same number of peers participated, percentage of
CDN part when there are more CDN server is higher
than in the case there are less CDN server.

Furthermore, to assure the quality and the reliability of streaming
service, we have to use some hand-over works. This is necessary
when a request can not be provided in one side, then it will be
forwarded to other side. For example, a peer request for some
pieces of content which is in the P2P part, it will send the list of
request piece to other peers. But in some case, the peers who have
those pieces can be unavailable later, so this request could never
be resolved. Hence, for better speed of fulfill the buffer map, we
can transfer this request to CDN servers even this is not their
business.

4. SIMULATION
In order to evaluate the effectiveness of this solution, we have
modified a simulator written in Java named “PeerSim” to simulate
the network and to give some test case.

4.1 PeerSim simulator
PeerSim is a project open source under the license of GNU,
written by Java. PeerSim is a peer-to-peer simulator and it has
been designed to be both dynamic and scalable. The philosophy of
PeerSim is to use a modular approach in order to easily re-use
existing functions. That will much help developers freely to
develop this project to the proper functions.

Current version of PeerSim supports two simulation models: the
cycle-based model and event-based model. The cycle-based
model is based on a very simple scheduling algorithm so it is
scalable and can simulate a network of 10^6 node. However, it
has some limitations: user can not intervene to the simulation.
Therefore, the event-based model is developed to perfect this
simulator. In this model, user can modify behavior of node during
the simulation so they can simulate a complex operation network.
It is the event-base model that we are interested in because we can
modify the behavior of node by event.
A life cycle of each simulation executed by PeerSim is:

 Import network configuration.
 Run the simulation and export necessary reports.
 Exit the simulation by some given condition

The network configuration contains information about network
size (number of nodes), protocols used, node information, control
objects, and some additional information depending on
requirement of the simulation. Network configuration is imported
to the simulation via an ASCII text file. Hence, it is easy to
change the network configuration and run a simulation again
without changing the source code and recompile.

After having studied this simulator, we found that by using
PeerSim in event-based model, it is suitable to simulate and verify
our proposed solution. However, it also requires some

modification of source code to adapt nodes in network to new
behaviors. Our modifications are:

+ First, we categorize nodes into two kinds: nodes which are CDN
servers and nodes which are peers. A CDN node has larger
bandwidth than a peer node does. After that, we add buffer to all
the nodes in the network. Size of the buffer is the number of slots
which can store a piece during the playing time. Therefore, there
is a different between buffer of CDN node and buffer of peer
node. The buffer of CDN node has an unlimited capacity while
the buffer of peer node has a limited capacity. Because we can
suppose that each CDN server is always ready to provide all
requested pieces of peer nodes if that request is for content that
already be streamed by content source. Concerns the delay of
sending and receiving request between CDN server and a peer, we
consider it is like delay between peers

After that, each local peer’s buffer is divided into two parts like
we have already mentioned above. The percentage of P2P part in
the buffer is defined later in the configuration file. In a real
application, this parameter would be variable in order to adapt to
number of CDN server and number of peer clients so that we can
profit at maximum work-load of CDN servers.

Cause we use event-base model, we have changed the
comportment of buffer so that in each time the buffer receive a
responded piece, we will check the buffer to know if it can play
out a chunk or not. If this chunk is scheduled to be played out first
(depend it sequence number), the buffer will take it out of buffer
then move the buffer map forward a length equal to length of a
chunk (value u). Then, first u pieces of P2P part will be belong to
CDN part and last u pieces of P2P part will empty to receive new
pieces.
We do not use reports integrated in PeerSim but we add new
reports to the simulator. Those reports help us to show up delay
times of each simulation and to know about the process of
requesting and sending piece in the networks.
In fact, there is maybe a moment that more than 1 chunk can play
out in the same time. In real application, to play a chunk, it will
take a little time depend on how length this chunk is. However, il
our simulation, we do not take care of playing times but we
compute just the delay than a scheduled time of each playout.
Detail of our test cases is discuss in next section – Test Parameters

4.2 Test bed
Major parameters of a network are:

 Network size (N): the number of nodes including CDN
servers.

