

Incentive Mechanisms for Live Media
Streaming in P2P Networks

Thesis report by

Aikaterini ANDREADOU

Encadrants
Olivier FOURMAUX

Bénédicte LE GRAND

Université Paris 6, Pierre et Marie Curie
Master 2, Computer Networks

September 2007

 2

Contents

1. Introduction

1.1 Goal and lessons learned
1.2 Difficulties and choices
1.3 Organization of the work

2. State of the Art - Background
2.1 State of the Art P2 Content Distribution Systems

2.1.1 BitTorrent
2.1.2 DONet
2.1.3 Bullet
2.1.4 Pulse
2.1.5 Comparison

2.2 State of the Art Incentive Mechanisms
2.3 Challenges

3. Experiments – Experience with existing algorithms
3.1 Simulation Parameters
3.2 Upload Capacity Based Selection
3.3 Bitmap Resemblance Based Selection
3.4 BitTorrent Choke Algorithm Upload Only
3.5 BitTorrent Choke Algorithm Upload - Download

4. Study of Incentive Mechanisms for Live Streaming
4.1 Differentiated Services

4.1.1 Differentiated Services – Simple Case
4.1.2 Differentiated Services with Mechanism to help new comers
4.1.3 Study of the Free Riders Factor

4.2 Micro Payment Example with Bufferisation Delay
4.2.1 Simple Case
4.2.2 Introduction of the Micro Payment Mechanism
4.2.3 Study of the Initial Credit Factor

5. Conclusion

5.1 Summary of the Work
5.2 Open Problems, Future Work and Applications

6. Bibliography

7. Appendix

7.1 Main Program Pseudo Code
7.2 Upload Capacity Based Selection: Figures for 60 Iterations

 3

1. Introduction

Since its creation and especially nowadays, Internet has excelled its purely
technological aspects and it has become a complicated social phenomenon, a virtual
community where users interact and all kinds of behaviours can easily be met. The
notions of anonymity, invisibility and absence of authority are closely linked to the
essence of Internet, which is considered by some as a modern virtual democracy.
The P2P networks and the content sharing applications based on them constitute an
important (if not the most) trend in today's internet traffic and in its users' habits. In
fact, the common use of the Internet today is so content oriented that there have
been thoughts and studies on adapting the routing itself to a more content based
pattern. Starting by Napster, an avant-garde content sharing application, the
evolution of P2P has led to today's mainstream extremely popular live streaming
programs, like PPLive, CoolStreaming etc. The distributed nature of these
applications is a technological choice aiming at satisfying the growing users’
demands, which could not any more be met by the capacity of one or multiple
servers. So, in the absence of an IP multicast service supported by the network
infrastructure (routers), an alternate solution had to be found deployed at the
application layer. In this new approach, the nodes are organized into an overlay
topology, they form a new virtual network over the internet, whose logical links may
correspond to many actual physical links of the underlying network. This distributed
nature has also a political aspect: it constitutes a counter measure or a defence
against authorities who would menace the existence of these communities. Since
there is no unique server or point of entrance, there is no simple way of shutting them
down. In conclusion, we can say that it is at this distributed notion that lies the
revolution of P2P but also its complexity, with which we have to deal every time we
try to introduce a new feature.

What’s more, the complicated user interactions in these virtual environments have
aroused the curiosity of psychologists and sociologists, who have tried to explain how
the sentiment of importance inside a community can work as a stimulus to unselfish
contribution for a lot of users. Naturally after that, programmers and engineers
thought they could use these interesting aspects of human behaviour, extend them to
online societies and create incentive mechanisms for contribution, co-operation and
altruism among fellow peers. Latest researches have also proposed the formation of
local communities based on geographic criteria thinking that it 's easier for users to
trust each other if they have been or have the chance to be physically acquainted.
So, again the level of unity of P2P communities is a matter of trust. It's either that or
the enforcement of strict and limiting rules aiming at minimising the vulnerabilities of
the system, which tend to be exploited by the free-riders, users whose aim is to
download the maximum amount of data without contributing at all to the system.

1.1 Goal

The goal of this work is to examine how different incentive techniques affect the
performance of live streaming in a P2P network. To reach this goal, we had to study
the state of the art content sharing and live streaming applications in order to
understand their functionality and also the different “families” of incentive
mechanisms, so as to be able to implement them, compare them and draw rational
conclusions. A summary of this extensive study, containing only the crucial elements
necessary to come to a profound understanding of the work done, can be found in
the first section of this document, along with comments and a comparison of some of
the more popular applications. The conclusion is twofold: In terms of overlay
architecture, it has become obvious that single tree structures suffer severely from

 4

node failures, since they don't share the load equally among the peers. On the other
hand mesh topologies react better to network variations but they become difficult to
manage for large numbers of users and there is a great deal of messages exchanged
only to keep track of one's neighbours.[20] Finally, multiple trees are very flexible but
their function is also very complicated, especially when it comes to maintaining large
numbers of trees for each peer. So, a solution that seems appropriate is the
simplicity of a single tree structure combined with the flexibility of local meshes
formed along the tree. Now, in terms of incentive mechanisms, live streaming is a
very demanding application so special handling is necessary. Live streaming
applications are very sensitive to delays in two ways: Firstly, “liveness” is a crucial
property of the videos distributed, which means that when a user logs in to watch a
football match, for example, he will not bear a considerable delay before the actual
beginning of the streaming. What’s more he will not bear pauses, interruptions or
disconnections. Secondly, once the streaming begins, the video quality is highly
sensitive to packet delays, all pieces must arrive before their play out time, if not they
are useless and they will be rejected. So, a considerable number of lost or late
packets will severely damage the perceived video quality. It’s for these reasons that a
live streaming application demands that everybody contributes, it cannot work on the
basis of a minority of regular uploaders, like file sharing systems, and cannot sustain
large numbers of free riders. That’s why the existing solutions don’t seem to be
enough, a simple tit-for-tat policy doesn’t manage to sustain regular contributions by
all the peers, a micro payment mechanism is usually very restrictive and not very
welcomed by end users and a reliable reputation system usually demands the
existence of a central authority. So, the proposed solution is oriented towards a
differentiated services system based on a reputation scoring function, which as a
whole has proved to be very suitable for the live streaming paradigm. It's upon this
analysis in total that the actual choices of the implementation and the proposed
mechanism are based.

1.2 Difficulties and Choices

At the beginning of this work, the first question to be answered was in what way and
with which means the incentive mechanisms will be studied? In the absence of an
actual experimental P2P network on which these algorithms could be deployed, the
only solution was the simulation. And so, at this point the major dilemma arises:
should we use an existing simulator or build a new one from scratch? In order to
answer appropriately, we examined some of the existing simulators, like the SimPy in
Python, the PeerSim in Java and the PeerfactSim created by the University of
Darmstadt, and we realised that all these event driven simulators were more
concentrated on the simulation of P2P protocols with many interesting characteristics
as synchronization handling, packet formats and message exchange. In reality, these
simulators were rather complicated in a way not useful to the goal of our work, as the
aim was to study the effects of incentive algorithms without very much messing with
the P2P network infrastructure, and on the same time they didn't supply much
support and modules to simulate the live streaming aspect, which was necessary.
So, we decided to build a new application in Java in order to simulate the algorithms
concentrating on the details we considered more important. The relative success or
failure of this choice has yet to be proved by the results that will be presented.

1.3 Organization of the work

In this work, we present an overview of the problem of incentive mechanisms in live
streaming. The remainder of this report is organized as follows.

 5

First, we examine the most important existing applications in this domain starting with
BitTorrent protocol, which, though not appropriate for live streaming, has set the
fundamentals for all its successors. We continue with DONet, Bullet and Pulse, which
offer us an in depth insight in the function of this kind of applications with its temporal
representation. Then we do a comparison of these three applications, in order to
draw conclusions concerning their advantages, disadvantages and similarities and
also explore their functionality so as to clarify the way the implementation choices are
reflected on the final architecture of the produced overlay network. Secondly, we do a
quick summary of the major challenges posed when deploying incentive techniques
in a P2P system and also of some of the solutions and remedies to these problems.
Then we present the three major incentive families, systems based on micro-
payment, reputation and differentiated services. The distinction among these
techniques is not always clear and obvious, so we try to understand the virtues and
vulnerabilities of every technique concerning different cases, and finally we show that
a differentiated services system based on a reputation function seems to be the most
appropriate solution for the live streaming problem.

The second section of this document concerns the simulations and the results in form
of figures and tables. First, we present the configuration, the parameters and the
choices made concerning the implementation of the simulator, we describe the
characteristics of the nodes, the way they are connected and their knowledge of their
environment, the parameters we chose to vary and we also added a pseudo code of
the actual core of the algorithm. Then, the actual results of the simulations follow. To
begin with, we test two simple scenarios, in the first one each node chooses as his
next uploader the peer with the bigger upload capacity, in the second one he
chooses the one with the least bitmap resemblance. Afterwards, we launch a
simulation of the BitTorrent choke algorithm to find out that its performance is
exceptional, though its resistance to free riders is rather low. Then we examine the
performance of the mechanism we proposed, inspired by the study of the state of the
art algorithms done in the first part, which presented similar results to BitTorrent.
Finally, we examine a scenario with one rich source and a case where a
considerable bufferisation delay was introduced. Extensive comments, comparison
and conclusions derived from these simulations can be found in this second section.

 6

2. State of the Art - Background

2.1 State of the Art P2P Content Distribution Systems

2.1.1 BitTorrent

Although the main subject of this work is live streaming, I think that it is essential to
present the main functions of BitTorrent, the most successful file sharing predecessor
of today's live streaming applications. Contrary to Gnutella or KaZaa, who aim mainly
at the fast localisation of fellow nodes in possession of a certain file, BitTorrent's
primary goal is the fast replication of a large file by a group of nodes. It was
essentially the first application to combine the notions, ideas and policies, which
would allow it to be more wide spread than any file sharing application until then.
These innovative new elements are presented in the following tables. Most
importantly, it introduced the idea of the tracker, which helped to attain a higher level
of decentralisation and distribution of resources than before, although it still remains
a central entity, prone to cause problems to the total structure, when confronted with
large numbers of simultaneous users or potential attackers.

torrent The set of peers cooperating to download the same content

tracker The only centralized component of the system. It keeps track of all the active peers
and stores relative information.

seed A peer that has already downloaded all the pieces of a file and is sharing it with
others.

leecher A peer that hasn't already downloaded all the pieces of a certain file.

chunks

blocks

A large file is divided in smaller pieces, called chunks (256 kbytes), in order to
facilitate replication by multiple users. The chunks are also divided in smaller
pieces, called blocks (15 kbytes), which constitute the data transmission unit in the
system.

Table 1 (up) : Basic BitTorrent Elements Table 2 (down) : Basic BitTorrent Policies

Peer selection
strategy:

Choking or tit-
for-tat

algorithm

This strategy is supposed to encourage cooperation and discourage the
free riders and it is used to determine which peers to exchange data with.
The general idea is that once every rechoke period (typically set to 10
seconds), a peer selects a certain number of its fastest downloaders and
uploaders and reciprocates only with them choking the rest.

