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1. Introduction 
 

Since its creation and especially nowadays, Internet has excelled its purely 
technological aspects and it has become a complicated social phenomenon, a virtual 
community where users interact and all kinds of behaviours can easily be met. The 
notions of anonymity, invisibility and absence of authority are closely linked to the 
essence of Internet, which is considered by some as a modern virtual democracy. 
The P2P networks and the content sharing applications based on them constitute an 
important (if not the most) trend in today's internet traffic and in its users' habits. In 
fact, the common use of the Internet today is so content oriented that there have 
been thoughts and studies on adapting the  routing itself to a more content based 
pattern. Starting by Napster, an avant-garde content sharing application, the 
evolution of P2P has led to today's mainstream extremely popular live streaming 
programs, like PPLive, CoolStreaming etc. The distributed nature of these 
applications is a technological choice aiming at satisfying the growing users’ 
demands, which could not any more be met by the capacity of one or multiple 
servers. So, in the absence of an IP multicast service supported by the network 
infrastructure (routers), an alternate solution had to be found deployed at the 
application layer. In this new approach, the nodes are organized into an overlay 
topology, they form a new virtual network over the internet, whose logical links may 
correspond to many actual physical links of the underlying network. This distributed 
nature has also a political aspect: it constitutes a counter measure or a defence 
against authorities who would menace the existence of these communities. Since 
there is no unique server or point of entrance, there is no simple way of shutting them 
down. In conclusion, we can say that it is at this distributed notion that lies the 
revolution of P2P but also its complexity, with which we have to deal every time we 
try to introduce a new feature. 
 
What’s more, the complicated user interactions in these virtual environments have 
aroused the curiosity of psychologists and sociologists, who have tried to explain how 
the sentiment of importance inside a community can work as a stimulus to unselfish 
contribution for a lot of users. Naturally after that, programmers and engineers 
thought they could use these interesting aspects of human behaviour, extend them to 
online societies and create incentive mechanisms for contribution, co-operation and 
altruism among fellow peers. Latest researches have also proposed the formation of 
local communities based on geographic criteria thinking that it 's easier for users to 
trust each other if they have been or have the chance to be physically acquainted. 
So, again the level of unity of P2P communities is a matter of trust. It's either that or 
the enforcement of strict and limiting rules aiming at minimising the vulnerabilities of 
the system, which tend to be exploited by the free-riders, users whose aim is to 
download the maximum amount of data without contributing at all to the system. 
 
1.1 Goal  
 
The goal of this work is to examine how different incentive techniques affect the 
performance of live streaming in a P2P network. To reach this goal, we had to study 
the state of the art content sharing and live streaming applications in order to 
understand their functionality and also the different “families” of incentive 
mechanisms, so as to be able to implement them, compare them and draw rational 
conclusions. A summary of this extensive study, containing only the crucial elements 
necessary to come to a profound understanding of the work done, can be found in 
the first section of this document, along with comments and a comparison of some of 
the more popular applications. The conclusion is twofold: In terms of overlay 
architecture, it has become obvious that single tree structures suffer severely from 
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node failures, since they don't share the load equally among the peers. On the other 
hand mesh topologies react better to network variations but they become difficult to 
manage for large numbers of users and there is a great deal of messages exchanged 
only to keep track of  one's neighbours.[20] Finally, multiple trees are very flexible but 
their function is also very complicated, especially when it comes to maintaining large 
numbers of trees for each peer. So, a solution that seems appropriate is the 
simplicity of a single tree structure combined with the flexibility of local meshes 
formed along the tree. Now, in terms of incentive mechanisms, live streaming is a 
very demanding application so special handling is necessary. Live streaming 
applications are very sensitive to delays in two ways: Firstly, “liveness” is a crucial 
property of the videos distributed, which means that when a user logs in to watch a 
football match, for example, he will not bear a considerable delay before the actual 
beginning of the streaming. What’s more he will not bear pauses, interruptions or 
disconnections. Secondly, once the streaming begins, the video quality is highly 
sensitive to packet delays, all pieces must arrive before their play out time, if not they 
are useless and they will be rejected. So, a considerable number of lost or late 
packets will severely damage the perceived video quality. It’s for these reasons that a 
live streaming application demands that everybody contributes, it cannot work on the 
basis of a minority of regular uploaders, like file sharing systems, and cannot sustain 
large numbers of free riders. That’s why the existing solutions don’t seem to be 
enough, a simple tit-for-tat policy doesn’t manage to sustain regular contributions by 
all the peers, a micro payment mechanism is usually very restrictive and not very 
welcomed by end users and a reliable reputation system usually demands the 
existence of a central authority. So, the proposed solution is oriented towards a 
differentiated services system based on a reputation scoring function, which as a 
whole has proved to be very suitable for the live streaming paradigm. It's upon this 
analysis in total that the actual choices of the implementation and the proposed 
mechanism are based. 
 
1.2 Difficulties and Choices 
 
At the beginning of this work, the first question to be answered was in what way and 
with which means the incentive mechanisms will be studied? In the absence of an 
actual experimental P2P network on which these algorithms could be deployed, the 
only solution was the simulation. And so, at this point the major dilemma arises: 
should we use an existing simulator or build a new one from scratch? In order to 
answer appropriately, we examined some of the existing simulators, like the SimPy in 
Python, the PeerSim in Java and the PeerfactSim created by the University of 
Darmstadt, and we realised that all these event driven simulators were more 
concentrated on the simulation of P2P protocols with many interesting characteristics 
as synchronization handling, packet formats and message exchange. In reality, these 
simulators were rather complicated in a way not useful to the goal of our work, as the 
aim was to study the effects of incentive algorithms without very much messing with 
the P2P network infrastructure, and on the same time they didn't supply much 
support and modules to simulate the live streaming aspect, which was necessary. 
So, we decided to build a new application in Java in order to simulate the algorithms 
concentrating on the details we considered more important. The relative success or 
failure of this choice has yet to be proved by the results that will be presented. 
 
1.3 Organization of the work 
 
In this work, we present an overview of the problem of incentive mechanisms in live 
streaming. The remainder of this report is organized as follows. 
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First, we examine the most important existing applications in this domain starting with 
BitTorrent protocol, which, though not appropriate for live streaming, has set the 
fundamentals for all its successors. We continue with DONet, Bullet and Pulse, which 
offer us an in depth insight in the function of this kind of applications with its temporal 
representation. Then we do a comparison of these three applications, in order to 
draw conclusions concerning their advantages, disadvantages and similarities and 
also explore their functionality so as to clarify the way the implementation choices are 
reflected on the final architecture of the produced overlay network. Secondly, we do a 
quick summary of the major challenges posed when deploying incentive techniques 
in a P2P system and also of some of the solutions and remedies to these problems. 
Then we present the three major incentive families, systems based on micro-
payment, reputation and differentiated services. The distinction among these 
techniques is not always clear and obvious, so we try to understand the virtues and 
vulnerabilities of every technique concerning different cases, and finally we show that 
a differentiated services system based on a reputation function seems to be the most 
appropriate solution for the live streaming problem. 
 
The second section of this document concerns the simulations and the results in form 
of figures and tables. First, we present the configuration, the parameters and the 
choices made concerning the implementation of the simulator, we describe the 
characteristics of the nodes, the way they are connected and their knowledge of their 
environment, the parameters we chose to vary and we also added a pseudo code of 
the actual core of the algorithm. Then, the actual results of the simulations follow. To 
begin with, we test two simple scenarios, in the first one each node chooses as his 
next uploader the peer with the bigger upload capacity, in the second one he 
chooses the one with the least bitmap resemblance. Afterwards, we launch a 
simulation of the BitTorrent choke algorithm to find out that its performance is 
exceptional, though its resistance to free riders is rather low. Then we examine the 
performance of the mechanism we proposed, inspired by the study of the state of the 
art algorithms done in the first part, which presented similar results to BitTorrent. 
Finally, we examine a scenario with one rich source and a case where a 
considerable bufferisation delay was introduced. Extensive comments, comparison 
and conclusions derived from these simulations can be found in this second section. 
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2. State of the Art - Background 
 
2.1 State of the Art P2P Content Distribution Systems 
 
2.1.1 BitTorrent 
 
Although the main subject of this work is live streaming, I think that it is essential to 
present the main functions of BitTorrent, the most successful file sharing predecessor 
of today's live streaming applications. Contrary to Gnutella or KaZaa, who aim mainly 
at the fast localisation of fellow nodes in possession of a certain file, BitTorrent's 
primary goal is the fast replication of a large file by a group of nodes. It was 
essentially the first application to combine the notions, ideas and policies, which 
would allow it to be more wide spread than any file sharing application until then. 
These innovative new elements are presented in the following tables. Most 
importantly, it introduced the idea of the tracker, which helped to attain a higher level 
of decentralisation and distribution of resources than before, although it still remains 
a central entity, prone to cause problems to the total structure, when confronted with 
large numbers of simultaneous users or potential attackers. 
 

torrent The set of peers cooperating to download the same content 

tracker The only centralized component of the system. It keeps track of all the active peers 
and stores relative information. 

seed A peer that has already downloaded all the pieces of a file and is sharing it with 
others. 

leecher A peer that hasn't already downloaded all the pieces of a certain file. 

chunks 

blocks 

A large file is divided in smaller pieces, called chunks (256 kbytes), in order to 
facilitate replication by multiple users. The chunks are also divided in smaller 
pieces, called blocks (15 kbytes), which constitute the data transmission unit in the 
system. 

Table 1 (up) : Basic BitTorrent Elements                                                      Table 2 (down) : Basic BitTorrent Policies 

Peer selection 
strategy: 

Choking or tit-
for-tat 

algorithm 

This strategy is supposed to encourage cooperation and discourage the 
free riders and it is used to determine which peers to exchange data with. 
The general idea is that once every rechoke period (typically set to 10 
seconds), a peer selects a certain number of its fastest downloaders and 
uploaders and reciprocates only with them choking the rest. 

Optimistic 
unchoke 

This procedure is an exception to the latter case and it takes place every 30 
seconds. It means that a peer is unchoked at random without considering 
his capacity in order to discover new peers, who could offer better service, 
and to help new comers to obtain some pieces so as to function well in the 
system. 