 Network protocol: protocol used in each node.
 Buffer length (lbuffer):
 Chunk size (lchunk)
 P2P percentage in a buffer (a)
 CDN bandwidth (bCDN)
 P2P bandwidth (bP2P)
 delay between nodes (dtransport)
 delay between CDN-source (dCDN-source)

We have tried to simulate real-time streaming the video content of
400Kbps (or 50KB/s) which has a quality of o business video
conference. In the simulation, we consider each piece of data has

5KB length (or 40Kb). Suppose that each play out is for 1 second
of media. Hence, a chunk to play has a length of 400Kb.

CDN servers in our simulations have an upload capacity of
10Mbps. In real world, internet connection speed of peers are
usually much variable, but we suppose that each peer in our
network have a connection of 512Kbps We consider that each
node can buffers up to 20s of playing time. Our network uses also
an unreliable transport to make it more reality. From that, we can
than adjust the rate of lost packet.

Table 2: Test parameters

Name Value used in simulation

Video codec 400Kbps

CDN bw 10Mbps

P2P bw 512Kbps

Lost packet Random value: 0 – 20%

Delay between CDN-P2P Random value: 20 – 1000ms

Delay between P2P-P2P Random value: 20 - 1000ms

Delay between CDN-source Random value: 0 - 15ms

Buffer length 20s of playing content

Network size Depend purpose of test

Chunk size 10 pieces

After having taken a look at some peer-to-peer applications, we
found that delays between peers are from 20ms to 1500ms [13].
Therefore, we apply this interval of delay to all the transaction,
not only transactions between two peers but also transactions
between a peer and a CDN server. Furthermore, it takes a little
delay when CDN requests content from source so we define this
delay (dCDN-source) too. Hence, each transaction j-th has a random
delay dj = dCDN-source_j + dtransport_j.

5. RESULT
In this section, we analyse the performance of streaming service
in different scenarios. We simulated with the main parameters
described in previous section and we change the number of peers
participated, rate of packet lost.

5.1 First delay
First delay is a value of time which a media player must wait for
from beginning of streaming process to play out the first chunk. In
the media on demand network, first delay is not very important
and we can tolerate it but in the real time streaming mode, first
delay has a very important role in streaming process. Suppose that
the streaming, lately does not have any delay time during the
playback but the first delay is too much, so the content of media
be played in the media player would be older and there’s no
meaning of real time service. For example, users joined into a
football match streaming session, even there are not any
interruption during the session but if the first delay is long, people
would see a goal lately. In our simulations, we tried to evaluate
the first delay in different configurations to know if we can have a
best configuration which assures the smallest first delay.
As we can see in the figure 6, the first delay is usually longer than
other delays. The reason is: at the beginning of streaming, all the
peers in network do not have any data in buffer. In other words,
all slots in buffer map are empty. Hence, it must wait for
streaming process to fill in at least first lchunk slots so that media

player can play out the first chunk. Furthermore, when a peer
sends a request to other peers or to CDN server, it will receive (if
possible) list of pieces responded randomly. For example, the peer
named “A” need a list of piece {0, 1, 2, 3, 4, 5, 6, 10, 12, 14, 16,
18} to fill in the buffer, it sends this list to peers which have any
of those piece. Because the bandwidth of a peer is limited; one
peer can send only k pieces at one time then if k < size of list
request, that peer would choose random k piece in his available
response list to reply back to peer A. Hence, peer A will receive a
chaotic response list from others peers. That is why, to fulfill all
lchunk pieces of first chunk (from start point), it can take a longer
time.

Figure 6: Playing delay of first 100 chunks

From the second chunk, the delay time is almost reduced because
after each playback, the buffer map is moved forward so there are
slot in P2P part which have data will be transfer to CDN part.
Therefore, the CDN part can be fulfilled even much faster. This
effect also proves the important impact of P2P part: prepares and
reduces waiting time of playing buffer.

Figure 7: Playing delay in different joined times

However, there are also other moments that buffer must wait to
play next chunk because in the simulator. The reason is the way
we choose piece to send back each time is randomly like we have
discussed above. There are properly pieces that could be received
much longer than other. Hence, to play chunks which these pieces
belong to, it takes longer time than other earlier chunks.
Joined times also has impact to the first delay of streaming
process. In the figure above, we consider a peer join from
beginning of stream. Now, we let audiences join at different time
and see how first delay change in different nodes. We then take a
test with 1000 nodes. The results show that, a peer which joins a
streaming later would wait longer to play first chunk.