Optimistic
unchoke

This procedure is an exception to the latter case and it takes place every 30
seconds. It means that a peer is unchoked at random without considering
his capacity in order to discover new peers, who could offer better service,
and to help new comers to obtain some pieces so as to function well in the
system.

Chunk selection
strategy:

Rarest first

The goal of this policy is to maximize the entropy of each chunk in the
system and in consequence to make sure that each peer can always find a
missing piece owned by another peer. The rarest first policy consists of
always trying to serve the rarest chunk among those demanded by the
nodes in the peer set.

Random first
policy

An exception to the latter policy is the case where a node has just logged in,
so he must urgently download a few chunks to be able to be well integrated
in the system. In this case he selects to download a chunk at random.

 7

The interactions among the peers in a BitTorrent system are determined by a group
of policies and rules, which are essentially the core of the BitTorrent protocol. They
are summed up in table 2.

Legout, Liogkas, Kohler and Zhand in [1] have made a very interesting analysis
showing the effects of the different BitTorrent mechanisms on the motivations of
sharing and clustering. They have deduced that if there is an initial seed, capable of
supporting a high upload rate, the peers of the same upload capacity tend to form
clusters and reciprocate with peers of the same cluster. This phenomenon becomes
evident in the following figure: The darker squares represent longer unchoke periods.
The peers from 1 to 13 have an upload limit of 20 kbps, the peers from 14 to 27 50
kbps and those from 28 to 40 200 kbps, like the initial seed. It becomes evident that
the three peer categories form clusters and interact within them, except the case of
an optimistic unchoke. We can also see that often slow nodes unchoke medium
nodes. However, this behaviour isn't mutual, medium pairs rarely unchoke slow ones
because they cannot benefit from them so there is no interest in doing so.

Figure 1: “Clustering and Sharing Incentives in BitTorrent Systems”, Legout, Liogkas, Kohler, figure 1

An interesting approach is that of Vlavianos, Iliofotou and Faloutsos in [2] who try to
determine the minimum necessary changes in order to transform BitTorrent into a
protocol capable of streaming. The authors specify that the proposed solution
concerns the Video On Demand ant not the Live Streaming, because in the latter
case the packets are created dynamically, they are not already ready at the
beginning of a session, so the problem becomes too complicated to confront with a
mere modification of the existing protocol. The main idea of their proposition is to
modify the chunk selection algorithm attributing a high priority to pieces who are
going to be soon reproduced by the media player: In essence they introduce two
categories of missing pieces, the High Priority Set, which includes the necessary
pieces for the generation of a small duration of the video that follows, and the
Remaining Pieces Set, which includes all the pieces that haven't been downloaded
yet and don't belong to the High Priority Set. This way, each client decides to
download a piece from the High Priority Set with a probability p (p=0.8 by default)

 8

and a chunk from the Remaining Pieces Set with a probability 1-p. This new
BitTorrent based application is called BitoS.

Since most of the users started to have access to high bandwidth connections, many
live streaming applications have appeared. I am going to present some of them.

2.1.2 DONet

DONet is a Data-driven Overlay Network with no specific structure, where the
availability of data is the one that determines the exchanges and the flow directions.
The availability of each segment of the video is represented by a Buffer Map,
periodically exchanged among the nodes. [3]

Figure 2: “CoolStreaming/DONet: A Data-driven Overlay Network for Peer-to-Peer Live Streaming”, Xinyan Zhang,

Jiangchuan Liu, Bo Li, Tak-Shing Peter Yum, figure 1

Three key modules
! Membership Manager : Maintains a partial view of other overlay nodes
! Partnership Manager : Establishes and maintains partnerships with other nodes.

A partner is a node with which we are engaged in regular exchanges of data.
! Scheduler : Schedules the transmissions of video data

Joining Algorithm
! The new node contacts the origin node.
! The origin node randomly selects a deputy node from its Cache and redirects

there the new node.
! The deputy supplies a list of partner candidates.
! The new node contacts the candidates to establish its partners in the overlay.

(optimal number of partners=4)
! While connected, the new node periodically generates a membership message to

announce its existence and help the origin node update its Cache. Gossip
protocol used.

Scheduling Algorithm
! Calculate the potential suppliers for each segment.
! Determine the supplier of each segment starting from those with only one

potential supplier.
! Among them, chose the one with the highest bandwidth and enough available

time.
! Problem: Free-riding risk -> A node can advertise conservative buffer maps to

avoid contribution. Risk: Can he do that without harming his own performance?

 9

Node Departure and Failure Recovery
! Graceful departure: The departing node issues a departure message.
! Node Failure: A partner who detects the failure issues the message on his behalf.
! The departure message is gossiped to the rest of the network.[4]

Partnership Refinement
Each node periodically establishes new partnerships in order to maintain a constant
number of partners and to explore the network for better service. The potential
partners are chosen based on a score which measures their contribution to the node
per unit of time. Intuitively, nodes with high outbound bandwidth and a lot of available
segments will be preferred.

Overlay Refinement
Because of the use of a gossip protocol for the exchange of messages among the
nodes, the architecture of the underlying physical network is not taken into account
for the formation of the overlay. As a result, there is a mismatch between the P2P
overlay and the physical structure of the network. The authors of [5] propose the use
of a Triangulated Heuristic in order to predict the distance between any two peers
and subsequently choose the adjacent peers as partners. This strategy manages in
fact to improve the performance of DONet with the disadvantage of a little additional
control message overhead.

2.1.3 BULLET

Bullet's innovation lies in the fact that it layers a high-bandwidth mesh on top of an
arbitrary overlay tree. The mesh is formed by perpendicular links across the overlay,
which naturally augment the available bandwidth. Hence, each node receives a
parent stream from its natural parent in the tree and a number of complementary
streams from chosen peers in the overlay.
For example, in the following figure, A has sufficient bandwidth to deliver only 3
objects per time unit to his child D. However, D locates nodes C and E, who are able
to transmit missing objects, increasing its inbound bandwidth from 3 to 6 objects per
time unit.

Figure 3: “Bullet: High Bandwidth Data Dissemination Using an Overlay Mesh”, Kostic, Rodriguez, Albrecht, Vahdat,

figure 1 ”High-level view of Bullet’s operation”

RanSub

! RunSub is used to distribute uniform random subsets of global state to all nodes
using Collect and Distribute messages. The goal of this procedure is to locate
remote nodes with interesting content and good bandwidth.

! Collect messages start at the leaves and propagate up to the tree, leaving state
at each node along the path. They contain a random subset of the descendants
of each node along with an estimate of its total number of descendants.

! Distribute messages start at the root and travel down the tree, using the
information left at the nodes during the collect phase to distribute uniformly

 10

random subsets of remote nodes to all participants.
! Finally, the distribute set contains a random subset representing all nodes in the

tree except for those rooted at the particular child. This means that a Bullet node
attempts to recover missing data from any non-descendant node, not just
ancestors, thereby increasing system scalability.[6]

Figure 4: “: High Bandwidth Data Dissemination Using an Overlay Mesh”, Kostic, Rodriguez, Albrecht, Vahdat,

figure2, “The two phases of the RanSun protocol”

Finding overlay peers
Summary tickets are used to represent the working set of each node. Working sets
contain the sequence numbers of the packets received by the node over a period of
time. This way, upon receiving a random subset of remote nodes at each distribute
phase, each Bullet node will choose to peer with the node having the lowest similarity
ratio to its own summary ticket. Afterwards, it sends to the remote node a peering
request containing its Bloom filter.

Recovering data
Assuming it has available bandwidth for the newcomer, a recipient of the peering
request installs the received Bloom filter and will periodically transmit keys not
present in it to the requesting node. The requesting node will refresh its installed
Bloom filters at each one of its sending peers periodically.

Making data disjoint
Limiting factors are used as feedback from children to determine the best data to
stop sending when a child cannot handle the stream, in order to assure that it is with
the same probability that each node owns a particular piece. That means that a Bullet
parent sends different data to its children so that each data item will be readily
available to nodes spread throughout its subtree.

Improving the Bullet Mesh
A node can adapt dynamically the number of its active senders and receivers to
improve its performance. Each node periodically drops and replaces one or more
peers who are delivering the least amount of useful data to it. In this way, it tries to
keep the best senders. Likewise, each node periodically evaluates its receivers and
drops the ones acquiring the least portion of its bandwidth, in order to keep the best
receivers. [7]

2.1.4 PULSE

One of the virtues of PULSE is its temporal representation (figure 5). This way, a
reference system is created. The variables that grow at a fixed rate over time, like Td,
are associated with stationary points, while all the others change their position
according to their relative instantaneous speed expressed in terms of time or packet
rate.[8]

 11

Figure 5: “PULSE, a Flexible P2P Live Streaming System”, Fabio Pianese, Joaquin Keller, Ernst W. Biersack, fig1,

“A PULSE node’s data buffer”

Parameter Description
Tbist Average lag of the chunks the peer is requiring. It is placed in the middle of

the trading window and it quickly fluctuates.
Tbavg Average value for a series of Tbist.

Tk Lag difference between the chunk at the end of the trading window and the
chunk at the end of the peer’s buffer.

Td Lag of the chunk at the end of the peer’s buffer.
Tq Lag of the chunk at the end of the trading window.

Trading
Window

It includes the chunks the peer is trying to obtain from the other peers. Its size
is double than that of the sliding window.

Sliding
Window

It is the oldest part of the trading window. It contains the chunks, having a lag
greater than the chunk at Tbist, the peer is trying to retrieve. It will left shift,

allowing the trading window to slide, when it contains a sufficient number of
chunks.

Zone of
Interest

It is the newest part of the trading window. It contains the chunks, having a lag
smaller than the chunk at Tbist, the peer is trying to retrieve

Table 3: “The Pulse System: A new P2P prototype for live streaming”, Thesis de Diego Perino, table 3.1,
 “Buffer’s parameters”

In PULSE, there are three levels of knowledge about other peers in the system,
which are illustrated in table 4, and each one of them has a distinct goal.

! Blue Set: keeping at hand a small and up-to-date list of nodes who share the
same streams we are interested in

! Red Set: these peers are the preferred target of a node’s attempts to get its
missing pieces and with whom it aims at establishing a Missing data
exchange

! White Set: keeping track of all the peers we have met, up to a maximum size
 IP

address
TCP port UDP

port
Tbavg Td chunk

buffer
edge

Trading
window
bitmap

RTT

White + + +

Blue + + + + +

Red + + + + + + + +

Table 4: Levels of knowledge

 Overlapping
Trading

Window?

Tb goal consequence to the
structure of the

network

Missing set yes near trade data to fill any hole around
Tb and keep the window sliding

local meshes are formed

Forward set no far allow distant nodes to approach
the source

 mobility from the back to
the forth of the network

Table 5: Two groups of peers for data exchange

 12

There are also two groups of peers for data exchange and four behavioral modes.
The details are summed up in tables 5 and 6.