Chunk selection 
strategy: 

Rarest first 

The goal of this policy is to maximize the entropy of each chunk in the 
system and in consequence to make sure that each peer can always find a 
missing piece owned by another peer. The rarest first policy consists of 
always trying to serve the rarest chunk among those demanded by the 
nodes in the peer set. 

Random first 
policy 

An exception to the latter policy is the case where a node has just logged in, 
so he must urgently download a few chunks to be able to be well integrated 
in the system. In this case he selects to download a chunk at random. 
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The interactions among the peers in a BitTorrent system are determined by a group 
of policies and rules, which are essentially the core of the BitTorrent protocol. They 
are summed up in table 2. 
 

Legout, Liogkas, Kohler and Zhand in [1] have made a very interesting analysis 
showing the effects of the different BitTorrent mechanisms on the motivations of 
sharing and clustering. They have deduced that if there is an initial seed, capable of 
supporting a high upload rate, the peers of the same upload capacity tend to form 
clusters and reciprocate with peers of the same cluster. This phenomenon becomes 
evident in the following figure: The darker squares represent longer unchoke periods. 
The peers from 1 to 13 have an upload limit of 20 kbps, the peers from 14 to 27 50 
kbps and those from 28 to 40 200 kbps, like the initial seed. It becomes evident that 
the three peer categories form clusters and interact within them, except the case of 
an optimistic unchoke. We can also see that often slow nodes unchoke medium 
nodes. However, this behaviour isn't mutual, medium pairs rarely unchoke slow ones 
because they cannot benefit from them so there is no interest in doing so. 

 
Figure 1: “Clustering and Sharing Incentives in BitTorrent Systems”,  Legout,  Liogkas, Kohler, figure 1 

 
An interesting approach is that of Vlavianos, Iliofotou and Faloutsos in [2] who try to 
determine the minimum necessary changes in order to transform BitTorrent into a 
protocol capable of streaming. The authors specify that the proposed solution 
concerns the Video On Demand ant not the Live Streaming, because in the latter 
case the packets are created dynamically, they are not already ready at the 
beginning of a session, so the problem becomes too complicated to confront with a 
mere modification of the existing protocol. The main idea of their proposition is to 
modify the chunk selection algorithm attributing a high priority to pieces who are 
going to be soon reproduced by the media player: In essence they introduce two 
categories of missing pieces, the High Priority Set, which includes the necessary 
pieces for the generation of a small duration of the video that follows, and the 
Remaining Pieces Set, which includes all the pieces that haven't been downloaded 
yet and don't belong to the High Priority Set. This way, each client decides to 
download a piece from the High Priority Set with a probability p (p=0.8 by default) 
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and a chunk from the Remaining Pieces Set with a probability 1-p.  This new 
BitTorrent based application is called BitoS.  
 
Since most of the users started to have access to high bandwidth connections, many 
live streaming applications have appeared. I am going to present some of them. 

 
2.1.2 DONet 

 
DONet is a Data-driven Overlay Network with no specific structure, where the 
availability of data is the one that determines the exchanges and the flow directions. 
The availability of each segment of the video is represented by a Buffer Map, 
periodically exchanged among the nodes. [3] 

 
Figure 2: “CoolStreaming/DONet: A Data-driven Overlay Network for Peer-to-Peer Live Streaming”, Xinyan Zhang, 

Jiangchuan Liu, Bo Li, Tak-Shing Peter Yum, figure 1 
 

Three key modules 
! Membership Manager : Maintains a partial view of other overlay nodes 
! Partnership Manager : Establishes and maintains partnerships with other nodes. 

A partner is a node with which we are engaged in regular exchanges of data. 
! Scheduler : Schedules the transmissions of video data 
 
Joining Algorithm 
! The new node contacts the origin node. 
! The origin node randomly selects a deputy node from its Cache and redirects 

there the new node. 
! The deputy supplies a list of partner candidates. 
! The new node contacts the candidates to establish its partners in the overlay. 

(optimal number of partners=4) 
! While connected, the new node periodically generates a membership message to 

announce its existence and help the origin node update its Cache. Gossip 
protocol used. 

 
Scheduling Algorithm 
! Calculate the potential suppliers for each segment. 
! Determine the supplier of each segment starting from those with only one 

potential supplier. 
! Among them, chose the one with the highest bandwidth and enough available 

time. 
! Problem: Free-riding risk -> A node can advertise conservative buffer maps to 

avoid contribution. Risk: Can he do that without harming his own performance? 
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Node Departure and Failure Recovery 
! Graceful departure: The departing node issues a departure message. 
! Node Failure: A partner who detects the failure issues the message on his behalf. 
! The departure message is gossiped to the rest of the network.[4] 
 
Partnership Refinement 
Each node periodically establishes new partnerships in order to maintain a constant 
number of partners and to explore the network for better service. The potential 
partners are chosen based on a score which measures their contribution to the node 
per unit of time. Intuitively, nodes with high outbound bandwidth and a lot of available 
segments will be preferred. 
 
Overlay Refinement 
Because of the use of a gossip protocol for the exchange of messages among the 
nodes, the architecture of the underlying physical network is not taken into account 
for the formation of the overlay. As a result, there is a mismatch between the P2P 
overlay and the physical structure of the network. The authors of [5] propose the use 
of a Triangulated Heuristic in order to predict the distance between any two peers 
and subsequently choose the adjacent peers as partners. This strategy manages in 
fact to improve the performance of DONet with the disadvantage of a little additional 
control message overhead. 
 
2.1.3 BULLET 

 
Bullet's innovation lies in the fact that it layers a high-bandwidth mesh on top of an 
arbitrary overlay tree.  The mesh is formed by perpendicular links across the overlay, 
which naturally augment the available bandwidth. Hence, each node receives a 
parent stream from its natural parent in the tree and a number of complementary 
streams from chosen peers in the overlay. 
For example, in the following figure, A has sufficient bandwidth to deliver only 3 
objects per time unit to his child D. However, D locates nodes C and E, who are able 
to transmit missing objects, increasing its inbound bandwidth from 3 to 6 objects per 
time unit.  

 
Figure 3: “Bullet: High Bandwidth Data Dissemination Using an Overlay Mesh”, Kostic, Rodriguez, Albrecht, Vahdat, 

figure 1 ”High-level view of Bullet’s operation” 

RanSub 

! RunSub is used to distribute uniform random subsets of global state to all nodes 
using Collect and Distribute messages. The goal of this procedure is to locate 
remote nodes with interesting content and good bandwidth. 

! Collect messages start at the leaves and propagate up to the tree, leaving state 
at each node along the path. They contain a random subset of the descendants 
of each node along with an estimate of its total number of descendants. 

! Distribute messages start at the root and travel down the tree, using the 
information left at the nodes during the collect phase to distribute uniformly 
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random subsets of remote nodes to all participants.  
! Finally, the distribute set contains a random subset representing all nodes in the 

tree except for those rooted at the particular child. This means that a Bullet node 
attempts to recover missing data from any non-descendant node, not just 
ancestors, thereby increasing system scalability.[6] 

 
Figure 4: “: High Bandwidth Data Dissemination Using an Overlay Mesh”, Kostic, Rodriguez, Albrecht, Vahdat, 

figure2, “The two phases of the RanSun protocol” 
 

Finding overlay peers 
Summary tickets are used to represent the working set of each node. Working sets 
contain the sequence numbers of the packets received by the node over a period of 
time. This way, upon receiving a random subset of remote nodes at each distribute 
phase, each Bullet node will choose to peer with the node having the lowest similarity 
ratio to its own summary ticket. Afterwards, it sends to the remote node a peering 
request containing its Bloom filter. 
 
Recovering data 
Assuming it has available bandwidth for the newcomer, a recipient of the peering 
request installs the received Bloom filter and will periodically transmit keys not 
present in it to the requesting node. The requesting node will refresh its installed 
Bloom filters at each one of its sending peers periodically. 
 
Making data disjoint 
Limiting factors are used as feedback from children to determine the best data to 
stop sending when a child cannot handle the stream, in order to assure that it is with 
the same probability that each node owns a particular piece. That means that a Bullet 
parent sends different data to its children so that each data item will be readily 
available to nodes spread throughout its subtree. 
 
Improving the Bullet Mesh 
A node can adapt dynamically the number of its active senders and receivers to 
improve its performance. Each node periodically drops and replaces one or more 
peers who are delivering the least amount of useful data to it. In this way, it tries to 
keep the best senders. Likewise, each node periodically evaluates its receivers and 
drops the ones acquiring the least portion of its bandwidth, in order to keep the best 
receivers. [7] 

 
2.1.4 PULSE 
 
One of the virtues of PULSE is its temporal representation (figure 5). This way, a 
reference system is created. The variables that grow at a fixed rate over time, like Td, 
are associated with stationary points, while all the others change their position 
according to their relative instantaneous speed expressed in terms of time or packet 
rate.[8] 
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Figure 5: “PULSE, a Flexible P2P Live Streaming System”, Fabio Pianese, Joaquin Keller, Ernst W. Biersack, fig1, 

“A PULSE node’s data buffer” 
 

Parameter Description 
Tbist Average lag of the chunks the peer is requiring. It is placed in the middle of 

the trading window and it quickly fluctuates. 
Tbavg Average value for a series of Tbist. 

Tk Lag difference between the chunk at the end of the trading window and the 
chunk at the end of the peer’s buffer. 

Td Lag of the chunk at the end of the peer’s buffer. 
Tq Lag of the chunk at the end of the trading window. 

Trading 
Window 

It includes the chunks the peer is trying to obtain from the other peers. Its size 
is double than that of the sliding window. 

Sliding 
Window 

It is the oldest part of the trading window. It contains the chunks, having a lag 
greater than the chunk at Tbist, the peer is trying to retrieve. It will left shift, 

allowing the trading window to slide, when it contains a sufficient number of 
chunks. 

Zone of 
Interest 

It is the newest part of the trading window. It contains the chunks, having a lag 
smaller than the chunk at Tbist, the peer is trying to retrieve 

Table 3: “The Pulse System: A new P2P prototype for live streaming”, Thesis de Diego Perino, table 3.1, 
 “Buffer’s parameters” 

 

In PULSE, there are three levels of knowledge about other peers in the system, 
which are illustrated in table 4, and each one of them has a distinct goal. 