Additionally, network size can have impact to first delay too. If
the number of joined peers in the streaming increases, the first
delay of a given peer who joined from the beginning of streaming
could be longer. In real live streaming application, audiences
usually join in at same time from the beginning of a live streaming
session, for example to view a live football match. Therefore, we
must reduce the first delay so that the streaming has a meaning of
“real time”.

5.2 Buffer map

Figure 8: First playback delay in different %P2P

(Network with 100 nodes)
The modification of P2P percentage can lead to the word load of
CDN server and P2P peers. It is clear that if the percentage of
CDN part is large, CDN servers load is increased too; hence for
best quality service, we need more servers or each server has to
have large internet connection. Therefore, in each given network,
we must adjust this proportion to the best value.

In order to reach the effective streaming service, we tried to adjust
the percentage of P2P part and CDN part to profit the
contributions of CDN servers and peers in P2P network. The rate
of P2P percentage is very important in our solution. Because, the
destination of a request depend on what part the piece in.
Therefore, if we give more length to the CDN part, we can not
profit all the help of P2P network and if we do not install a lot of
servers; the transfer throughput will be exceeded. In contrast, if
the P2P part is too large, the performance of streaming service
could be reduced. As in our experiences, in all case, the best
percentage of P2P part is from 85% to 95% depend on proportion
between CDN servers and peer nodes in the network and the
relation between u and v. When the number of peers participated
to streaming is large, the value of LCDN would decrease down to u
so that streaming process is faster.
In our simulations discussed above, a network with 1000 peers
and 1 CDN can stream without playback delay when the P2P
percentage is from 90%-95%. This value can be a little different
when we apply this solution on a real streaming application.

Figure 9: CDN and P2P load balance

CDN streaming performance

We now analyze the result to know the capacity of streaming
service and to know how much CDN servers can help.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
s
 t

o
 p

la
y
 (

m
s
)

Number of chunk played

Playback times in different network size

30 nodes
100 nodes
300 nodes
600 nodes

a. playing times

 0
 1000
 2000
 3000
 4000
 5000
 6000
 7000
 8000
 9000

 10000
 11000
 12000
 13000
 14000
 15000
 16000
 17000
 18000
 19000
 20000

 0 10 20 30 40 50 60 70 80 90 100

D
e

la
y
 (

m
s
)

Chunk played

Playback delays in different network size

30 nodes
100 nodes
300 nodes
600 nodes

b. delay times

Figure 10: content playing of first 100 chunks
First, we consider a network without lost. We executed the
simulation with different number of joined peers and we found
that with the given configuration, one CDN can serve up to 2000
peers streaming at same time. The figure 11 demonstrates playing
time of first 100 media chunk when the number of joined peers
changes. It is clear that when the number of peers increases
playing speed is slower. It means user would have to wait longer
when the size of network is increased. However, from 300 nodes,
we do not see big different.

The figure 11 proves the benefits of using CDN servers. We can
see that the help of CDN in this streaming service is a lot. After
studying report files of a simulation with 100 nodes, we found that
when the number of CDN increases two times, number of

received pieces increases 1,4 ÷ 1,5 times. That means the delay
would decrease 30%.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
s
 t
o
 p

la
y
 (

m
s
)

Number of chunk played

Playback times when number of CDN servers change

1 server used
2 server used
3 server used

Figure 11: Impact of CDN on playing delay

5.3 Lost packet and its influences
During the streaming of media, sometimes packet can be lost
because of bad quality of connection or due to the sudden
corruption of a peer. A packet lost rate depends on internet
connection of a peer and depend on how Internet providers serve.
For example, if a peer is a user of an ADSL connection, the
packet lost rate can be small or very small, about 0.1%.
Otherwise, if that peer is a user of a dialup connection, the packet
lost rate can be up to 20%.