 Target
recovery

mode

Target
group of

peers

Goal –
active

behavior

Fairness
Mechanism

Scores Passive
behavior

Friend Missing Missing Main data
exchange

Immediate
tit-for-tat

Fi Respond
always

Normal Forward/
Missing

Red Retrieve
data,

adjust Hi

Cumulative
tit-for-tat

Hi Respond
depending

on Hi
Sloppy Forward All Remind

peers of
their debt

Cumulative
tit-for-tat

Hi Respond
depending

on Hi
Fast Forward/

Missing
Red/Blue When in

dire need
of data

Cumulative
tit-for-tat

Hi Respond
depending

on Hi
Table 6: Bahavioral Modes

! Immediate tit-for-tat: BitTorrent-like
! Cumulative tit-for-tat: You don’t have to reciprocate immediately. You remain

indebted and receive worse quality until you do.

! exchangesFRIENDexcept
itoSentDataofAmountCumulative

ifromceivedDataofAmountCumulative
__

__Re____
!"#

! exchangesFRIENDforonly
SBR

iFromBandwidthgIncoAverage
Fi ___

___min_
1$!

! Conditions to choose a node as a Friend: 1.He must have high Hi 2.He must

belong to the Red Set 3.His Tb must be in the range of our Interest window
4.(optional) His inbound and outbound bandwidth must be greater than a
certain threshold.[12]

2.1.5 Comparison

We can generally say that all modern P2P applications for live streaming have a
hybrid nature. On one hand, a simple tree structure has proved to be inefficient, since
it reacts very badly to failures, it doesn't take advantage of all the available bandwidth
and it doesn't scale. On the other hand, it is impossible to form a really equally
distributed mesh since the source of the data is always the only node that diffuses
the stream, so its role is different. So, among the three examined applications, we
can say that Pulse is more tree-like, DONet is more mesh-like and Bullet is
somewhere in the middle. The similarities and differences of these three applications
are summed up in the tables that follow.

 Provider of the stream How the local knowledge is
obtained

Parallel
Download

Pulse Nodes, members of the red set,
who are chosen as friends and
moved to the missing set

Three levels of knowledge, white,
blue, red, acquired through polling
messages

high

 13

 Provider of the stream How the local knowledge is
obtained

Parallel
Download

Donet Nodes handled by the membership
manager who are chosen as
partners by the partnership
manager

Gossip protocol used to
periodically send membership
msgs and exchange the buffer
map

high

Bullet Mainly the parent of the node and
some perpendicular nodes

RanSub used to distribute subsets
of global state using Collect and
Distribute messages

medium,
the parent
is the main
source

Table 7: Main Characteristics

 Resistance to failures Topological
locality

Bandwidth
optimization

Mobility inside the
overlay

Pulse High, if a node fails, it's
easy to replace it with
another one from the red
set

yes, RTT
considered to
select a peer

Rich nodes can use
their available
resources to
contribute to the
Forward peers

Medium. Friend
nodes are stable.
Mobility obtained
through Forward
data recovery

Donet High, if a node fails, it's
easy to replace it with
another one proposed by
the membership
manager

not in the
original, yes in
the modified
version

Nodes with high
bandwidth are the first
to be chosen as
providers for each
chunk

High. Providers
change as the
demanded chunks
and their availability
change

Bullet Medium, the parent is
the main provider so if
he fails, another parent
must be found

no Every node attempts
to recover missing
data from any non-
descendant node in
order to fill its inbound
bandwidth

Medium. Parent is
stable.
Perpendicular peers
periodically replaced
to optimize
exchange

Table 8: Adaptability to network conditions

 Free-rider strategy Source single point of failure? Fairness mechanism

Pulse Advertise conservative
trading window, minimize
forward slots

No Immediate tit-for-tat for
friends. Cumulative for
others

Donet Advertise conservative
buffer map

No, if a dht to a group of source
nodes is used.

None

Bullet Advertise conservative
summary ticket

Yes, since it's the unique point of
entrance and it's responsible for
the Distribute messages

None

Table 9: Fairness Issues

 Feedback to
the source

History score Scheduling algorithm

How to choose partners

Pulse None Fi for friends Hi
for others

1. Overlapping trading window 2. high Hi

3.member of the red set

 14

 Feedback to
the source

History score Scheduling algorithm

How to choose partners

Donet None None Choose the best partner for each missing segment,
beginning with the segment with the least suppliers

Bullet Yes, limiting
factors

None Choose a peer with the lowest similarity ratio to its
own summary ticket

Table 10: Fairness Issues II

After this presentation, we can conclude on some main directions to follow for future
P2P applications.

! A simple tit-for-tat policy should be extremely efficient in most of the cases. It
could also be adopted by DONet and Bullet.

! No complementary roles and responsibilities should be given to the source,
apart from its native role as the unique source of the stream, in order to avoid
creating a single point of failure of the system. The use of a central
component as a tracker should also be avoided as it doesn't handle well flash
crowds.

! Some kind of local knowledge of the network and recent memory of the
transactions should be kept, like a history score.

! The main goal of the incentive mechanism should be to dissuade users to
advertise less data than they actually have to avoid contribution.

! The existence of some kind of clusters or of a central core of credible nodes
is inevitable and maybe desirable. The fairness mechanism should not be too
strict on these nodes because they keep the system running.

2.2 State of the Art Incentive Mechanisms

In most of the contemporary P2P systems, the users are naturally discouraged to
cooperate because contribution directly affects their resources and their
performance. In consequence, if a user tries to maximize his performance, his action
will have an immediate negative effect on the global performance of the system. So it
is necessary to compromise the personal and the collective well being and supply the
users with important motivations for cooperation, or else they will naturally become
selfish. This compromise is very difficult to make because of the existing challenges
in a P2P system:

! Very large and dynamic peer populations, which means that the life duration
of a peer in the system can be very short.

! Asymmetric transactions: User A is interested in a content owned by B and B
is interested in a content owned by C. As a consequence a user may demand
service without being able to reciprocate immediately. So a simplistic tit-for-tat
policy isn't appropriate for such a system.

! The majority of P2P systems allow users to constantly change identity (zero
cost identity). This characteristic is desirable for the new comers and helps
the network grow fast but in the same time it does not penalize malicious
users who take advantage of this vulnerability to exploit the system. This
behaviour is called whitewashing and constitutes one of the major problems
of such applications.

! Most of the P2P systems are unstructured and decentralized. This absence of
a central authority imposes the use of complicated solutions in order to
manage the system.[13]

However, there are certain techniques that can help us confront these difficulties:

 15

! Combine random and informed peer selection. Informed peer selection will
choose already known nodes and will encourage the maintenance of long-
term partnerships among them. Random peer selection aims at exploring the
network for better service and facilitates the integration of new comers.

! Maintain a short-term distributed history for fellow nodes. Distributed because
the asymmetric and time-varying nature of P2P networks would prove a
private history to be inefficient. And short-term in order to prevent malicious
users from exploiting the system after a period of good behaviour, which
would guarantee them a good reputation.

! Adopt a Stranger Adaptive Policy as a defence to white-washing, that means
having a flexible policy to strangers that adapts to their recent behaviour. The
problem with this solution is that it also penalizes the possible innocent new
comers if the majority of the recent strangers have proved to be malicious or
selfish.

There are mainly three categories of incentive mechanisms, although the
contemporary P2P applications combine them in many ways to derive enhanced
performance, so the distinction among them is not always obvious.

Differentiated services: In this kind of mechanisms, the main motivation for the users
is the ability to choose reliable and credible peers, who can guarantee them a
predictable quality of service. So, every user is free to choose his level of contribution
in order to maximize the quality of the perceived video. For example, such a
mechanism could allow the peers to select as uploaders nodes with a score inferior
or equal to theirs only. In this way a node with a zero score will have a best effort
quality of service. If he desires a streaming better than best effort, he must obtain a
positive score by contributing to the system.
The score of each user is determined by a scoring function, which could consider and
measure the contribution of each user, or the contribution minus his consummation,
or even introduce an ageing factor to encourage regular contributions. It could also
remunerate more users who upload rare files or strongly demanded ones. The
possibilities are endless. [14]

Micro-payment: These mechanisms aim at establishing equilibrium between total
downloads and total uploads of each user. A very simple solution is to debit the users
for every byte they download and to remunerate them for every byte they upload.
The advantage of this method is that it gives users the opportunity to control their
debt to the system and even make money if they want. However, these techniques
are not generally welcomed by them, especially when there is real money involved,
because they are constantly asked to decide if a certain content is worth paying. [15]

Reputation: The simplest use of the reputation mechanisms is to help the peers with
a good reputation find each other and cooperate. The main idea is to construct a
reputation system to attribute an objective score to each user according to his
behavior and afterwards determine his quality of service by this score. It is obvious
that here a central entity is necessary to maintain and update the scores, which is not
desirable for modern P2P applications. An alternative to the solution of a central
entity is that of each peer calculating his own score, afterwards his score being
mapped into a percentage by comparing it to the scores of his fellow peers in his little
neighborhood and in the end he will be able to know more or less his position in the
global distribution and act accordingly.
In the following table, I try to sum up the advantages and disadvantages of each kind
of incentive mechanism concerning different P2P application scenarios.

(Next page) Table 11: Comparison

 16

P2P/ Incentive
Mechanism

Micro-Payment Reputation Differentiated service

Advantages/
Disadvantages

+Debt control
+Opportunity to make profit
-Problem for the slow or
asymmetric connections
-Not very popular if there is real
money involved because one
must constantly decide if a
certain content is worth it
-Danger of exploitation by
users who form coalitions
-Difficult to evaluate the rarity
or the demand of a file, in order
to remunerate more the users
serving it

+Flexibility of
decision
+Better accepted
by the users
+Defence against
malicious users
-The absence of a
central authority
causes problems
-A central entity is
expensive
-It is necessary to
maintain a history
and exchange
polling messages.
As a result the
cost and the
overhead rise.

+The quality of service is
directly related to the level
of contribution. So there is
a motivation to maximise
the latter.
+No polling messages, so
no overhead added
-Injustice : Same
treatment for the free
riders and the new comers
-Necessity of a central
entity to calculate users'
scores. Solution: every
user calculates his score
locally and does an
approximation.
-But, integrity problem: the
users can lie in order to
exploit the system

Files exchange A variation of this technique is
the tit-for-tat adopted by
BitTorrent. Mechanism
appropriate for these systems
because of its simplicity and its
facility of implementation.
What's more, it allows the slow
nodes and the free riders to
take advantage of the spare
capacity, so that it is not lost.
However necessity of a central
element ex. tracker

A variation of this
technique was
adopted by
KaZaa where the
users were
divided in three
classes of
contribution.
Necessity of a
central element,
or the problem
becomes really
complicated. This
technique isn't as
efficient and as
appropriate as the
tit-for-tat for these
systems.

We have found no
application of this
mechanism in file
exchange systems. Which
is normal since it
introduces a high level of
complexity that affects
badly the system
performance. This
complexity is redundant
because the system can
function fine with simpler
algorithms.

Live streaming This approach or the tit-for-tat
isn't sufficient for live
streaming. We must use a
technique that discourages the
free riders and encourages
everybody to contribute
constantly and continuously, or
else the quality of service
deteriorates. The vulnerability
of this type of mechanisms is
that the user is able to
accumulate credit and then not
contribute at all during a very
popular emission when the
cooperation is vital.