! Blue Set: keeping at hand a small and up-to-date list of nodes who share the 
same streams we are interested in 

! Red Set: these peers are the preferred target of a node’s attempts to get its 
missing pieces and with whom it aims at establishing a Missing data 
exchange 

! White Set: keeping track of all the peers we have met, up to a maximum size 
  IP 

address 
TCP port UDP 

port 
Tbavg Td chunk 

buffer 
edge 

Trading 
window 
bitmap 

RTT 

White + + +      

Blue + + + + +    

Red + + + + + + + + 

Table 4: Levels of knowledge 
 

 Overlapping 
Trading 

Window? 

Tb goal consequence to the 
structure of the 

network 

Missing set yes near trade data to fill any hole around 
Tb and keep the window sliding 

local meshes are formed 

Forward set no far allow distant nodes to approach 
the source 

 mobility from the back to 
the forth of the network 

Table 5: Two groups of peers for data exchange 
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There are also two groups of peers for data exchange and four behavioral modes. 
The details are summed up in tables 5 and 6. 
 

 Target 
recovery 

mode 

Target 
group of 

peers 

Goal – 
active 

behavior 

Fairness 
Mechanism 

Scores Passive 
behavior 

Friend Missing Missing Main data 
exchange 

Immediate 
tit-for-tat 

Fi Respond 
always 

Normal Forward/ 
Missing 

Red Retrieve 
data, 

adjust Hi 

Cumulative 
tit-for-tat 

Hi Respond 
depending 

on Hi 
Sloppy Forward All Remind 

peers of 
their debt 

Cumulative 
tit-for-tat 

Hi Respond 
depending 

on Hi 
Fast Forward/ 

Missing 
Red/Blue When in 

dire need 
of data 

Cumulative 
tit-for-tat 

Hi Respond 
depending 

on Hi 
Table 6: Bahavioral Modes 

 

! Immediate tit-for-tat: BitTorrent-like 
! Cumulative tit-for-tat: You don’t have to reciprocate immediately. You remain 

indebted and receive worse quality until you do. 

! exchangesFRIENDexcept
itoSentDataofAmountCumulative

ifromceivedDataofAmountCumulative
__

______

__Re____
!"#

 

! exchangesFRIENDforonly
SBR

iFromBandwidthgIncoAverage
Fi ___

___min_
1$!

 
! Conditions to choose a node as a Friend: 1.He must have high Hi 2.He must 

belong to the Red Set 3.His Tb must be in the range of our Interest window 
4.(optional) His inbound and outbound bandwidth must be greater than a 
certain threshold.[12] 

 
2.1.5 Comparison 
 
We can generally say that all modern P2P applications for live streaming have a 
hybrid nature. On one hand, a simple tree structure has proved to be inefficient, since 
it reacts very badly to failures, it doesn't take advantage of all the available bandwidth 
and it doesn't scale. On the other hand, it is impossible to form a really equally 
distributed mesh since the source of the data is always the only node that diffuses 
the stream, so its role is different. So, among the three examined applications, we 
can say that Pulse is more tree-like, DONet is more mesh-like and Bullet is 
somewhere in the middle. The similarities and differences of these three applications 
are summed up in the tables that follow. 
 

 Provider of the stream How the local knowledge is 
obtained 

Parallel 
Download 

Pulse Nodes, members of the red set, 
who are chosen as friends and 
moved to the missing set 

Three levels of knowledge, white, 
blue, red, acquired through polling 
messages 

high 
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 Provider of the stream How the local knowledge is 
obtained 

Parallel 
Download 

Donet Nodes handled by the membership 
manager who are chosen as 
partners by the partnership 
manager 

Gossip protocol used to 
periodically send membership 
msgs and exchange the buffer 
map 

high 

Bullet Mainly the parent of the node and 
some perpendicular nodes 

RanSub used to distribute subsets 
of global state using Collect and 
Distribute messages 

medium, 
the parent 
is the main 
source 

Table 7: Main Characteristics 

 

 Resistance to failures Topological 
locality 

Bandwidth 
optimization 

Mobility inside the 
overlay 

Pulse High, if a node fails, it's 
easy to replace it with 
another one from the red 
set 

yes, RTT 
considered to 
select a peer 

Rich nodes can use 
their available 
resources to 
contribute to the 
Forward peers 

Medium. Friend 
nodes are stable. 
Mobility obtained 
through Forward 
data recovery 

Donet High, if a node fails, it's 
easy to replace it with 
another one proposed by 
the membership 
manager 

not in the 
original, yes in 
the modified 
version 

Nodes with high 
bandwidth are the first 
to be chosen as 
providers for each 
chunk 

High. Providers 
change as the 
demanded chunks 
and their availability 
change 

Bullet Medium, the parent is 
the main provider so if 
he fails, another parent 
must be found 

no Every node attempts 
to recover missing 
data from any non- 
descendant node in 
order to fill its inbound 
bandwidth 

Medium. Parent is 
stable. 
Perpendicular peers 
periodically replaced 
to optimize 
exchange 

Table 8: Adaptability to network conditions 

 

 Free-rider strategy Source single point of failure? Fairness mechanism 

Pulse Advertise conservative 
trading window, minimize 
forward slots 

No Immediate tit-for-tat for 
friends. Cumulative for 
others 

Donet Advertise conservative 
buffer map 

No, if a dht to a group of source 
nodes is used. 

None 

Bullet Advertise conservative 
summary ticket 

Yes, since it's the unique point of 
entrance and it's responsible for 
the Distribute messages 

None 

Table 9: Fairness Issues 
 

 Feedback to 
the source 

History score Scheduling algorithm 

How to choose partners 

Pulse None Fi for friends  Hi 
for others 

1. Overlapping trading window 2. high Hi  

3.member of the red set 
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 Feedback to 
the source 

History score Scheduling algorithm 

How to choose partners 

Donet None None Choose the best partner for each missing segment, 
beginning with the segment with the least suppliers 

Bullet Yes, limiting 
factors 

None Choose a peer with the lowest similarity ratio to its 
own summary ticket 

Table 10: Fairness Issues II 

 
After this presentation, we can conclude on some main directions to follow for future 
P2P applications. 

! A simple tit-for-tat policy should be extremely efficient in most of the cases. It 
could also be adopted by DONet and Bullet. 

! No complementary roles and responsibilities should be given to the source, 
apart from its native role as the unique source of the stream, in order to avoid 
creating a single point of failure of the system. The use of a central 
component as a tracker should also be avoided as it doesn't handle well flash 
crowds. 

! Some kind of local knowledge of the network and recent memory of the 
transactions should be kept, like a history score. 

! The main goal of the incentive mechanism should be to dissuade users to 
advertise less data than they actually have to avoid contribution. 

! The existence of some kind of clusters or of a central core of credible nodes 
is inevitable and maybe desirable. The fairness mechanism should not be too 
strict on these nodes because they keep the system running.  

 
2.2 State of the Art Incentive Mechanisms 

 
In most of the contemporary P2P systems, the users are naturally discouraged to 
cooperate because contribution directly affects their resources and their 
performance. In consequence, if a user tries to maximize his performance, his action 
will have an immediate negative effect on the global performance of the system. So it 
is necessary to compromise the personal and the collective well being and supply the 
users with important motivations for cooperation, or else they will naturally become 
selfish. This compromise is very difficult to make because of the existing challenges 
in a P2P system:  

! Very large and dynamic peer populations, which means that the life duration 
of a peer in the system can be very short. 

! Asymmetric transactions: User A is interested in a content owned by B and B 
is interested in a content owned by C. As a consequence a user may demand 
service without being able to reciprocate immediately. So a simplistic tit-for-tat 
policy isn't appropriate for such a system. 

! The majority of P2P systems allow users to constantly change identity (zero 
cost identity). This characteristic is desirable for the new comers and helps 
the network grow fast but in the same time it does not penalize malicious 
users who take advantage of this vulnerability to exploit the system. This 
behaviour is called whitewashing and constitutes one of the major problems 
of such applications. 

! Most of the P2P systems are unstructured and decentralized. This absence of 
a central authority imposes the use of complicated solutions in order to 
manage the system.[13] 

 
However, there are certain techniques that can help us confront these difficulties: 
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! Combine random and informed peer selection. Informed peer selection will 
choose already known nodes and will encourage the maintenance of long-
term partnerships among them. Random peer selection aims at exploring the 
network for better service and facilitates the integration of new comers. 

! Maintain a short-term distributed history for fellow nodes. Distributed because 
the asymmetric and time-varying nature of P2P networks would prove a 
private history to be inefficient. And short-term in order to prevent malicious 
users from exploiting the system after a period of good behaviour, which 
would guarantee them a good reputation.  

! Adopt a Stranger Adaptive Policy as a defence to white-washing, that means 
having a flexible policy to strangers that adapts to their recent behaviour. The 
problem with this solution is that it also penalizes the possible innocent new 
comers if the majority of the recent strangers have proved to be malicious or 
selfish. 

 
There are mainly three categories of incentive mechanisms, although the 
contemporary P2P applications combine them in many ways to derive enhanced 
performance, so the distinction among them is not always obvious.  
 
Differentiated services: In this kind of mechanisms, the main motivation for the users 
is the ability to choose reliable and credible peers, who can guarantee them a 
predictable quality of service. So, every user is free to choose his level of contribution 
in order to maximize the quality of the perceived video. For example, such a 
mechanism could allow the peers to select as uploaders nodes with a score inferior 
or equal to theirs only. In this way a node with a zero score will have a best effort 
quality of service. If he desires a streaming better than best effort, he must obtain a 
positive score by contributing to the system.  
The score of each user is determined by a scoring function, which could consider and 
measure the contribution of each user, or the contribution minus his consummation, 
or even introduce an ageing factor to encourage regular contributions. It could also 
remunerate more users who upload rare files or strongly demanded ones. The 
possibilities are endless. [14] 
 
Micro-payment: These mechanisms aim at establishing equilibrium between total 
downloads and total uploads of each user. A very simple solution is to debit the users 
for every byte they download and to remunerate them for every byte they upload. 
The advantage of this method is that it gives users the opportunity to control their 
debt to the system and even make money if they want. However, these techniques 
are not generally welcomed by them, especially when there is real money involved, 
because they are constantly asked to decide if a certain content is worth paying. [15] 
 
Reputation: The simplest use of the reputation mechanisms is to help the peers with 
a good reputation find each other and cooperate. The main idea is to construct a 
reputation system to attribute an objective score to each user according to his 
behavior and afterwards determine his quality of service by this score. It is obvious 
that here a central entity is necessary to maintain and update the scores, which is not 
desirable for modern P2P applications. An alternative to the solution of a central 
entity is that of each peer calculating his own score, afterwards his score being 
mapped into a percentage by comparing it to the scores of his fellow peers in his little 
neighborhood and in the end he will be able to know more or less his position in the 
global distribution and act accordingly.  
In the following table, I try to sum up the advantages and disadvantages of each kind 
of incentive mechanism concerning different P2P application scenarios.  