 0

 4000

 8000

 12000

 16000

 20000

 24000

 28000

 32000

 36000

 40000

 44000

 48000

 0 10 20 30 40 50 60 70 80 90 100

T
im

e
s
 t
o
 p

la
y
 (

m
s
)

Number of chunk played

Playback times when lost rate of network change

lost rate = 0%
lost rate = 1%

lost rate = 10%
lost rate = 20%

Figure 12: lost packet influences

As the PeerSim can simulate even the lost packet by using an
unreliable network transfer protocol, we add connections rates of
lost packet. Then, we studied the simulation in different value of
packet lost. We found that, when the rate of lost packet is
increased, playing delay is increased too but there are not many
different. Especially, when the network size is over 300 nodes,
lost packet almost does not influent to playing delay. The reason
is when the number of nodes is increased; the resource of a given
packet is greater. In other words, the availability of a given packet
is always higher. So when a peer is corrupted, all pieces that it
must response to some given request can be retrieved at other
peers. Furthermore, a CDN is always ready to support peer
network when it become unavailable.

6. CONCLUSION
By using a new mechanism of management of playing buffer at
peer-side, we can create new cost-effective real-time streaming
system to distribute content over the Internet. The results of our

simulations confirm that our solution can much improve the
performance of a hybrid CDN P2P content distribution network.

However, because of the limitation of a simulator, we can only
simulate a network with several thousand nodes. Furthermore, for
best streaming service, we have to adjust the P2P percentage to
best value but in this paper, we just introduce our estimation.
Therefore, we consider our future works are to find out the
formula to calculate this value and to evaluate this solution with
very large networks of up to million nodes.

7. REFERENCES
[1] A CDN-P2P hybrid architecture for cost-effective streaming

media distribution - Dongyan Xu, Sunil Suresh Kulkarni,
Catherine Rosenberg, Heung-Keung Chai

[2] A transport layer for live streaming in a content delivery
network - Leonidas Kontothanassis, Ramesh Sitaramant,
Joel Wein, Duke Hong, Robert Kleinberg, Brian Mancuso,
David Shaw, Daniel Stodolsky – PROCEEDINGS OF IEEE

[3] Large-scale cooperative caching and application-level
multicast in multimedia content delivery networks - Jian Ni,
Yale University and Danny H. K. Tsang, HKUST, Proc.
IEEE INFOCOM 2005

[4] A Case for Peering of Content Delivery Networks - Rajkumar
Buyya, Al-Mukaddim Khan Pathan, James Broberg, Zahir
Tari, Distributed System Online, IEEE Oct 2006

[5] Globally Distributed Content Delivery - John Dilley, Bruce
Maggs, Jay Parikh, Harald Prokop, Ramesh Sitaraman, and
Bill Weihl - Akamai Technologies – SEP 2002

[6] On Next-Generation Telco-Managed P2P TV Architectures-
Meeyoung Cha, Pablo Rodriguez, Sue Moony, Jon
Crowcroft - Telefonica Research, Barcelona KAIST, Korea
University of Cambridge, UK

[7] Measuring P2P IPTV Systems – Thomas Silverston, Olivier
Fourmaux–Université Pierre et Marie Curie - NOSSDAV 07

[8] A Measurement Study of a Large-Scale P2P IPTV System -
Xiaojun Hei, Chao Liang, Jian Liangy, Yong Liu and Keith
W. Ross - IEEE transactions on multimedia - 2007

[9] Hierarchical Content Routing in Large-Scale Multimedia
Content Delivery Network - Jian Ni, Danny H. K. Tsang,
Ivan S. H. Yeung, Xiaojun Hei – IEEE PROCEEDING ‘03

[10] Hybrid content delivery network and peer-to-peer network –
Afergan Michael, Leighton Thomson, Parikh Jay – WO ‘08

[11] Large-Scale Cooperative Caching and Application-Level
Multicast in Multimedia Content Delivery Networks - Jian
Ni, Yale University and Danny H. K. Tsang, HKUST - IEEE
Communications Magazine - MAY 2005

[12] Understanding Hybrid CDN-P2P: Why Limelight Needs its
Own Red Swoosh - Cheng Huang, Angela Wang, Jin Li,
Keith W. Ross - Nossdav ‘08

[13] http://www.bittorrent.com/