The reputation
mechanisms
constitute a very
interesting
solution to the
right direction.
However the
efficiency of the
proposed solution
depends on the
answers we are
going to give to
certain questions:
Will there be a
central entity or
not? Will there be
a history? Which
are the specific
parameters
maintained by
each user? How
will reputation
affect the
decisions to be
made? How will
reputation
determine the
quality of service?

It seems that a solution
based on the
differentiation of the
quality of service offered
in relation to the
contribution of each user,
must be the goal of
contemporary P2P
systems which aim at live
streaming. The advantage
of this technique is that it
affects directly the quality
of the video perceived and
this way the users cannot
help contributing. The
emergency of the liveness
of the emission constitutes
a supplementary
motivation. Of course such
a technique is based on
the existence of a scoring
system, which can be
determined in a way to
ameliorate the
functionality and the
performance of the
system.

 17

2.3 Challenges

The nature of live streaming, and especially its sensitivity to delays, is the cause for
many of the problems encountered when dealing with such an application, problems
which would be less important in a Video On Demand system, where there is no
notion of liveness and users are generally more linient, and almost inexistent in a
content sharing application, where media file reproduction is done after downloading,
so packet delays are not really an issue, as long as there is a satisfactory download
rate. Some of these challenges are the following:
! Data nature: Live streaming is based on play-while-you-receive, that means that

a sequence of pieces must be reproduced by the media player immediately at the
reception or after a predetermined bufferisation delay. The latter one becomes a
problem and must be of very limited duration in the case of video conference,
where a considerable bufferisation delay may harm the interactivity of the
communication. What's more the total duration of a media session is unknown,
the data flow is generated dynamically and there is no prior knowledge of the
content. The consequences of these two properties of live streaming are a very
limited tolerance to packet delay and a rather high sensitivity to packet loss.
Since a big safety margin doesn't exist (the bufferisation delay is equal to some
seconds), a series of packets being lost or arriving late will very much harm the
video quality, they may even cause an interruption, which is highly undesirable.

! Network conditions: In order for the P2P network to run properly and for the
incentive mechanisms to be deployed with a predictable result, the network must
present some special properties: Continuation of service even after sudden
departures or failures, capacity to download simultaneously from different
sources, ability to explore the network and find peers with interesting content and
finally capacity to do a close to reality estimation of its own upload bandwidth and
also of that of its neighbours.

! Network characteristics: In order to optimise the performance of any P2P system,
we should supply it with the means to form its architecture taking into account the
underlying internet topology, allow for a tcp friendly flow control in order to avoid
congestioning the network with P2P traffic and finally take into account the fact
that the majority of users have asymmetric internet connections (ADSL) in order
to optimise the use of their available resources.

! Security and equity: This aspect of the encountered challenges concerns mostly
the peers behaviour and habits. To protect the system from being exploited, we
should introduce counter measures to defend to potential attackers or preferably
minimise the probability of success of a possible attack by establishing
appropriate rules and policies. The system should also be able to provide a
minimal level of integrity of the exchanged data and most importantly a minimal
level of fairness among the users.

 18

3. Experiments – Experience with existing algorithms

3.1 Simulation Parameters

For user outbound and inbound bandwidth, I adopt the measurement results derived
form actual Gnutella nodes in 2006.

Type Inbound(kbps) Outbound(kbps) Fraction
DSL/Cable 784 128 0.2 among DSL/Cable
DSL/Cable 1500 384 0.5 among DSL/Cable
DSL/Cable 3000 1000 0.3 among DSL/Cable
Ethernet 10000 5000 Altered(0~0.15 among all)
Table 12: “Optimizing the Throughput of Data-Driven Peer-to-Peer Streaming”, Meng Zhang, Qian Zhang, Table IV,

Bandwidth Distribution in Gnutella network 2006

Instead of measuring the inbound and outbound bandwidth in kbps, I choose to
measure it in blocks per iteration, where each iteration is typically set to 1 second.
Since a common block size is 15 kbytes and my simulation includes 15 nodes, a new
table is created. For the first simulations, no Ethernet node is supposed to exist. He
will be introduced later on to deduce interesting results.

Type Inbound

(blocks/s)
Outbound
(blocks/s)

Number
of nodes

DSL/Cable 6 1 4
DSL/Cable 12 3 7
DSL/Cable 24 8 4
Ethernet 84 41 0 or 1

Table 13: Bandwidth Distribution in Simulation

If we suppose that the streaming rate is 300 kbps, we want to measure it in
blocks/sec, so we have 300/8*15=2,5. I consider 3 blocks/sec. So the interest
window of each node will slide 3 blocks/sec and its length is considered to be 100
blocks.
Since the goal is to study different scenarios for nodes with different resources, we
suppose that for each node category (slow, medium, fast) there are four buffer states
(10% full, 30% full, 50% full, 70% full) to simulate nodes who have arrived at different
time instants. There is also a medium node that has just logged in, one with an
almost full buffer and one with a randomly filled buffer. All this information can be
easily seen in the following table. The buffers are filled randomly following a uniform
distribution.

Type Node ID Inbound
(blocks/s)

Outbound
(blocks/s)

Initial Buffer State
(buffer size 100)

Slow 0 6 1 10
Slow 1 6 1 30
Slow 2 6 1 50
Slow 3 6 1 70

Medium 4 12 3 0
Medium 5 12 3 10
Medium 6 12 3 30
Medium 7 12 3 50
Medium 8 12 3 70
Medium 9 12 3 90
Medium 10 12 3 Random

Fast 11 24 8 10

 19

fast 12 24 8 30
Fast 13 24 8 50
fast 14 24 8 70

Table 14: Bandwidth and Buffer State Distribution in the Simulation

In these simulations, each node acquires packets through two mechanisms, first by
his fellow 14 nodes by comparing their bitmap to his and second by a random
mechanism, following a geometric like distribution, so that the blocks at the beginning
of the interest window (left), which will soon be played, are obtained with a greater
probability than blocks at the end (right). The goal of the second mechanism is to
simulate the effect of a wider neighborhood, which means that each node has
transactions with others outside the known group of the 15. Although we cannot
simulate these nodes, this way we take into account their presence. In order to stick
to a realistic scenario, we suppose that each node is only allowed to obtain by the
random mechanism the number of blocks he has acquired by the regular mechanism
plus 3 more blocks. We add these three blocks in order to avoid the case where a
node becomes unable to find missing blocks owned by his peers and starves, if we
don’t allow him to get them by the random mechanism. Especially for node 4, there is
no random mechanism deployed because we want to isolate and study his
interaction with the 14 known nodes.! The pseudo code of the main parts of the
program for the simplest case scenario can be found in the Appendix at the end of
this document.!

3.2 Upload Capacity Based Selection

For each scenario, 25 simulations are launched, all with the same initial configuration
in order to have a statistic result and minimize the effects of bad thread handling by
the java machine. The results are illustrated in the following figures.

Figure 6: Upload Capacity Based Selection, left Continuity Index, right Buffer Progress of node 4

In the left part of figure 6, the x axis represents the time evolution in iterations (total
20 iterations) whereas the y axis represents the continuity index of each node. In
consequence, each dotted point is the continuity index of a node at the end of the
particular iteration. The continuity index is a very common measure of the quality of
service in live streaming applications, in particular it is the percentage of packets who

0 2 4 6 8 10 12 14 16 18 20
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o

n
ti

n
u

it
y

 I
n

d
e

x

 20

arrived before their play out time. The rest are packets who either never arrived
either they arrived late and subsequently they were rejected.
In order to derive interesting conclusions, the different node categories are painted in
different colors in the preceding figure. Slow nodes are painted in black, medium
nodes in blue and fast nodes in red. I remind that for each node category, there are
four possible initial buffer states (10%, 30%, 50% and 70% full). The lowest blue line
represents the evolution of the continuity index of node 4, who is a medium node who
starts with an empty buffer. We can see that he converges slowly but his
performance is much worse than that of his partners. In this scenario, the empty
initial buffer constitutes a serious handicap. If we don’t look at node 4, the lowest line
of each color always concerns the node of that category who starts with a 10% full
buffer and each superior line concerns a superior buffer state. If we compare the first
black, blue and red line, it is obvious that the fast node who starts with an empty
buffer is much more successful in retrieving quickly the missing pieces than the slow
and the medium one. What‘s more, it is evident that fast nodes converge faster to a
higher continuity index value than medium ones. In the end, we should note that the
two nodes (9 and 10) who start with an almost full buffer, present a continuity index
constantly equal to 1 (the two lines on top).

The next figure represents the mean value of the final continuity indexes at the end of
each simulation and allows us to compare the performances of the different node
categories.
Node Initial

Buffer
State (%)

Continuity
Index

0 10 0.9233
1 30 0.9567
2 50 0.9753
3 70 0.9867
4 0 0.7967
5 10 0.9193
6 30 0.9553
7 50 0.9973
8 70 0.9960
9 90 0.9993
10 Random 0.9687
11 10 0.9607
12 30 0.9693
13 50 0.9873
14 70 0.9953

Figure 7: Upload Capacity Based Selection, Mean of the continuity indexes after 25 simulations

One thing that strikes as odd at this figure is that the overall performance of the
medium nodes is slightly worse than that of slow nodes. The main reason for this
phenomenon is the existence of node 4 who starts with an empty buffer and is
seriously handicapped as we have already explained. However, nodes 5 and 6
present also slightly worse performance than the nodes 0 and 1, although they begin
with the same buffer state. The logical explanation for this, is the following: Since the
buffers are filled randomly following a uniform distribution, it is possible that one
buffer with 10 initial packets is more beneficial than another one, because these 10
packets are more concentrated at the beginning of the buffer, which is its most
crucial part since the node won’t have many chances to fill it.