 
(Next page) Table 11: Comparison 
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P2P/ Incentive 
Mechanism 

Micro-Payment Reputation Differentiated service 

Advantages/ 
Disadvantages 

+Debt control 
+Opportunity to make profit 
-Problem for the slow or 
asymmetric connections 
-Not very popular if there is real 
money involved because one 
must constantly decide if a 
certain content is worth it 
-Danger of exploitation by 
users who form coalitions 
-Difficult to evaluate the rarity 
or the demand of a file, in order 
to remunerate more the users 
serving it 

+Flexibility of  
decision 
+Better accepted 
by the users 
+Defence against 
malicious users 
-The absence of a 
central authority 
causes problems 
-A central entity is 
expensive 
-It is necessary to 
maintain a history  
and exchange 
polling messages. 
As a result the 
cost and the 
overhead rise. 

+The quality of service is 
directly related to the level 
of contribution. So there is 
a motivation to maximise 
the latter. 
+No polling messages, so 
no overhead added 
-Injustice : Same 
treatment for the free 
riders and the new comers 
-Necessity of a central 
entity to calculate users' 
scores. Solution: every 
user calculates his score 
locally and does an 
approximation. 
-But, integrity problem: the 
users can lie in order to 
exploit the system 

Files exchange A variation of this technique is 
the tit-for-tat adopted by 
BitTorrent. Mechanism 
appropriate for these systems 
because of its simplicity and its 
facility of implementation. 
What's more, it allows the slow 
nodes and the free riders to 
take advantage of the spare 
capacity, so that it is not lost. 
However necessity of a central 
element ex. tracker 

A variation of this 
technique was 
adopted by 
KaZaa where the 
users were 
divided in three 
classes of 
contribution. 
Necessity of a 
central element, 
or the problem 
becomes really 
complicated. This 
technique isn't as 
efficient and as 
appropriate as the 
tit-for-tat for these 
systems. 

We have found no 
application of this 
mechanism in file 
exchange systems. Which 
is normal since it 
introduces a high level of 
complexity that affects 
badly the system 
performance. This 
complexity is redundant 
because the system can 
function fine with simpler 
algorithms. 

Live streaming This approach or the tit-for-tat 
isn't sufficient for live 
streaming. We must use a 
technique that discourages the 
free riders and encourages 
everybody to contribute 
constantly and continuously, or 
else the quality of service 
deteriorates. The vulnerability 
of this type of mechanisms is 
that the user is able to 
accumulate credit and then not 
contribute at all during a very 
popular emission when the 
cooperation is vital. 

The reputation 
mechanisms 
constitute a very 
interesting 
solution to the 
right direction.  
However the 
efficiency of the 
proposed solution 
depends on the 
answers we are 
going to give to 
certain questions: 
Will there be a 
central entity or 
not? Will there be 
a history? Which 
are the specific 
parameters 
maintained by 
each user? How 
will reputation 
affect the 
decisions to be 
made? How will 
reputation 
determine the 
quality of service? 

It seems that a solution 
based on the 
differentiation of the 
quality of service offered 
in relation to the 
contribution of each user, 
must be the goal of 
contemporary P2P 
systems which aim at live 
streaming. The advantage 
of this technique is that it 
affects directly the quality 
of the video perceived and 
this way the users cannot 
help contributing. The 
emergency of the liveness 
of the emission constitutes 
a supplementary 
motivation. Of course such 
a technique is based on 
the existence of a scoring 
system, which can be 
determined in a way to 
ameliorate the 
functionality and the 
performance of the 
system. 
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2.3 Challenges 
 
The nature of live streaming, and especially its sensitivity to delays, is the cause for 
many of the problems encountered when dealing with such an application, problems 
which would be less important in a Video On Demand system, where there is no 
notion of liveness and users are generally more linient, and almost inexistent in a 
content sharing application, where media file reproduction is done after downloading, 
so packet delays are not really an issue, as long as there is a satisfactory download 
rate. Some of these challenges are the following: 
! Data nature: Live streaming is based on play-while-you-receive, that means that 

a sequence of pieces must be reproduced by the media player immediately at the 
reception or after a predetermined bufferisation delay. The latter one becomes a 
problem and must be of very limited duration in the case of video conference, 
where a considerable bufferisation delay may harm the interactivity of the 
communication. What's more the total duration of a media session is unknown, 
the data flow is generated dynamically and there is no prior knowledge of the 
content. The consequences of these two properties of live streaming are a very 
limited tolerance to packet delay and a rather high sensitivity to packet loss. 
Since a big safety margin doesn't exist (the bufferisation delay is equal to some 
seconds), a series of packets being lost or arriving late will very much harm the 
video quality, they may even cause an interruption, which is highly undesirable. 

! Network conditions: In order for the P2P network to run properly and for the 
incentive mechanisms to be deployed with a predictable result, the network must 
present some special properties: Continuation of service even after sudden 
departures or failures, capacity to download simultaneously from different 
sources, ability to explore the network and find peers with interesting content and 
finally capacity to do a close to reality estimation of its own upload bandwidth and 
also of that of its neighbours. 

! Network characteristics: In order to optimise the performance of any P2P system, 
we should supply it with the means to form its architecture taking into account the 
underlying internet topology, allow for a tcp friendly flow control in order to avoid 
congestioning the network with P2P traffic and finally take into account the fact 
that the majority of users have asymmetric internet connections (ADSL) in order 
to optimise the use of their available resources.  

! Security and equity: This aspect of the encountered challenges concerns mostly 
the peers behaviour and habits. To protect the system from being exploited, we 
should introduce counter measures to defend to potential attackers or preferably 
minimise the probability of success of a possible attack by establishing 
appropriate rules and policies. The system should also be able to provide a 
minimal level of integrity of the exchanged data and most importantly a minimal 
level of fairness among the users. 
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3. Experiments – Experience with existing algorithms 
 
3.1 Simulation Parameters 

 
For user outbound and inbound bandwidth, I adopt the measurement results derived 
form actual Gnutella nodes in 2006. 
 
Type Inbound(kbps) Outbound(kbps) Fraction 
DSL/Cable 784 128 0.2 among DSL/Cable 
DSL/Cable 1500 384 0.5 among DSL/Cable 
DSL/Cable 3000 1000 0.3 among DSL/Cable 
Ethernet 10000 5000 Altered(0~0.15 among all) 
Table 12: “Optimizing the Throughput of Data-Driven Peer-to-Peer Streaming”, Meng Zhang, Qian Zhang, Table IV, 

Bandwidth Distribution in Gnutella network 2006 
 

Instead of measuring the inbound and outbound bandwidth in kbps, I choose to 
measure it in blocks per iteration, where each iteration is typically set to 1 second. 
Since a common block size is 15 kbytes and my simulation includes 15 nodes, a new 
table is created. For the first simulations, no Ethernet node is supposed to exist. He 
will be introduced later on to deduce interesting results.  

 
Type Inbound 

(blocks/s) 
Outbound 
(blocks/s) 

Number 
of nodes 

DSL/Cable 6 1 4 
DSL/Cable 12 3 7 
DSL/Cable 24 8 4 
Ethernet 84 41 0 or 1 

Table 13: Bandwidth Distribution in Simulation 
 

If we suppose that the streaming rate is 300 kbps, we want to measure it in 
blocks/sec, so we have 300/8*15=2,5. I consider 3 blocks/sec. So the interest 
window of each node will slide 3 blocks/sec and its length is considered to be 100 
blocks. 
Since the goal is to study different scenarios for nodes with different resources, we 
suppose that for each node category (slow, medium, fast) there are four buffer states 
(10% full, 30% full, 50% full, 70% full) to simulate nodes who have arrived at different 
time instants. There is also a medium node that has just logged in, one with an 
almost full buffer and one with a randomly filled buffer. All this information can be 
easily seen in the following table. The buffers are filled randomly following a uniform 
distribution. 
 

Type Node ID Inbound 
(blocks/s) 

Outbound 
(blocks/s) 

Initial Buffer State 
(buffer size 100) 

Slow 0 6 1 10 
Slow 1 6 1 30 
Slow 2 6 1 50 
Slow 3 6 1 70 

Medium 4 12 3 0 
Medium 5 12 3 10 
Medium 6 12 3 30 
Medium 7 12 3 50 
Medium 8 12 3 70 
Medium 9 12 3 90 
Medium 10 12 3 Random 

Fast 11 24 8 10 
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fast 12 24 8 30 
Fast 13 24 8 50 
fast 14 24 8 70 

Table 14: Bandwidth and Buffer State Distribution in the Simulation 
 

In these simulations, each node acquires packets through two mechanisms, first by 
his fellow 14 nodes by comparing their bitmap to his and second by a random 
mechanism, following a geometric like distribution, so that the blocks at the beginning 
of the interest window (left), which will soon be played, are obtained with a greater 
probability than blocks at the end (right). The goal of the second mechanism is to 
simulate the effect of a wider neighborhood, which means that each node has 
transactions with others outside the known group of the 15. Although we cannot 
simulate these nodes, this way we take into account their presence. In order to stick 
to a realistic scenario, we suppose that each node is only allowed to obtain by the 
random mechanism the number of blocks he has acquired by the regular mechanism 
plus 3 more blocks. We add these three blocks in order to avoid the case where a 
node becomes unable to find missing blocks owned by his peers and starves, if we 
don’t allow him to get them by the random mechanism. Especially for node 4, there is 
no random mechanism deployed because we want to isolate and study his 
interaction with the 14 known nodes.! The pseudo code of the main parts of the 
program for the simplest case scenario can be found in the Appendix at the end of 
this document.!
 
3.2 Upload Capacity Based Selection 
 
For each scenario, 25 simulations are launched, all with the same initial configuration 
in order to have a statistic result and minimize the effects of bad thread handling by 
the java machine. The results are illustrated in the following figures. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 6: Upload Capacity Based Selection, left Continuity Index, right Buffer Progress of node 4 
 

In the left part of figure 6, the x axis represents the time evolution in iterations (total 
20 iterations) whereas the y axis represents the continuity index of each node. In 
consequence, each dotted point is the continuity index of a node at the end of the 
particular iteration. The continuity index is a very common measure of the quality of 
service in live streaming applications, in particular it is the percentage of packets who 
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arrived before their play out time. The rest are packets who either never arrived 
either they arrived late and subsequently they were rejected.  
In order to derive interesting conclusions, the different node categories are painted in 
different colors in the preceding figure. Slow nodes are painted in black, medium 
nodes in blue and fast nodes in red. I remind that for each node category, there are 
four possible initial buffer states (10%, 30%, 50% and 70% full). The lowest blue line 
represents the evolution of the continuity index of node 4, who is a medium node who 
starts with an empty buffer. We can see that he converges slowly but his 
performance is much worse than that of his partners. In this scenario, the empty 
initial buffer constitutes a serious handicap. If we don’t look at node 4, the lowest line 
of each color always concerns the node of that category who starts with a 10% full 
buffer and each superior line concerns a superior buffer state. If we compare the first 
black, blue and red line, it is obvious that the fast node who starts with an empty 
buffer is much more successful in retrieving quickly the missing pieces than the slow 
and the medium one. What‘s more, it is evident that fast nodes converge faster to a 
higher continuity index value than medium ones. In the end, we should note that the 
two nodes (9 and 10) who start with an almost full buffer, present a continuity index 
constantly equal to 1 ( the two lines on top). 
 
The next figure represents the mean value of the final continuity indexes at the end of 
each simulation and allows us to compare the performances of the different node 
categories.  
Node Initial 

Buffer  
State (%) 

Continuity 
Index 

0 10 0.9233 
1 30 0.9567 
2 50 0.9753 
3 70 0.9867 
4 0 0.7967 
5 10 0.9193 
6 30 0.9553 
7 50 0.9973 
8 70 0.9960 
9 90 0.9993 
10 Random 0.9687 
11 10 0.9607 
12 30 0.9693 
13 50 0.9873 
14 70 0.9953 

Figure 7: Upload Capacity Based Selection,  Mean of the continuity indexes after 25 simulations 
 

One thing that strikes as odd at this figure is that the overall performance of the 
medium nodes is slightly worse than that of slow nodes. The main reason for this 
phenomenon is the existence of node 4 who starts with an empty buffer and is 
seriously handicapped as we have already explained. However, nodes 5 and 6 
present also slightly worse performance than the nodes 0 and 1, although they begin 
with the same buffer state. The logical explanation for this, is the following: Since the 
buffers are filled randomly following a uniform distribution, it is possible that one 
buffer with 10 initial packets is more beneficial than another one, because these 10 
packets are more concentrated at the beginning of the buffer, which is its most 
crucial part since the node won’t have many chances to fill it. 
 
Now, in the right side of figure 6, we can see the evolution of the buffer of the 
medium node 4 who starts with an empty buffer initially and whom we use as a case 
scenario of a new comer with medium resources. The figure represents the mean of 
the buffer states of the consecutive 25 simulations for node 4. That means that for 
each packet of the buffer for each iteration of each one of the 25 simulations, we 

Slow Nodes 
0.9605 

Medium Nodes 
0.9475 

Fast Nodes 
0.9781 

Global Continuity Index 
0.9591 
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register if it has been acquired or not. In the end, if a packet has been acquired in 
more than 12 simulations, we consider that it exists in the final figure. If not, we leave 
its location blank. So, the x axis represents the pieces that have been acquired and 
exist in the buffer and the y axis the 20 consecutive iterations. The blocks on the left 
are the first to be played by the media player. We must also note that since we 
simulate a case of live streaming, the interest window slides to the right, 3 blocks at 
each iteration. All this information is illustrated by the different colors in figure 6 right. 
The blue edge represents the current position of the media player, which means that 
all the blue packets have already been reproduced. The yellow edge represents the 
current position of the interest window, the yellow blocks are the ones the peer has 
not obtained yet and he is interested in. The green blocks are pieces that have been 
acquired but haven’t been played yet and the red blocks are the new pieces that 
have been obtained during the last iteration.  
After explaining the meaning of the colors, we can now explore more interesting 
aspects of this figure. It is obvious that at the beginning of the simulation, node 4 isn’t 
able to obtain not even the three necessary blocks per iteration to maintain a smooth 
video quality. The reason for this is the existence of a race condition among the 
nodes, half of which are new comers (7 out of 15 nodes have less than 30 blocks in 
their buffers). So, the available resources are considerably monopolized by the faster 
nodes, who present a high continuity ratio even at the beginning, and the other nodes 
are condemned to starvation. After a while, though, faster and older nodes fill their 
interest window, so there is place for the new comers, who begin to ameliorate their 
continuity index and acquire more new packets (red) at each iteration. This situation 
continues and at the end of the 20th simulation, node 4 has almost filled his interest 
window. 
We also conducted the same simulation for a longer duration (60 instead of 20 
iterations) and we observed that the evolution of the figures is normal and 
predictable. These figures can be found in the Appendix at the end of the document. 
After this example, we can clearly see that fast nodes are naturally busted by their 
high capacities and resources at the expense of slower nodes. So the need for 
incentive mechanisms, which could guarantee a kind of fair scheduling among all the 
participants, become evident, in order to help all the peers obtain the stream on time 
and with a good quality. The clear unfairness in service, that we have just observed, 
justifies this whole work and the seek of a “remedy” to the problem is essentially its 
goal. 

 
 

3.3 Bitmap Resemblance Based Selection 
 
Until now we examined the case where the only criterion to select one’s neighbors 
was their upload capacity. But what if the next uploader isn’t selected depending on 
his upload rate but on his bitmap resemblance to ours? The next case scenario 
examines exactly this situation. What happens is the following: Before each 
download demand, each node finds the positions of the first five non existing blocks 
in his own bitmap. Afterwards he searches these five positions in all the remaining 
bitmaps of the other nodes and chooses the node with the least resemblance bitmap 
to his. That is, in the best case he finds a node who owns all the five missing blocks, 
if there isn’t such a node he chooses one with 4 missing blocks and so on. If there 
are multiple nodes with the same resemblance ratio, he chooses the one with the 
highest upload rate. We can see the results of this policy in the next figures and 
compare them with the respective results of the first simpler scenario. The goal is to 
observe which of the two criteria is most important and powerful, in order to know 
which one to take into account or how to combine them in a potential more 
complicated incentive mechanism. We also would like to see how the different node 
categories react in these two cases, so as to find possible vulnerabilities. 
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In figures 8 and 9, we can observe that the performance here is slightly worse than in 
the first case in terms of continuity index (global continuity index 0.9366 in 
comparison to 0.9591 in the first case). What‘s more, a very interesting phenomenon 
is that the performance of the faster nodes is affected more than the performance of 
the slower ones. If we compare the cumulative continuity indexes of the three 
categories, we can see that that of the faster nodes deteriorates more than that of the 
slower ones. Why does that happen? Because now, faster nodes may choose a slow 
or medium node as uploader thanks to his bitmap resemblance, whose the upload 
capacity though is very limited compared to their download capacity. For example, 
they may choose a slow node who owns all the five missing blocks they demand 
without considering that this particular node is only capable of serving them one. In 
conclusion, we can see that by all means this node selection strategy stalls the faster 
nodes without really ameliorating the performance of the slower ones, whose 
continuity indexes remain almost the same. These conclusions are reinforced by the 
right part of figure 8, where we can see the buffer evolution of node 4, whose 
continuity index is much worse now than in the first case. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8: Bitmap Resemblance Based Selection, left Continuity Index, right Buffer Progress of node4 
 

Node Initial 
Buffer  
State (%) 

Continuity 
Index 

0 10 0.8947 
1 30 0.9593 
2 50 0.9767 
3 70 0.9913 
4 0 0.6467 
5 10 0.893 
6 30 0.9527 
7 50 0.9973 
8 70 0.9960 
9 90 1 
10 Random 0.9460 
11 10 0.8707 
12 30 0.9420 
13 50 0.9900 
14 70 0.9993 

Figure 9 : Bitmap Resemblance Based Selection, Mean of the continuity indexes after 25 simulations 
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3.4 BitTorrent Choke Algorithm Upload Only 
 
After having examined the results of the two previous cases, where the selection of 
the next uploader was done based on quite simple criteria, upload capacity on the 
first case, bitmap resemblance on the second one, it is time to study a more 
complicated scenario, the BitTorrent choke algorithm. In order to test thoroughly its 
functionality, we decided to divide the mechanism in two phases and study them 
separately. First we simulate a policy where at each unchoke period, each node 
discards the worst of his 4 uploaders and replaces it with another node at random. 
Normally, a full choke algorithm would also follow the same procedure with the 
downloaders, which is simulated in the next case and it constitutes the second 
phase. The goal of this step by step study of the algorithm it to observe the impact on 
efficiency and performance.  
So, as we can see in the left part of figure 11, this policy seems to perform 
significantly better as all the nodes’ continuity indexes converge to a value over 0.9. 
In fact, 13 out of 15 nodes have a continuity index over 0.95 and 11 out of 15 over 
0.98, which is impressive and guarantees an exceptional video quality. 
 

Figure 11: BitTorrent Choke Algorithm Upload Only, left Continuity Index, right Buffer Progress of node 4 
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Figure 10: Credit of the 15 nodes, 3.3 

In this figure we have represented the credit of each 
node. In order to do that, we have supposed that each 
node begins with zero credit, he gains a point for every 
block he downloads and he looses a point for every 
block he uploads. So in total the credit of every node 
represents his total downloads minus his total uploads. 
It is obvious that fast nodes upload much more than 
they download and slow nodes the opposite, they 
download much more than they upload. Medium nodes 
are somewhere in the middle. From this figure, an 
already known fact becomes certain, faster and richer 
nodes are the systems’ main contributors and the ones 
that keep it running by serving the slower ones. All that 
considering that all the nodes are altruistic, there is no 
selfish behavior. This possibility will be examined later 
on.  
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These conclusions are reinforced by the following table, which summarizes the 
continuity indexes of the 15 nodes at the end of the simulation. 
In the right part of figure 11, we can also observe the evolution of the buffer of node 
4. We can see that the quantity of data obtained at each iteration is much more 
regular now, which allows node 4 to achieve the desirable performance. 
 