Now, in the right side of figure 6, we can see the evolution of the buffer of the
medium node 4 who starts with an empty buffer initially and whom we use as a case
scenario of a new comer with medium resources. The figure represents the mean of
the buffer states of the consecutive 25 simulations for node 4. That means that for
each packet of the buffer for each iteration of each one of the 25 simulations, we

Slow Nodes
0.9605

Medium Nodes
0.9475

Fast Nodes
0.9781

Global Continuity Index
0.9591

 21

register if it has been acquired or not. In the end, if a packet has been acquired in
more than 12 simulations, we consider that it exists in the final figure. If not, we leave
its location blank. So, the x axis represents the pieces that have been acquired and
exist in the buffer and the y axis the 20 consecutive iterations. The blocks on the left
are the first to be played by the media player. We must also note that since we
simulate a case of live streaming, the interest window slides to the right, 3 blocks at
each iteration. All this information is illustrated by the different colors in figure 6 right.
The blue edge represents the current position of the media player, which means that
all the blue packets have already been reproduced. The yellow edge represents the
current position of the interest window, the yellow blocks are the ones the peer has
not obtained yet and he is interested in. The green blocks are pieces that have been
acquired but haven’t been played yet and the red blocks are the new pieces that
have been obtained during the last iteration.
After explaining the meaning of the colors, we can now explore more interesting
aspects of this figure. It is obvious that at the beginning of the simulation, node 4 isn’t
able to obtain not even the three necessary blocks per iteration to maintain a smooth
video quality. The reason for this is the existence of a race condition among the
nodes, half of which are new comers (7 out of 15 nodes have less than 30 blocks in
their buffers). So, the available resources are considerably monopolized by the faster
nodes, who present a high continuity ratio even at the beginning, and the other nodes
are condemned to starvation. After a while, though, faster and older nodes fill their
interest window, so there is place for the new comers, who begin to ameliorate their
continuity index and acquire more new packets (red) at each iteration. This situation
continues and at the end of the 20th simulation, node 4 has almost filled his interest
window.
We also conducted the same simulation for a longer duration (60 instead of 20
iterations) and we observed that the evolution of the figures is normal and
predictable. These figures can be found in the Appendix at the end of the document.
After this example, we can clearly see that fast nodes are naturally busted by their
high capacities and resources at the expense of slower nodes. So the need for
incentive mechanisms, which could guarantee a kind of fair scheduling among all the
participants, become evident, in order to help all the peers obtain the stream on time
and with a good quality. The clear unfairness in service, that we have just observed,
justifies this whole work and the seek of a “remedy” to the problem is essentially its
goal.

3.3 Bitmap Resemblance Based Selection

Until now we examined the case where the only criterion to select one’s neighbors
was their upload capacity. But what if the next uploader isn’t selected depending on
his upload rate but on his bitmap resemblance to ours? The next case scenario
examines exactly this situation. What happens is the following: Before each
download demand, each node finds the positions of the first five non existing blocks
in his own bitmap. Afterwards he searches these five positions in all the remaining
bitmaps of the other nodes and chooses the node with the least resemblance bitmap
to his. That is, in the best case he finds a node who owns all the five missing blocks,
if there isn’t such a node he chooses one with 4 missing blocks and so on. If there
are multiple nodes with the same resemblance ratio, he chooses the one with the
highest upload rate. We can see the results of this policy in the next figures and
compare them with the respective results of the first simpler scenario. The goal is to
observe which of the two criteria is most important and powerful, in order to know
which one to take into account or how to combine them in a potential more
complicated incentive mechanism. We also would like to see how the different node
categories react in these two cases, so as to find possible vulnerabilities.

 22

In figures 8 and 9, we can observe that the performance here is slightly worse than in
the first case in terms of continuity index (global continuity index 0.9366 in
comparison to 0.9591 in the first case). What‘s more, a very interesting phenomenon
is that the performance of the faster nodes is affected more than the performance of
the slower ones. If we compare the cumulative continuity indexes of the three
categories, we can see that that of the faster nodes deteriorates more than that of the
slower ones. Why does that happen? Because now, faster nodes may choose a slow
or medium node as uploader thanks to his bitmap resemblance, whose the upload
capacity though is very limited compared to their download capacity. For example,
they may choose a slow node who owns all the five missing blocks they demand
without considering that this particular node is only capable of serving them one. In
conclusion, we can see that by all means this node selection strategy stalls the faster
nodes without really ameliorating the performance of the slower ones, whose
continuity indexes remain almost the same. These conclusions are reinforced by the
right part of figure 8, where we can see the buffer evolution of node 4, whose
continuity index is much worse now than in the first case.

Figure 8: Bitmap Resemblance Based Selection, left Continuity Index, right Buffer Progress of node4

Node Initial
Buffer
State (%)

Continuity
Index

0 10 0.8947
1 30 0.9593
2 50 0.9767
3 70 0.9913
4 0 0.6467
5 10 0.893
6 30 0.9527
7 50 0.9973
8 70 0.9960
9 90 1
10 Random 0.9460
11 10 0.8707
12 30 0.9420
13 50 0.9900
14 70 0.9993

Figure 9 : Bitmap Resemblance Based Selection, Mean of the continuity indexes after 25 simulations

Slow Nodes
0.9555

Medium Nodes
0.9188

Fast Nodes
0.9489

Global Continuity Index
0.9366

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o

n
ti

n
u

it
y

 I
n

d
e

x

 23

3.4 BitTorrent Choke Algorithm Upload Only

After having examined the results of the two previous cases, where the selection of
the next uploader was done based on quite simple criteria, upload capacity on the
first case, bitmap resemblance on the second one, it is time to study a more
complicated scenario, the BitTorrent choke algorithm. In order to test thoroughly its
functionality, we decided to divide the mechanism in two phases and study them
separately. First we simulate a policy where at each unchoke period, each node
discards the worst of his 4 uploaders and replaces it with another node at random.
Normally, a full choke algorithm would also follow the same procedure with the
downloaders, which is simulated in the next case and it constitutes the second
phase. The goal of this step by step study of the algorithm it to observe the impact on
efficiency and performance.
So, as we can see in the left part of figure 11, this policy seems to perform
significantly better as all the nodes’ continuity indexes converge to a value over 0.9.
In fact, 13 out of 15 nodes have a continuity index over 0.95 and 11 out of 15 over
0.98, which is impressive and guarantees an exceptional video quality.

Figure 11: BitTorrent Choke Algorithm Upload Only, left Continuity Index, right Buffer Progress of node 4

0 2 4 6 8 10 12 14 16 18 20
-150

-100

-50

0

50

100

Time in iterations

C
re

d
it

Figure 10: Credit of the 15 nodes, 3.3

In this figure we have represented the credit of each
node. In order to do that, we have supposed that each
node begins with zero credit, he gains a point for every
block he downloads and he looses a point for every
block he uploads. So in total the credit of every node
represents his total downloads minus his total uploads.
It is obvious that fast nodes upload much more than
they download and slow nodes the opposite, they
download much more than they upload. Medium nodes
are somewhere in the middle. From this figure, an
already known fact becomes certain, faster and richer
nodes are the systems’ main contributors and the ones
that keep it running by serving the slower ones. All that
considering that all the nodes are altruistic, there is no
selfish behavior. This possibility will be examined later
on.

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o

n
ti

n
u

it
y

 I
n

d
e

x

 24

These conclusions are reinforced by the following table, which summarizes the
continuity indexes of the 15 nodes at the end of the simulation.
In the right part of figure 11, we can also observe the evolution of the buffer of node
4. We can see that the quantity of data obtained at each iteration is much more
regular now, which allows node 4 to achieve the desirable performance.

Node Initial

Buffer
State (%)

Continuity
Index

0 10 0.9444
1 30 0.9811
2 50 0.9844
3 70 0.9844
4 0 0.9089
5 10 0.9811
6 30 0.9756
7 50 0.9978
8 70 0.9889
9 90 0.9989
10 Random 0.9911
11 10 0.9589
12 30 0.9822
13 50 0.9922
14 70 0.9944

Figure 12: BitTorrent Choke Algorithm Upload Only, Mean of the continuity indexes after 25 sims

3.5 BitTorrent Choke Algorithm Upload – Download

This case simulates a full choke algorithm: At each unchoke period, each node
discards the worst of his 4 uploaders and replaces it with another node at random.
He also does the same with his worst downloader, replacing it with another one at
random.
So, as we can see in figure 13 left, this policy seems to perform even better than the
last one with 14 out of 15 nodes finishing with a continuity index over 0.95. Only,
node 4 who starts with an empty buffer converges below 0.95, at 0.94. As a
conclusion, it is obvious that the BitTorrent choke algorithm works impressively by
allowing all the nodes to make the most of the available resources.

Figure 13: BitTorrent Choke Algorithm Upload – Download, left Continuity Index, right Buffer Progress of n4

Slow Nodes
0.9736

Medium Nodes
0.9775

Fast Nodes
0.9819

Global Continuity Index
0.9776

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o

n
ti

n
u

it
y

 I
n

d
e

x

 25

Node Initial
Buffer
State (%)

Continuity
Index

0 10 0.9611
1 30 0.9800
2 50 0.9911
3 70 0.9878
4 0 0.9400
5 10 0.9744
6 30 0.9678
7 50 1
8 70 0.9911
9 90 0.9989
10 Random 0.9856
11 10 0.9678
12 30 0.9856
13 50 0.9856
14 70 0.9944

Figure 14: BitTorrent Choke Algorithm Upload – Download, Mean of the continuity indexes after 25 sims

The right part of figure 14 is quite significant. We can see that at the beginning of the
simulation, node 4 isn’t able to obtain many pieces at once because of the choke
algorithm and the fact that he hasn’t got anything to share, so he is rejected by the
majority of the nodes, and he is mostly counting on being randomly selected as a
partner, in order to download the necessary pieces. After the first 6-7 iterations
though, he has enough pieces to share and we can see that the quantities he obtains
at each iteration augment.

So, if the BitTorrent choke algorithm is so efficient, why continue this study and not
just adopt it as the best solution? It is true that this mechanism is very reliable but it
has a major flaw: It is very lenient with free riders, who can download a file by taking
advantage of the optimistic unchokes, surely more slowly than a node with a good
behavior but still they can do it. So, BitTorrent is not an optimum even for file-sharing
applications. However in file sharing there are no delay constraints, so a potential
free rider doesn’t really care if the download duration is 3 hours instead of 1, which is
not the case in live streaming, where long periods of waiting before or during the
streaming are unacceptable.
What’s more, there is a more crucial reason for which BitTorrent choke algorithm is
inappropriate for live streaming. In a file sharing application, there is always a
considerable amount of seeds, nodes who have already downloaded and own all the
pieces of a particular file. In live streaming, only the source owns the totality of the file
and it surely cannot serve all the peers demanding it, so the need to motivate with
proper incentives all the users to contribute and cooperate continuously is far more
vital to keep the system alive and running.
As a conclusion, the aim of this work is to introduce stronger incentives for
contribution and stricter consequences for misbehavior. We show an example of
such a mechanism in the next section.

Slow Nodes
0.98

Medium Nodes
0.9797

Fast Nodes
0.9833

Global Continuity Index
0.9807

 26

4. Study of Incentive Mechanisms for Live Streaming

4.1 Differentiated Services

In this next simulation, a new incentive strategy is tested, which is based on a
differentiated services policy supported by a reputation system. To begin with, we
must note that the proposed solution concerns an unstructured and decentralized
P2P network. This means that there is no central entity in the form of a server, or a
super peer of even a torrent, in order to avoid the risk of a potential bottleneck or
single point of failure. What’s more, we suppose that every user receives the stream
by many peers simultaneously, so it’s a case of a data driven architecture, like the
one used in DONet. To conclude this short introduction, it must be mentioned that the
use of time shifting or video patching techniques would significantly ameliorate the
perceived video quality and eliminate the negative effects of connection interruptions
and sudden peer departures.
The main idea of this kind of techniques is that each and every user is only allowed
to download data from nodes inferior or equal to him. The position of each node in
the global distribution, which determines its relation to its peers (inferior, superior,
equal), is given by a scoring function based on a reputation system. The essential
problem of this solution is the fact that the nodes must calculate their own scores
since there is no central entity to play this role. However, all the recent studies of the
users’ behavior prove that they tend to be selfish and act strategically in order to
ameliorate their performance, so it would be logical to suppose that a great majority
of them would be prone to lying concerning their contribution. So, the proposed
solution should also take this into account and try to discourage this kind of
behaviour.
To begin with, I will describe the scoring function. Each user maintains a short history
of his transactions with all the other pairs and every time he has to, he calculates his
opinion concerning another node based on this history. This opinion may concern the
quantity of the served data, the available bandwidth of the node, the service duration,
the propagation of the node’s demands and a number of other representative
characteristics of a user’s behaviour. In our case, we use a simple scoring function,
which considers only the upload capacity of a certain node and his contribution to us.
This way a score between 0 and 1 is attributed to each one of a node’s peers.