Node Initial 

Buffer  
State (%) 

Continuity 
Index 

0 10 0.9444 
1 30 0.9811 
2 50 0.9844 
3 70 0.9844 
4 0 0.9089 
5 10 0.9811 
6 30 0.9756 
7 50 0.9978 
8 70 0.9889 
9 90 0.9989 
10 Random 0.9911 
11 10 0.9589 
12 30 0.9822 
13 50 0.9922 
14 70 0.9944 

Figure 12: BitTorrent Choke Algorithm Upload Only,  Mean of the continuity indexes after 25 sims 

 
3.5 BitTorrent Choke Algorithm Upload – Download 
 
This case simulates a full choke algorithm: At each unchoke period, each node 
discards the worst of his 4 uploaders and replaces it with another node at random. 
He also does the same with his worst downloader, replacing it with another one at 
random.  
So, as we can see in figure 13 left, this policy seems to perform even better than the 
last one with 14 out of 15 nodes finishing with a continuity index over 0.95. Only, 
node 4 who starts with an empty buffer converges below 0.95, at 0.94. As a 
conclusion, it is obvious that the BitTorrent choke algorithm works impressively by 
allowing all the nodes to make the most of the available resources. 
 
Figure 13: BitTorrent Choke Algorithm Upload – Download, left Continuity Index, right Buffer Progress of n4 
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Node Initial 
Buffer  
State (%) 

Continuity 
Index 

0 10 0.9611 
1 30 0.9800 
2 50 0.9911 
3 70 0.9878 
4 0 0.9400 
5 10 0.9744 
6 30 0.9678 
7 50 1 
8 70 0.9911 
9 90 0.9989 
10 Random 0.9856 
11 10 0.9678 
12 30 0.9856 
13 50 0.9856 
14 70 0.9944 

Figure 14: BitTorrent Choke Algorithm Upload – Download,  Mean of the continuity indexes after 25 sims 
 

The right part of figure 14 is quite significant. We can see that at the beginning of the 
simulation, node 4 isn’t able to obtain many pieces at once because of the choke 
algorithm and the fact that he hasn’t got anything to share, so he is rejected by the 
majority of the nodes, and he is mostly counting on being randomly selected as a 
partner, in order to download the necessary pieces. After the first 6-7 iterations 
though, he has enough pieces to share and we can see that the quantities he obtains 
at each iteration augment. 
 
So, if the BitTorrent choke algorithm is so efficient, why continue this study and not 
just adopt it as the best solution? It is true that this mechanism is very reliable but it 
has a major flaw: It is very lenient with free riders, who can download a file by taking 
advantage of the optimistic unchokes, surely more slowly than a node with a good 
behavior but still they can do it. So, BitTorrent is not an optimum even for file-sharing 
applications. However in file sharing there are no delay constraints, so a potential 
free rider doesn’t really care if the download duration is 3 hours instead of 1, which is 
not the case in live streaming, where long periods of waiting before or during the 
streaming are unacceptable.  
What’s more, there is a more crucial reason for which BitTorrent choke algorithm is 
inappropriate for live streaming. In a file sharing application, there is always a 
considerable amount of seeds, nodes who have already downloaded and own all the 
pieces of a particular file. In live streaming, only the source owns the totality of the file 
and it surely cannot serve all the peers demanding it, so the need to motivate with 
proper incentives all the users to contribute and cooperate continuously is far more 
vital to keep the system alive and running.  
As a conclusion, the aim of this work is to introduce stronger incentives for 
contribution and stricter consequences for misbehavior. We show an example of 
such a mechanism in the next section. 
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4. Study of Incentive Mechanisms for Live Streaming 
 
4.1 Differentiated Services 
 
In this next simulation, a new incentive strategy is tested, which is based on a 
differentiated services policy supported by a reputation system. To begin with, we 
must note that the proposed solution concerns an unstructured and decentralized 
P2P network. This means that there is no central entity in the form of a server, or a 
super peer of even a torrent, in order to avoid the risk of a potential bottleneck or 
single point of failure. What’s more, we suppose that every user receives the stream 
by many peers simultaneously, so it’s a case of a data driven architecture, like the 
one used in DONet. To conclude this short introduction, it must be mentioned that the 
use of time shifting or video patching techniques would significantly ameliorate the 
perceived video quality and eliminate the negative effects of connection interruptions 
and sudden peer departures.   
The main idea of this kind of techniques is that each and every user is only allowed 
to download data from nodes inferior or equal to him. The position of each node in 
the global distribution, which determines its relation to its peers (inferior, superior, 
equal), is given by a scoring function based on a reputation system. The essential 
problem of this solution is the fact that the nodes must calculate their own scores 
since there is no central entity to play this role. However, all the recent studies of the 
users’ behavior prove that they tend to be selfish and act strategically in order to 
ameliorate their performance, so it would be logical to suppose that a great majority 
of them would be prone to lying concerning their contribution. So, the proposed 
solution should also take this into account and try to discourage this kind of 
behaviour.  
To begin with, I will describe the scoring function. Each user maintains a short history 
of his transactions with all the other pairs and every time he has to, he calculates his 
opinion concerning another node based on this history. This opinion may concern the 
quantity of the served data, the available bandwidth of the node, the service duration, 
the propagation of the node’s demands and a number of other representative 
characteristics of a user’s behaviour. In our case, we use a simple scoring function, 
which considers only the upload capacity of a certain node and his contribution to us. 
This way a score between 0 and 1 is attributed to each one of a node’s peers. 
 
 
 
 

Figure 15: Scoring Function used in simulation 

 
In this simulation, each node has to store information concerning his 14 fellow nodes 
of the simulation only. In a real world scenario, the number of nodes a user “meets” 
during a session is potentially very large, so it is impractical and impossible to take 
everything into account, a part of the available information must be excluded or 
deleted after a period of time so as not to monopolize a node’s memory space. This 
means that the history kept by each user must have a limited size, so it must refer to 
a limited period of time, that is to its most recent transactions with his environment. 
This way, each user is judged and scored according to his most recent actions and in 
consequence he can’t take profit of his good reputation to exploit the system, at least 
not for long. However, this mechanism poses great difficulties for the new comers, 
since they have nothing to share, in order to augment their score, and it is a bit unfair 
with nodes who present regularly good unselfish behavior, since it doesn’t 
remunerate them for it. On the other hand, a total presence of a node over a large 
period of time is useless for a live streaming application, where it is urgent that all the 
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nodes contribute regularly all the time, so this characteristic is not necessarily 
negative. In any case, this simulation concerns a small neighborhood of peers over a 
small period of time, so none of these mechanisms is implemented, and the final 
score of each peer is a cumulative measure of his behavior during all the duration of 
the simulation. We also suppose, for the time being, that there are no strategic nodes 
who try to trick the system.  
So, after describing how the scores are determined, it is time to explain how the 
differentiated services system works. When a transaction starts, that means when a 
node demands service or when a node receives a demand for service, the two 
parties calculate their opinion of the other using the following function. 

 
Figure 16: Opinion calculation function used in the simulation 

 

At this point, it is important to note that with the preceding function, we introduce a 
kind of global history of the system, as each node calculates his opinion for 
everybody else, depending partly on his own information and party on the information 
given by his neighbors. Of course, his own opinion is more important so it 
participates with a higher factor (0.5) than those of the others (0.5/14=0.0357), but in 
any case this technique introduces a minimum of objectivity and fairness.  This way, 
at the end of this phase, each one of the two nodes has calculated the score of the 
other and they exchange these two values. If the score of the node that demands 
service is inferior, the other node has the liberty to reject him, but if it is superior or 
equal, he is obliged to serve him. The advantage of this procedure is that none of the 
nodes calculates or even knows his own score, so it is more difficult to lie and cheat. 
At this point, we can introduce a number of different measures to improve the 
system, some of which are the following: 

1) If the node with the inferior score, who is obliged to serve his peer, refuses to 
do so, the demanding peer propagates a message informing the other nodes 
of his misbehavior in order to penalize this node by diminishing their opinion 
of him (decreasing the existing score that concerns him). 

2) We can introduce a special treatment for the new comers, as for the time 
being they are confronted as selfish non-contributing nodes, and they are 
severely penalized, as we will see in practice. We could for example, consider 
that when none of the nodes has a stored score for a certain node, the latter 
is a new comer and he must be served anyway and by all means. 

3) We could also elaborate the existing mechanism by issuing an inverse 
procedure to the one propagating a message of foul play when a node 
refuses to co-operate. This procedure would concern the altruistic nodes who 
serve their fellow peers, even though they have a superior score and so they 
are not obliged to do so. At this case, the served node propagates a message 
of “praise” to inform the others of the virtues of his partner and in 
consequence remunerate him by proposing to everyone to augment his 
score.  

4) Finally, we could also introduce intelligent algorithms to discover and exclude 
“liars” and impostors. Although there are quite a lot of mechanisms proposed 
by the existing literature, the overhead they add is considerable and the 
probabilities of false positives and false negatives are not to be ignored. 

As I have already remarked, to begin with a simple scenario, we suppose that all the 
nodes follow the existing rules, so these 4 propositions are not implemented in the 
simulation to follow.  
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4.1.1 Differentiated Services - Simple Case 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
constant contribution, without however for most of them succeeding in reaching a 
satisfactory value (5 out of 7 are below 0.9, which is hardly a quality limit). This 
situation becomes a sad truth especially for node 4, who begins with an empty buffer 
and unfortunately finishes in almost the same situation, as we can see in figure 20. 
To understand better this figure, we must consider that at the beginning almost every 
node has a particularly low score, except maybe the 4 fast nodes, so node 4 
succeeds in acquiring a few pieces by his neighbors. After a while though and 
because of the fact that the pieces obtained have already been played and are no 
longer wanted by the other peers, node 4 is technically incompetent of doing 
anything in this system. This is a major flaw of this strategy, since as we have seen, 
new comers and slow nodes are severely handicapped and we would naturally 
expect them to disconnect sooner or later. The reason is that our differentiating policy 
is extremely harsh and strict. As a result, slow nodes and new comers can’t benefit of 
the spare capacity, although it exists and it is lost. Obviously, we must reconsider our 
notion of equity and allow for a more flexible bandwidth allocation to nodes with lower 
contribution rates.  
 

4.1.2 Differentiated Services with Mechanism to help new comers 
 
A logical decision to make is to permit the poor nodes, in terms of pieces or upload 
capacity, to use the available bandwidth after the rich nodes have finished with it. In 
order to do so we use the following strategy: We introduce a global counter which 
has a value equal to the sum of the upload capacities of all the known nodes. Every 
time a piece is downloaded by a node, this counter is diminished by one. So, we can 
logically suppose that after a few iterations, when the fast nodes have almost filled 
their buffers and the slower ones haven’t got a score high enough to download, at the 
end of each iteration or exchange period this counter will have a non zero constant 
value. At this point, slower nodes are allowed to download data even if they don’t 
deserve it, in terms of implementation they are gradually allowed to automatically 
augment their score in order to have access to superior peers. The figures showing 
how the global behavior of the system changes follow. 
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Figure 17: Differentiated Services – Simple Case, Con. Indexes 

In figure 17, we can make some very 
interesting observations. Nodes 0 to 6, which 
are all the slow nodes and the medium nodes 
who begin with a poor initial buffer (node 4 – 
empty, node 5 – 10% full, node 6 – 30% full), 
tend to present a decrease in their continuity 
index before stabilizing their performance and 
converging to a higher value. The reason this 
happens to these categories of nodes is the 
fact that they can’t obtain a high score, which 
would allow them to download data from their 
peers, either because of their low upload 
capacity either because of their empty buffer 
which is of no interest to the others. So, they 
need some time in order to obtain enough 
blocks to be able to raise their score with 
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Figure 18: Differentiated Services with Mechanism to help new comers, left Continuity Index, right Buffer 

Progress of node4 
 

0 10 0.9361 
1 30 0.9713 
2 50 0.9741 
3 70 0.9824 
4 0 0.8657 
5 10 0.9454 
6 30 0.9722 
7 50 0.9963 
8 70 0.9944 
9 90 0.9991 
10 Random 0.9676 
11 10 0.9657 
12 30 0.9889 
13 50 0.9843 
14 70 0.9944 
Figure 19: Differentiated Services with Mechanism to help new comers, Mean of the continuity indexes after 

25 simulations 
 

In the left part of figure 18, we can see that none of the nodes presents a decrease in 
its continuity index before converging to a higher value and most important, even 
node 4 can now attain a point where its performance becomes satisfactory. In fact, 
the performance of the majority of the nodes is really high. If we compare it for 
example with figures 13 (BitTorrent choke algorithm), we can see that the continuity 
indexes in BitTorrent are slightly better (less than 0.2 better for slow and medium 
nodes, exactly the same for the fast nodes) except for node 4, which in our case is 
more penalized as a new comer and converges at a value around 0.87 after 20 
iterations whereas in BitTorrent this value was 0.94.  
So, we can easily see that the main vulnerability of the proposed algorithm is the way 
it confronts new comers. However, is this a real vulnerability or a sign of a greater 
resistance to free riders? In order to answer this question, we will study the effects of 
the presence of free riders in the proposed algorithm and in BitTorrent in order to 
draw conclusions and compare their respective performances. 
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4.1.3 Study of the Free Riders Factor 
 
To do so, we alter the role of medium node 10 in order to imitate the behavior of a 
free rider. That means that node 10 begins with an empty buffer and he always 
advertises an empty bitmap even if he has actually obtained some blocks, because 
his intention is not to contribute at all. He is in a similar state as node 4 with the only 
difference that node 4 is honest about the contents of his buffer and he is willing to 
contribute if there are nodes interested in what he has to offer. In the following figure, 
we can see on the left the continuity index diagram for the BitTorrent case and on the 
right the same diagram for the proposed differentiated services paradigm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 20: Comparative study of the continuity index diagrams for the BitTorrent and Differentiated Services 
 

We can easily observe that both the algorithms are not able to make a distinction 
between an innocent new comer (node 4) and a malicious free rider (node 10), since 
their final continuity indexes are almost the same. However, the proposed 
mechanism penalizes both of them, as they are only able to attain a value around 
0.83, whereas BitTorrent is less strict and allows them to reach a continuity index 
over 0.9. So, at this point we come face to face with a very common dilemma of 
incentive techniques and we are obliged to do a compromise: Do we prefer a 
mechanism with greater resistance to free riders who also penalizes the new comers 
or a more flexible one where free riders can quite easily exploit the system? 
Generally, the distinction among these two node categories, new comers and free 
riders, is a very difficult and complicated problem in P2P systems: The majority of 
free riders don’t present a monolithic behavior and tend to imitate new comers in 
order to pass unnoticed, generally they will not reject every single demand to upload 
data but they will contribute as less as possible. So, in order to detect them, we 
should at least be able to keep a detailed and long history of the actions of every 
single node towards every one else, which is extremely costly in resources and 
practically impossible. Under the light of these observations, we think it is wiser to 
prefer a system, which is more skeptical towards nodes with low contribution, even at 
the expense of new comers, than a naïve one, which would help new comers on one 
hand but also get easily fooled by free riders on the other hand. The final choice 
depends on the exact properties of the system we want to build. 
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4.2 Micro Payment Example with Bufferisation Delay 
 
At this point, it would be interesting to change a little the initial configuration in order 
to explore different aspects of the system’s behavior and come to a better 
understanding of the way the parameters interact to produce the final result. The 
changes are summarized in the following paragraphs:  

1) Until now the initial buffers of the nodes were filled following a uniform 
distribution, that is completely at random. Although this introduces a higher 
level of difficulty to the system and guarantees that the results are not 
affected by a potential favorable distribution, it would be more realistic to fill 
the buffers following a geometric like distribution, like the one of the random 
mechanism. It is more logical, since nodes that have been in the system 
longer are more likely to have demanded and obtained blocks which are 
located at the beginning of the buffer than at its end. A rational supposition is 
that this change will probably ameliorate the system’s performance, without 
however disturbing the relative position of each node in the global distribution 
or the relative distances among them in the final performance metrics.  

2) Until now, we considered that the reproduction of the live stream begins as 
soon as the node gets connected, that means that there is no bufferisation 
delay which would also constitute a safety margin and would much improve 
the final system performance. So, after having examined the system’s 
behavior under these difficult conditions, we will now introduce a bufferisation 
delay of 21 pieces (the size of the interest window is 100 pieces). This means 
that the reproduction of the stream doesn’t begin unless the 21 first pieces 
have bee acquired, so there is no point now in measuring the continuity index 
from the beginning of the simulation, we should rather start counting from the 
instant the play out starts. What ‘s more, it is very likely now to observe very 
high continuity indexes, since there is a really large safety margin of 21 
packets, that means that a node has the safety to obtain nothing for 7 
consecutive iterations, which is highly unlikely,  and he still won ‘t notice any 
negative effects on the video quality. In fact, the continuity index doesn’t 
seem to be a really representative quality measure any more, we would 
suppose that it would converge very quickly to a value around 1 and stay 
invariant, unless something like a flash crowd or a number of massive sudden 
departures happens. So, we introduce a new measure, which seems to have 
more meaning, and it is no other than the iteration at which the play out 
begins, the instant at which the node obtains the 21 first pieces. 

 
4.2.1 Simple Case 
 
So, now let’s see the impact of these changes on the first case we examined, which 
is the simplest scenario, where each node selects to download from the node with 
the highest upload rate. 

Figure 21: Simple Case with Bufferisation Delay, left Continuity Index, right Credit 
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Concerning the left part of figure 21, we have manually verified that in all the 
simulations, with only two exceptions for node 4, the continuity index remains at zero 
until the node obtains the first 21 pieces and then jumps and remains constantly at 1. 
So, obviously we should perceive the preceding figure differently now. The evolution 
of each line is a joined measure of the probability that the play out starts at each 
specific iteration and of the mean continuity index at that iteration. Let’s observe for 
example the right most line, which corresponds to the medium node 4 who starts with 
an empty buffer. The point (8,0.2) means that for 20% of the simulations done, the 
play out starts after iteration 8. What seems as a right quality measure is the point of 
the x axis which corresponds to a percentage of 0.5, which is the iteration after which 
the play out starts for half the simulations. In our case this must be around 9.2, which 
means that for half the simulations the play out starts after iteration 9.2. It is 
meaningful to accompany the previous figure with the next table, which represents 
exactly what we have just explained, the mean iteration at which the play out begins. 
The reason figure 21 left is important is so that we keep in mind that the instant when 
the play out starts is a mean and not an exact number and also that in some cases 
there is a considerable variance, like in the case of node 4. However, even in that 
case we can observe that there are less than 20% of the simulations with a play out 
time earlier than the 8th iteration and less than 20% with a play out time later than the 
10th iteration. So the mean represents a considerable majority, it is not meaningless, 
although sometimes the appearance of a rather large values dispersion for a node or 
two seems bizarre. We have noticed though that nodes poor in resources (either with 
poor initial buffer or with low bandwidth) tend to present a greater variance than rich 
ones, which signifies that their behavior is less predictable. With this information we 
can easily calculate the mean play out start iteration of the system which is 3.5467. 
 
Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Mean play 
out iter. 

6.6 3.6 3.3 2 8.4 5.1 4.2 2.6 1 1 2.1 5.4 3.8 2.4 1.7 

Table 15: Mean play out start iteration for the 15 nodes after 10 simulations 

 
In the right part of figure 21, we can see how each node’s credit varies with time, if 
we attribute a zero score at the beginning to each one and continue by adding a point 
for each uploaded block and subtract one for each downloaded block. For the time 
being, the scores don’t constitute a limit, we haven’t introduced an incentive 
mechanism based on them yet. The point of this short comment is to verify what we 
have already seen, that fast nodes are the major contributors and slow nodes the 
major consumers, with medium nodes located somewhere in the middle. 
 
4.2.2 Introduction of the Micro Payment Mechanism 
 

Figure 22: Example with Micro Payment Mechanism, Continuity Index 
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At this point, it would be interesting to 
introduce an incentive, for example ban the 
nodes from downloading unless they have a 
positive score, that means unless they upload 
as much as they download. The resulting 
continuity index figure for this scenario can be 
seen on the left. It is necessary to remind the 
reader that now the evolution of each node 
line represents two things on the same time: 
the mean of the continuity indexes at that 
particular iteration after 10 simulations and the 
probability that the play out starts at that 
iteration. We have already explained the 
reasons for this. In case of lack of clarity, we 
also add a table with the mean play out start 
iteration for each node. 
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Node 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Mean 
play out 
iter. 