Figure 15: Scoring Function used in simulation

In this simulation, each node has to store information concerning his 14 fellow nodes
of the simulation only. In a real world scenario, the number of nodes a user “meets”
during a session is potentially very large, so it is impractical and impossible to take
everything into account, a part of the available information must be excluded or
deleted after a period of time so as not to monopolize a node’s memory space. This
means that the history kept by each user must have a limited size, so it must refer to
a limited period of time, that is to its most recent transactions with his environment.
This way, each user is judged and scored according to his most recent actions and in
consequence he can’t take profit of his good reputation to exploit the system, at least
not for long. However, this mechanism poses great difficulties for the new comers,
since they have nothing to share, in order to augment their score, and it is a bit unfair
with nodes who present regularly good unselfish behavior, since it doesn’t
remunerate them for it. On the other hand, a total presence of a node over a large
period of time is useless for a live streaming application, where it is urgent that all the

ustooncontributiimum

iustooncontributi

capacityuploadimum

icapacityupload
iscore

___max

][__
5.0

__max

][_
5.0][$!

 27

nodes contribute regularly all the time, so this characteristic is not necessarily
negative. In any case, this simulation concerns a small neighborhood of peers over a
small period of time, so none of these mechanisms is implemented, and the final
score of each peer is a cumulative measure of his behavior during all the duration of
the simulation. We also suppose, for the time being, that there are no strategic nodes
who try to trick the system.
So, after describing how the scores are determined, it is time to explain how the
differentiated services system works. When a transaction starts, that means when a
node demands service or when a node receives a demand for service, the two
parties calculate their opinion of the other using the following function.

Figure 16: Opinion calculation function used in the simulation

At this point, it is important to note that with the preceding function, we introduce a
kind of global history of the system, as each node calculates his opinion for
everybody else, depending partly on his own information and party on the information
given by his neighbors. Of course, his own opinion is more important so it
participates with a higher factor (0.5) than those of the others (0.5/14=0.0357), but in
any case this technique introduces a minimum of objectivity and fairness. This way,
at the end of this phase, each one of the two nodes has calculated the score of the
other and they exchange these two values. If the score of the node that demands
service is inferior, the other node has the liberty to reject him, but if it is superior or
equal, he is obliged to serve him. The advantage of this procedure is that none of the
nodes calculates or even knows his own score, so it is more difficult to lie and cheat.
At this point, we can introduce a number of different measures to improve the
system, some of which are the following:

1) If the node with the inferior score, who is obliged to serve his peer, refuses to
do so, the demanding peer propagates a message informing the other nodes
of his misbehavior in order to penalize this node by diminishing their opinion
of him (decreasing the existing score that concerns him).

2) We can introduce a special treatment for the new comers, as for the time
being they are confronted as selfish non-contributing nodes, and they are
severely penalized, as we will see in practice. We could for example, consider
that when none of the nodes has a stored score for a certain node, the latter
is a new comer and he must be served anyway and by all means.

3) We could also elaborate the existing mechanism by issuing an inverse
procedure to the one propagating a message of foul play when a node
refuses to co-operate. This procedure would concern the altruistic nodes who
serve their fellow peers, even though they have a superior score and so they
are not obliged to do so. At this case, the served node propagates a message
of “praise” to inform the others of the virtues of his partner and in
consequence remunerate him by proposing to everyone to augment his
score.

4) Finally, we could also introduce intelligent algorithms to discover and exclude
“liars” and impostors. Although there are quite a lot of mechanisms proposed
by the existing literature, the overhead they add is considerable and the
probabilities of false positives and false negatives are not to be ignored.

As I have already remarked, to begin with a simple scenario, we suppose that all the
nodes follow the existing rules, so these 4 propositions are not implemented in the
simulation to follow.

othersofnumber

iothersofopinion
iscoreopinion

__

][__
5.0][*5.0 $!

 28

4.1.1 Differentiated Services - Simple Case

constant contribution, without however for most of them succeeding in reaching a
satisfactory value (5 out of 7 are below 0.9, which is hardly a quality limit). This
situation becomes a sad truth especially for node 4, who begins with an empty buffer
and unfortunately finishes in almost the same situation, as we can see in figure 20.
To understand better this figure, we must consider that at the beginning almost every
node has a particularly low score, except maybe the 4 fast nodes, so node 4
succeeds in acquiring a few pieces by his neighbors. After a while though and
because of the fact that the pieces obtained have already been played and are no
longer wanted by the other peers, node 4 is technically incompetent of doing
anything in this system. This is a major flaw of this strategy, since as we have seen,
new comers and slow nodes are severely handicapped and we would naturally
expect them to disconnect sooner or later. The reason is that our differentiating policy
is extremely harsh and strict. As a result, slow nodes and new comers can’t benefit of
the spare capacity, although it exists and it is lost. Obviously, we must reconsider our
notion of equity and allow for a more flexible bandwidth allocation to nodes with lower
contribution rates.

4.1.2 Differentiated Services with Mechanism to help new comers

A logical decision to make is to permit the poor nodes, in terms of pieces or upload
capacity, to use the available bandwidth after the rich nodes have finished with it. In
order to do so we use the following strategy: We introduce a global counter which
has a value equal to the sum of the upload capacities of all the known nodes. Every
time a piece is downloaded by a node, this counter is diminished by one. So, we can
logically suppose that after a few iterations, when the fast nodes have almost filled
their buffers and the slower ones haven’t got a score high enough to download, at the
end of each iteration or exchange period this counter will have a non zero constant
value. At this point, slower nodes are allowed to download data even if they don’t
deserve it, in terms of implementation they are gradually allowed to automatically
augment their score in order to have access to superior peers. The figures showing
how the global behavior of the system changes follow.

0 2 4 6 8 10 12 14 16 18 20
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o

n
ti

n
u

it
y

 I
n

d
e

x

Figure 17: Differentiated Services – Simple Case, Con. Indexes

In figure 17, we can make some very
interesting observations. Nodes 0 to 6, which
are all the slow nodes and the medium nodes
who begin with a poor initial buffer (node 4 –
empty, node 5 – 10% full, node 6 – 30% full),
tend to present a decrease in their continuity
index before stabilizing their performance and
converging to a higher value. The reason this
happens to these categories of nodes is the
fact that they can’t obtain a high score, which
would allow them to download data from their
peers, either because of their low upload
capacity either because of their empty buffer
which is of no interest to the others. So, they
need some time in order to obtain enough
blocks to be able to raise their score with

 29

Figure 18: Differentiated Services with Mechanism to help new comers, left Continuity Index, right Buffer

Progress of node4

0 10 0.9361
1 30 0.9713
2 50 0.9741
3 70 0.9824
4 0 0.8657
5 10 0.9454
6 30 0.9722
7 50 0.9963
8 70 0.9944
9 90 0.9991
10 Random 0.9676
11 10 0.9657
12 30 0.9889
13 50 0.9843
14 70 0.9944
Figure 19: Differentiated Services with Mechanism to help new comers, Mean of the continuity indexes after

25 simulations

In the left part of figure 18, we can see that none of the nodes presents a decrease in
its continuity index before converging to a higher value and most important, even
node 4 can now attain a point where its performance becomes satisfactory. In fact,
the performance of the majority of the nodes is really high. If we compare it for
example with figures 13 (BitTorrent choke algorithm), we can see that the continuity
indexes in BitTorrent are slightly better (less than 0.2 better for slow and medium
nodes, exactly the same for the fast nodes) except for node 4, which in our case is
more penalized as a new comer and converges at a value around 0.87 after 20
iterations whereas in BitTorrent this value was 0.94.
So, we can easily see that the main vulnerability of the proposed algorithm is the way
it confronts new comers. However, is this a real vulnerability or a sign of a greater
resistance to free riders? In order to answer this question, we will study the effects of
the presence of free riders in the proposed algorithm and in BitTorrent in order to
draw conclusions and compare their respective performances.

Slow Nodes
0.9660

Medium Nodes
0.9630

Fast Nodes
0.9833

Global Continuity Index
0.9692

0 2 4 6 8 10 12 14 16 18 20
0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o

n
ti

n
u

it
y

 I
n

d
e

x

 30

4.1.3 Study of the Free Riders Factor

To do so, we alter the role of medium node 10 in order to imitate the behavior of a
free rider. That means that node 10 begins with an empty buffer and he always
advertises an empty bitmap even if he has actually obtained some blocks, because
his intention is not to contribute at all. He is in a similar state as node 4 with the only
difference that node 4 is honest about the contents of his buffer and he is willing to
contribute if there are nodes interested in what he has to offer. In the following figure,
we can see on the left the continuity index diagram for the BitTorrent case and on the
right the same diagram for the proposed differentiated services paradigm.

Figure 20: Comparative study of the continuity index diagrams for the BitTorrent and Differentiated Services

We can easily observe that both the algorithms are not able to make a distinction
between an innocent new comer (node 4) and a malicious free rider (node 10), since
their final continuity indexes are almost the same. However, the proposed
mechanism penalizes both of them, as they are only able to attain a value around
0.83, whereas BitTorrent is less strict and allows them to reach a continuity index
over 0.9. So, at this point we come face to face with a very common dilemma of
incentive techniques and we are obliged to do a compromise: Do we prefer a
mechanism with greater resistance to free riders who also penalizes the new comers
or a more flexible one where free riders can quite easily exploit the system?
Generally, the distinction among these two node categories, new comers and free
riders, is a very difficult and complicated problem in P2P systems: The majority of
free riders don’t present a monolithic behavior and tend to imitate new comers in
order to pass unnoticed, generally they will not reject every single demand to upload
data but they will contribute as less as possible. So, in order to detect them, we
should at least be able to keep a detailed and long history of the actions of every
single node towards every one else, which is extremely costly in resources and
practically impossible. Under the light of these observations, we think it is wiser to
prefer a system, which is more skeptical towards nodes with low contribution, even at
the expense of new comers, than a naïve one, which would help new comers on one
hand but also get easily fooled by free riders on the other hand. The final choice
depends on the exact properties of the system we want to build.

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o
n
ti
n
u
it
y
 I

n
d
e
x

0 2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o
n
ti
n
u
it
y
 I

n
d
e
x

 31

4.2 Micro Payment Example with Bufferisation Delay

At this point, it would be interesting to change a little the initial configuration in order
to explore different aspects of the system’s behavior and come to a better
understanding of the way the parameters interact to produce the final result. The
changes are summarized in the following paragraphs:

1) Until now the initial buffers of the nodes were filled following a uniform
distribution, that is completely at random. Although this introduces a higher
level of difficulty to the system and guarantees that the results are not
affected by a potential favorable distribution, it would be more realistic to fill
the buffers following a geometric like distribution, like the one of the random
mechanism. It is more logical, since nodes that have been in the system
longer are more likely to have demanded and obtained blocks which are
located at the beginning of the buffer than at its end. A rational supposition is
that this change will probably ameliorate the system’s performance, without
however disturbing the relative position of each node in the global distribution
or the relative distances among them in the final performance metrics.

2) Until now, we considered that the reproduction of the live stream begins as
soon as the node gets connected, that means that there is no bufferisation
delay which would also constitute a safety margin and would much improve
the final system performance. So, after having examined the system’s
behavior under these difficult conditions, we will now introduce a bufferisation
delay of 21 pieces (the size of the interest window is 100 pieces). This means
that the reproduction of the stream doesn’t begin unless the 21 first pieces
have bee acquired, so there is no point now in measuring the continuity index
from the beginning of the simulation, we should rather start counting from the
instant the play out starts. What ‘s more, it is very likely now to observe very
high continuity indexes, since there is a really large safety margin of 21
packets, that means that a node has the safety to obtain nothing for 7
consecutive iterations, which is highly unlikely, and he still won ‘t notice any
negative effects on the video quality. In fact, the continuity index doesn’t
seem to be a really representative quality measure any more, we would
suppose that it would converge very quickly to a value around 1 and stay
invariant, unless something like a flash crowd or a number of massive sudden
departures happens. So, we introduce a new measure, which seems to have
more meaning, and it is no other than the iteration at which the play out
begins, the instant at which the node obtains the 21 first pieces.

4.2.1 Simple Case

So, now let’s see the impact of these changes on the first case we examined, which
is the simplest scenario, where each node selects to download from the node with
the highest upload rate.

Figure 21: Simple Case with Bufferisation Delay, left Continuity Index, right Credit

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o
n
ti
n
u
it
y
 I

n
d
e
x

0 2 4 6 8 10 12 14 16 18 20

150

100

50

0

-50

-100

-150

Time in iterations

C
re

d
it

 32

Concerning the left part of figure 21, we have manually verified that in all the
simulations, with only two exceptions for node 4, the continuity index remains at zero
until the node obtains the first 21 pieces and then jumps and remains constantly at 1.
So, obviously we should perceive the preceding figure differently now. The evolution
of each line is a joined measure of the probability that the play out starts at each
specific iteration and of the mean continuity index at that iteration. Let’s observe for
example the right most line, which corresponds to the medium node 4 who starts with
an empty buffer. The point (8,0.2) means that for 20% of the simulations done, the
play out starts after iteration 8. What seems as a right quality measure is the point of
the x axis which corresponds to a percentage of 0.5, which is the iteration after which
the play out starts for half the simulations. In our case this must be around 9.2, which
means that for half the simulations the play out starts after iteration 9.2. It is
meaningful to accompany the previous figure with the next table, which represents
exactly what we have just explained, the mean iteration at which the play out begins.
The reason figure 21 left is important is so that we keep in mind that the instant when
the play out starts is a mean and not an exact number and also that in some cases
there is a considerable variance, like in the case of node 4. However, even in that
case we can observe that there are less than 20% of the simulations with a play out
time earlier than the 8th iteration and less than 20% with a play out time later than the
10th iteration. So the mean represents a considerable majority, it is not meaningless,
although sometimes the appearance of a rather large values dispersion for a node or
two seems bizarre. We have noticed though that nodes poor in resources (either with
poor initial buffer or with low bandwidth) tend to present a greater variance than rich
ones, which signifies that their behavior is less predictable. With this information we
can easily calculate the mean play out start iteration of the system which is 3.5467.

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Mean play
out iter.

6.6 3.6 3.3 2 8.4 5.1 4.2 2.6 1 1 2.1 5.4 3.8 2.4 1.7

Table 15: Mean play out start iteration for the 15 nodes after 10 simulations

In the right part of figure 21, we can see how each node’s credit varies with time, if
we attribute a zero score at the beginning to each one and continue by adding a point
for each uploaded block and subtract one for each downloaded block. For the time
being, the scores don’t constitute a limit, we haven’t introduced an incentive
mechanism based on them yet. The point of this short comment is to verify what we
have already seen, that fast nodes are the major contributors and slow nodes the
major consumers, with medium nodes located somewhere in the middle.

4.2.2 Introduction of the Micro Payment Mechanism

Figure 22: Example with Micro Payment Mechanism, Continuity Index

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o

n
ti

n
u

it
y

 I
n

d
e

x

At this point, it would be interesting to
introduce an incentive, for example ban the
nodes from downloading unless they have a
positive score, that means unless they upload
as much as they download. The resulting
continuity index figure for this scenario can be
seen on the left. It is necessary to remind the
reader that now the evolution of each node
line represents two things on the same time:
the mean of the continuity indexes at that
particular iteration after 10 simulations and the
probability that the play out starts at that
iteration. We have already explained the
reasons for this. In case of lack of clarity, we
also add a table with the mean play out start
iteration for each node.

 33

Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Mean
play out
iter.

14.75 6.8 6.7 1.8 - 4.9 3.7 3.1 1 1 1.8 3.4 2.6 2.1 1.5

Table 16: Case 6 with Micro Payment Mechanism, Mean play out start iteration for the 15 nodes

Node 4, starting with an empty buffer, is not able to obtain enough packets to share
with others in order to augment his score, so he never succeeds in acquiring the 21
packets necessary to start the play out. Almost the same happens to node 0, whose
value 14.75 represents the mean start out iteration for the 4 out of 10 simulations,
where he actually gets to start the reproduction of the live stream. In the rest of them
(6 out 10) he is starved like node 4. So, in the calculation of the mean play out start
iteration for the 10 simulations, these two nodes are left out, and for the rest of them,
we get a value of 3.1077. We observe that there is a considerable amelioration,
which is logical since for the majority of the simulations, two nodes are left out so the
resources are shared among fewer users. We can also see that this enhancement is
impressive for the rich and fast nodes, which are naturally favored by this incentive
mechanism as they have spare capacity to bust their score. However, before the
experiment, we would expect fewer nodes to be able to reach the point of actually
obtaining 21 packets to start the play out, because the policy we use is very
restraining. For example, nodes 0-3 should be able to download only 1 piece per
iteration and that only if their lucky, so what’s the trick behind this unexpectedly good
performance? The reason is the existence of the random mechanism, who allows all
the nodes to obtain at least 3 packets per iteration, even if they have a negative
score or even if they get nothing by their fellow nodes. In the next simulations, the
random mechanism is active only if the node has a positive score in order to avoid
unexpected results like the previous one.

4.2.3 Study of the Initial Credit Factor

Keeping all the existing parameters in mind and adding this new notion of the random
mechanism, the goal of the next section is to examine what happens if we vary the
initial score, with which every node joins the system. We can see how the overall
performance is affected by its value in the next table.

Initial credit N=number of nodes

who obtain 21 packets
in more than 50% of the
simulations launched

Mean play out
start iteration for
the N nodes

Mean continuity
index for the
N nodes

0 12/15 2.6306 0.8733
10 14/15 3.0143 0.9466
25 15/15 3.58 0.9468
40 15/15 3.69 0.9775
55 15/15 3.58 1
70 15/15 3.5133 1
Table 17: Performance of the system with various initial scores

The first odd element in this table is the fact that the first two cases seem to present
a better performance than the rest in terms of mean play out start iteration although
their nodes begin with a lower initial credit. This can be easily explained as we must
consider that both the mean play out iteration and the continuity index are calculated
for the nodes who actually reach the point where the live streaming begins, which
means nodes who obtain the first 21 packets before the end of the 20th iteration. In
the first two cases one to three nodes are excluded, so naturally the performance of
the rest ameliorates. What’s more, the excluded nodes are the poorest ones, who

 34

have the worst performance even when they succeed at starting the live streaming,
and by consequence their contribution to the mean value is negative.
We can also observe that the mean play out start iteration remains almost the same
as the initial credit rises and its raise is reflected on the continuity index, which
augments until it reaches a value of 1 for all the nodes for an initial credit of 55, that
is for a score which allows the nodes to fill half their buffers without contributing
anything.
In order to understand better the evolution of the system, let’s look closely at the next
graphs for the case where the nodes start with an initial credit of 10 points. In the left
part of figure 23, we can see that 5 out of 15 nodes reach a peak and afterwards their
continuity indexes start to decrease. We should attribute this to the fact that these
nodes use all their credit and then, not having a high enough upload capacity, are
unable to raise it in order to reach a positive value, so they are starved. What’s more,
since they are generally slow nodes, they fill their buffers slower than the others, so
even if they wanted to contribute, after a while there is really nobody who is
interested in what they have to offer. Maybe they would have a chance to augment
their score if there where always new nodes joining the system, who would be
interested in the pieces they own.
These assumptions are verified by the right part of figure 23, where we can see the
evolution of the scores of the nodes, as the simulation advances. We can observe
than only 7 out of 15 nodes converge to a positive value, whereas the rest stay below
zero, unable to upload or download after a while. The reason for which this is not
reflected to the continuity indexes of all of the 8 nodes with negative scores and
affects only 5 of them, is the following: The remaining three are either medium nodes,
whose download capacity can guarantee them enough pieces until the 8th iteration
where their score becomes and stays constantly negative to last until the 20th
iteration without loss of video quality, or their buffers are already almost full so the
negative score will affect them later. In my opinion, it is rational to expect that even
these three nodes, who seem safe at the moment, will suffer a deterioration in their
continuity index in the future.

Figure 23: Initial Credit Factor in Micro Payment Mechanism, Initial Credit 10

Now, let’s examine the case where all the nodes start with an initial credit of 55. This
time, we can see that all the nodes continuity indexes converge to a value of 1
sooner or later. This is verified by figure 24, where it is obvious that 12 out of 15
nodes converge to a value well over zero. There are, though, three nodes who end
with negative values. We can expect these nodes either to suffer a performance

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o
n
ti
n
u
it
y
 I

n
d
e
x

0 2 4 6 8 10 12 14 16 18 20
-10

0

10

20

30

40

50

60

Time in iterations

C
re

d
it

 35

deterioration in the future, either their score will fluctuate around zero in order to
maintain a stable video quality.

Figure 36: Continuity index of the 15 nodes for an initial credit of 55
Figure 37: Score evolution of the 15 nodes for an initial credit of 55

Figure 24: Initial Credit Factor in Micro Payment Mechanism, Initial Credit 55

In conclusion, we can say that even with a quite big initial credit, not all nodes are
able to function well, and some are left behind unable to react ant interact with
others. So, this micro payment mechanism is rather rigid and doesn’t have the
necessary flexibility to allow poor or slow nodes to join the system safely. Some
ideas as to how we could refine the mechanism with the necessary flexibility and
adaptability follow:
The major flaw of this mechanism is the fact that it considers all the peers as equals,
which is far but true. The problem is that, whereas all the peers have the same need,
a regular media flow with good quality, they don’t have the same capacities. A node
with a slow dsl connection shouldn’t be expected to contribute the same as a peer
with a fast campus connection, because simply he can’t. A first idea aiming to fix this
injustice is to change the way we consider the contribution of each peer, in terms of
the data he uploads. Instead of just counting the megabytes of uploaded data, we

should rather use as a measure the following percentage:
capacityupload

uploadeddata

_

_
. This

way, we should have a qualitative measure of the willingness of contribution of a peer
and if this percentage is high enough, we should grant the peer access to the stream,
even if he may not be in position to upload the same quantities as some of his peers.
A practical problem of this proposition is that, in the absence of a central entity, there
is no authority that could be responsible to get reliable information concerning the
actual upload capacity of each peer. However, we could adopt a solution that is often
proposed, even though more complicated, the formation of local neighborhoods,
where the upload capacities of each node are calculated by its peers and verified
inside the neighborhood with consecutive comparisons.
Another idea is to use the same approach we adopted in the previous differentiated
services example. In short, we should compare the available global upload capacity
of the system with the fraction that is actually used by the peers, and if there is spare
capacity, the poor nodes should be allowed to use it in order to get the stream. This
approach is less refined and the quality measure used is less representative of the
peers’ behavior but on the same time it is more simple to implement and less costly
to keep it running.
Generally, a micro payment mechanism with a more flexible and intelligent handling
of the peers credits could be promising.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o
n
ti
n
u
it
y
 I

n
d
e
x

0 2 4 6 8 10 12 14 16 18 20
-20

0

20

40

60

80

100

120

140

160

Time in iterations

C
re

d
it

 36

5. Conclusion

During this research internship, I worked on incentive mechanisms for P2P live
streaming applications. After the examination of the existing P2P systems and
architectures, a series of simulations were done in order to evaluate and compare the
existing algorithms and finally propose a differentiated services paradigm.

5.1 Summary of the Work

First, we studied some of the existing algorithms to see if they could be applied in live
streaming. Capacity based selection of the next uploader presented better
performance than bitmap resemblance based selection, but the best results were
observed when we implemented the BitTorrent choke algorithm. However, as we
have already explained, this mechanism has a very weak defence against free riders
and it’s also inappropriate for live streaming because it was build for an environment
with multiple seeds and low delay sensitivity. On the contrary, in live streaming there
is only one source, which is incapable of serving everybody, and considerable delays
before or during the streaming are unacceptable. After testing various scenarios with
these algorithms so as to verify their behaviour, we examined a differentiated
services example based on a reputation system, which we considered more
appropriate for live streaming. This mechanism presented similar results as
BitTorrent in the case of fast nodes and slightly worse in the case of slower nodes. It
also penalised more severely nodes with low contribution, new comers and free
riders. At this point, we were confronted with a dilemma: should we prefer an anti-
free rider mechanism, which would also cause problems to new comers, or a more
flexible one, which would be easily exploited by malicious users? A definite answer
to this question demands profound research and experimentation in real internet
conditions, so it exceeds the goals of this internship and rests to be addressed by
future work. However, an answer we can give based on the work done during this
study, is the following: Live streaming applications are much more resources
demanding and delay sensitive than file sharing systems, so the regular contribution
and cooperation of all the users are vital to keep the system running. As a result, we
would tend to prefer a stricter mechanism that guarantees contribution, than a flexible
one which would integrate new comers more easily. Finally, we examined a micro
payment example, which presented limited capacity to support a live streaming
system, but with the introduction of a more refined micro payment scheme, it could
be promising. The conception and implementation of such an algorithm is a good
idea for a future application.

5.2 Open Problems, Future Work and Applications

The open problems of this study fall mainly into two categories and they determine
also the future work, that could be done in this domain to open new directions.

The first one concerns the refinement of the proposed algorithm or the conception of
a new technique which would allow us to distinguish with success free riders from
new comers. This is a major problem of P2P systems, maybe it doesn't seem very
urgent now because there is enough spare capacity at the end users and the existing
applications aren't extremely demanding, but we can suppose that soon, with more
and more people having access to the internet and with applications growing more
and more “hungry” of resources, free riders exploiting the P2P systems will severely
harm their performance. This problem becomes more complicated because of the
intelligent nature of free riders, who tend to adapt their habits to fit those of new
comers, in order to pass unnoticed by the potential defence mechanisms of P2P

 37

networks. In my opinion, a serious solution to this phenomenon would implicate a
kind of learning function, maybe involving a neuron network, in order to create an
always evolving profile of a free rider, which would eventually allow us to catch him
on the act.
Another direction of this aspect would be the implementation and testing of new
fairness mechanisms, which would aim at reinforcing the sentiment of community
inside a P2P network. On the contrary, the introduction of more and more strict rules,
efficient as it may be, has as a consequence the disintegration of every member of
this virtual community, and on the same time malicious users tend to always find a
way to trick the system.
Finally, we could focus on the limitations of the mechanisms studied, which were
mentioned in the previous paragraph, and try to ameliorate their performance.

The second direction concerns the technique of the simulation itself. I think that the
next step of tests would be to incorporate the implemented algorithms in an existing
protocol and then repeat the experiments in a real environment, the actual internet.
The difficulty encountered at this point is that, in order to derive comprehensive
results, a great number of peers should implement the new mechanisms and, what's
more, we should be able to watch these peers closely. The only existing environment
with such properties is Planet Lab but again, since it is an experimental network with
many applications running on the same time, we couldn't really be sure that the
results are representative. An intermediate solution would be to repeat the
simulations with NS2 or with an existing event driven simulator of a higher level.

Until now few studies have been done on the domain of incentive mechanisms for
P2P live streaming, and the research of a definite solution is far from finished. I think
that the need for a comparative study of the existing algorithms is urgent, in order to
discern the direction of the future research and to allow and promote a creative
evolution of today’s systems.

 38

6. Bibliography

[1] “Clustering and Sharing Incentives in BitTorrent Systems”, Arnaud Legout, Nikitas
Liogkas, Eddie Kohler, Lixia Zhang
[2] “BiToS: Enhancing BitTorrent for Supporting Streaming Applications”, Aggelos
Vlavianos, Marios Iliofotou, Michalis Faloutsos
[3] “Coolstreaming/DONet: A Data-driven Overlay Network for Peer-to-Peer Live
Media Streaming”, Xinyan Zhang, Jiangchuan Liu, Bo Li, Tak-Shing Peter Yum
[4] “On Large Scale Peer-to-Peer Live Video Distribution: Coolstreaming and its
Preliminary Experimental Results”, Xinyan Zhang, Jiangchuan Liu, Bo Li
[5] “Refine DONet's Overlay with Network Distance Estimation”, Bin Chang,
Yuanchun Shi, Nan Zhang
[6] “Bullet: High Bandwidth Data Dissemination Using an Overlay Mesh”, Dejan
Kostic, Adolfo Rodriguez, Jeannie Albrecht, Amin Vahdat
[7] “Maintaining High Bandwidth under Dynamic Network Conditions”, Dejan Kostic,
Ryan Braud, Charles Killian, Erik Vandekieft, James W. Anderson, Alex Snoeren,
Amin Vahdat
[8] “P2P Live Media Streaming: Delivering Data Streams to Massive Audiences
within Strict Timing Constraints”, Rapport de Thèse Professionnelle par Fabio
Pianese
[9] “The Pulse System: A new P2P prototype for live streaming”, Thesis de Diego
Perino
[10] “PULSE: A Novel Unstructured Approach to P2P Live Media Streaming”, Fabio
Pianese, E-Next WG3 CDN Workshop
[11] “The PULSE performances under real network conditions”, Diego Perino, Fabio
Pianese, MARDI workshop “Models and Algorithms for Decentralized Networks over
Internet”
[12] “PULSE, a Flexible P2P Live Streaming System”, Fabio Pianese, Joaquin Keller,
Ernst W. Biersack
[13] “Robust Incentive Techniques for Peer-to-Peer Networks”, Michal Feldman,
Kevin Lai, Ion Stoica, John Chuang
[14] “Incentive Mechanism for Peer-to-Peer Media Streaming”, Ahsan Habib, John
Chuang
[15] ”Incentives for Sharing in Peer-to-Peer Networks”, Philippe Golle, Kevin Leyton-
Brown
[16] “Optimizing the Throughput of Data-Driven Peer-to-Peer Streaming”, Meng
Zhang, Qian Zhang
[17] “QoS-aware Streaming in Overlay Multicast Considering the Selfishness in
Construction Action”, Dan Li, Jianping Wu, Yong Cui, Jiangchuan Liu
[18] “Using Layered Video to Provide Incentives in P2P Live Streaming”, Zhengye
Liu, Yanming Shen, Shivendra Panwar, Keith Ross, Yao Wang
[19] “P2P IPTV Measurement: A Comparison Study”, Thomas Silverston, Olivier
Fourmaux
[20] “Source vs Data-Driven Approach for Live P2P Streaming”, Thomas Silverston,
Olivier Fourmaux
[21] “Community Building over Neighborhood Wireless Mesh Networs”, Panayotis
Antoniadis, Johanna Chouffane, Benedicte Le Grand, Anna Satsiou, Leandros
Tassiulas, Rui Aguiar, Jao Paulo Barraca, Susana Sargento

 39

7. Appendix

7.1 Main Program Pseudo Code

Global Variables

Vecarray-> Each line represents the buffer of a node

Globalbuffer->Each line represents the bitmap of a node,

that is the interest window

Upload->Each element represents the upload limit of each

node, periodically updated

Node pseudo

Wait until all threads have started

While inbound>0 do

 If all nodes have been used, exit

 If the buffer is full, exit

 If there are no available resources, exit

 Choose a not already used node at random beginning

with those with those with the biggest upload rate

 Load its bitmap

 Find a missing block available in that node’s bitmap

 Demand it

 Wait RTT to get the answer

 If its upload limit hasn’t been reached

 Update your bitmap

 Decrease other node’s upload limit

 Decrease your own download limit

 Continue with other missing blocks

 If you have already used one third of your

download bandwidth on one node, change node

 Endif

Endwhile

If your download limit hasn’t been reached yet, do for as

many pieces as you have already downloaded+3

Use a certain distribution to obtain packets from your

neighbors outside the 15 known nodes

Update your bitmap

Decrease your download limit

Endif

Wait until all thread have finished

Update bugger vector with the new bitmap

Slide the interest window
Update the globalbuffer with new bitmap

Main pseudo

Create the RTT array

Create random bitmaps for the nodes

Attribute random number of packets to each node in random

positions in the bitmap

While there is change in the globalbuffer

 Create and start threads with proper parameters

 Guarantee that all threads start and finish

simultaneously

 Wait for every thread to finish

 Continue with updated bitmaps at each new iteration

Endwhile

 40

7.2 Upload Capacity Based Selection: Figures for 60 Iterations

Left Continuity Index, Right Buffer Progress of node 4

0 10 20 30 40 50 60

0.4

0.5

0.6

0.7

0.8

0.9

1

Time in iterations

C
o
n
ti
n
u
it
y
 I

n
d
e
x