14.75 6.8 6.7 1.8 - 4.9 3.7 3.1 1 1 1.8 3.4 2.6 2.1 1.5 

Table 16: Case 6 with Micro Payment Mechanism, Mean play out start iteration for the 15 nodes 

 
Node 4, starting with an empty buffer, is not able to obtain enough packets to share 
with others in order to augment his score, so he never succeeds in acquiring the 21 
packets necessary to start the play out. Almost the same happens to node 0, whose 
value 14.75 represents the mean start out iteration for the 4 out of 10 simulations, 
where he actually gets to start the reproduction of the live stream. In the rest of them 
(6 out 10) he is starved like node 4. So, in the calculation of the mean play out start 
iteration for the 10 simulations, these two nodes are left out, and for the rest of them, 
we get a value of 3.1077. We observe that there is a considerable amelioration, 
which is logical since for the majority of the simulations, two nodes are left out so the 
resources are shared among fewer users. We can also see that this enhancement is 
impressive for the rich and fast nodes, which are naturally favored by this incentive 
mechanism as they have spare capacity to bust their score. However, before the 
experiment, we would expect fewer nodes to be able to reach the point of actually 
obtaining 21 packets to start the play out, because the policy we use is very 
restraining. For example, nodes 0-3 should be able to download only 1 piece per 
iteration and that only if their lucky, so what’s the trick behind this unexpectedly good 
performance? The reason is the existence of the random mechanism, who allows all 
the nodes to obtain at least 3 packets per iteration, even if they have a negative 
score or even if they get nothing by their fellow nodes. In the next simulations, the 
random mechanism is active only if the node has a positive score in order to avoid 
unexpected results like the previous one.  
 
4.2.3 Study of the Initial Credit Factor 
 
Keeping all the existing parameters in mind and adding this new notion of the random 
mechanism, the goal of the next section is to examine what happens if we vary the 
initial score, with which every node joins the system. We can see how the overall 
performance is affected by its value in the next table. 
 
Initial credit N=number of nodes 

who obtain 21 packets 
in more than 50% of the 
simulations launched 

Mean play out 
start iteration for 
the N nodes 

Mean continuity 
index for the 
N nodes 

0 12/15 2.6306 0.8733 
10 14/15 3.0143 0.9466 
25 15/15 3.58 0.9468 
40 15/15 3.69 0.9775 
55 15/15 3.58 1 
70 15/15 3.5133 1 
Table 17: Performance of the system with various initial scores 
 

The first odd element in this table is the fact that the first two cases seem to present 
a better performance than the rest in terms of mean play out start iteration although 
their nodes begin with a lower initial credit. This can be easily explained as we must 
consider that both the mean play out iteration and the continuity index are calculated 
for the nodes who actually reach the point where the live streaming begins, which 
means nodes who obtain the first 21 packets before the end of the 20th iteration. In 
the first two cases one to three nodes are excluded, so naturally the performance of 
the rest ameliorates. What’s more, the excluded nodes are the poorest ones, who 
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have the worst performance even when they succeed at starting the live streaming, 
and by consequence their contribution to the mean value is negative.   
We can also observe that the mean play out start iteration remains almost the same 
as the initial credit rises and its raise is reflected on the continuity index, which 
augments until it reaches a value of 1 for all the nodes for an initial credit of 55, that 
is for a score which allows the nodes to fill half their buffers without contributing 
anything. 
In order to understand better the evolution of the system, let’s look closely at the next 
graphs for the case where the nodes start with an initial credit of 10 points. In the left 
part of figure 23, we can see that 5 out of 15 nodes reach a peak and afterwards their 
continuity indexes start to decrease. We should attribute this to the fact that these 
nodes use all their credit and then, not having a high enough upload capacity, are 
unable to raise it in order to reach a positive value, so they are starved. What’s more, 
since they are generally slow nodes, they fill their buffers slower than the others, so 
even if they wanted to contribute, after a while there is really nobody who is 
interested in what they have to offer. Maybe they would have a chance to augment 
their score if there where always new nodes joining the system, who would be 
interested in the pieces they own. 
These assumptions are verified by the right part of figure 23, where we can see the 
evolution of the scores of the nodes, as the simulation advances. We can observe 
than only 7 out of 15 nodes converge to a positive value, whereas the rest stay below 
zero, unable to upload or download after a while. The reason for which this is not 
reflected to the continuity indexes of all of the 8 nodes with negative scores and 
affects only 5 of them, is the following: The remaining three are either medium nodes, 
whose download capacity can guarantee them enough pieces until the 8th iteration 
where their score becomes and stays constantly negative to last until the 20th 
iteration without loss of video quality, or their buffers are already almost full so the 
negative score will affect them later. In my opinion, it is rational to expect that even 
these three nodes, who seem safe at the moment, will suffer a deterioration in their 
continuity index in the future. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 23: Initial Credit Factor in Micro Payment Mechanism, Initial Credit 10 

 
Now, let’s examine the case where all the nodes start with an initial credit of 55. This 
time, we can see that all the nodes continuity indexes converge to a value of 1 
sooner or later. This is verified by figure 24, where it is obvious that 12 out of 15 
nodes converge to a value well over zero. There are, though, three nodes who end 
with negative values. We can expect these nodes either to suffer a performance 
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deterioration in the future, either their score will fluctuate around zero in order to 
maintain a stable video quality. 
 

 
 
 
 

 
Figure 36: Continuity index of the 15 nodes for an initial credit of 55  
Figure 37: Score evolution of the 15 nodes for an initial credit of 55 

 
 
 
 
 
 
 
 
 
 
 

Figure 24: Initial Credit Factor in Micro Payment Mechanism, Initial Credit 55 

In conclusion, we can say that even with a quite big initial credit, not all nodes are 
able to function well, and some are left behind unable to react ant interact with 
others. So, this micro payment mechanism is rather rigid and doesn’t have the 
necessary flexibility to allow poor or slow nodes to join the system safely. Some 
ideas as to how we could refine the mechanism with the necessary flexibility and 
adaptability follow: 
The major flaw of this mechanism is the fact that it considers all the peers as equals, 
which is far but true. The problem is that, whereas all the peers have the same need, 
a regular media flow with good quality, they don’t have the same capacities. A node 
with a slow dsl connection shouldn’t be expected to contribute the same as a peer 
with a fast campus connection, because simply he can’t. A first idea aiming to fix this 
injustice is to change the way we consider the contribution of each peer, in terms of 
the data he uploads. Instead of just counting the megabytes of uploaded data, we 

should rather use as a measure the following percentage:
capacityupload

uploadeddata

_

_
. This 

way, we should have a qualitative measure of the willingness of contribution of a peer 
and if this percentage is high enough, we should grant the peer access to the stream, 
even if he may not be in position to upload the same quantities as some of his peers. 
A practical problem of this proposition is that, in the absence of a central entity, there 
is no authority that could be responsible to get reliable information concerning the 
actual upload capacity of each peer. However, we could adopt a solution that is often 
proposed, even though more complicated, the formation of local neighborhoods, 
where the upload capacities of each node are calculated by its peers and verified 
inside the neighborhood with consecutive comparisons.  
Another idea is to use the same approach we adopted in the previous differentiated 
services example. In short, we should compare the available global upload capacity 
of the system with the fraction that is actually used by the peers, and if there is spare 
capacity, the poor nodes should be allowed to use it in order to get the stream. This 
approach is less refined and the quality measure used is less representative of the 
peers’ behavior but on the same time it is more simple to implement and less costly 
to keep it running. 
Generally, a micro payment mechanism with a more flexible and intelligent handling 
of the peers credits could be promising. 
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5. Conclusion 
 
During this research internship, I worked on incentive mechanisms for P2P live 
streaming applications. After the examination of the existing P2P systems and 
architectures, a series of simulations were done in order to evaluate and compare the 
existing algorithms and finally propose a differentiated services paradigm. 
 
5.1 Summary of the Work 
 
First, we studied some of the existing algorithms to see if they could be applied in live 
streaming. Capacity based selection of the next uploader presented better 
performance than bitmap resemblance based selection, but the best results were 
observed when we implemented the BitTorrent choke algorithm. However, as we 
have already explained, this mechanism has a very weak defence against free riders 
and it’s also inappropriate for live streaming because it was build for an environment 
with multiple seeds and low delay sensitivity. On the contrary, in live streaming there 
is only one source, which is incapable of serving everybody, and considerable delays 
before or during the streaming are unacceptable. After testing various scenarios with 
these algorithms so as to verify their behaviour, we examined a differentiated 
services example based on a reputation system, which we considered more 
appropriate for live streaming. This mechanism presented similar results as 
BitTorrent in the case of fast nodes and slightly worse in the case of slower nodes. It 
also penalised more severely nodes with low contribution, new comers and free 
riders. At this point, we were confronted with a dilemma: should we prefer an anti-
free rider mechanism, which would also cause problems to new comers, or a more 
flexible one, which would  be easily exploited by malicious users? A definite answer 
to this question demands profound research and experimentation in real internet 
conditions, so it exceeds the goals of this internship and rests to be addressed by 
future work. However, an answer we can give based on the work done during this 
study, is the following: Live streaming applications are much more resources 
demanding and delay sensitive than file sharing systems, so the regular contribution 
and cooperation of all the users are vital to keep the system running. As a result, we 
would tend to prefer a stricter mechanism that guarantees contribution, than a flexible 
one which would integrate new comers more easily. Finally, we examined a micro 
payment example, which presented limited capacity to support a live streaming 
system, but with the introduction of a more refined micro payment scheme, it could 
be promising. The conception and implementation of such an algorithm is a good 
idea for a future application.  
 
5.2 Open Problems, Future Work and Applications 
 
The open problems of this study fall mainly into two categories and they determine 
also the future work, that could be done in this domain to open new directions.  
 
The first one concerns the refinement of the proposed algorithm or the conception of 
a new technique which would allow us to distinguish with success free riders from 
new comers. This is a major problem of P2P systems, maybe it doesn't seem very 
urgent now because there is enough spare capacity at the end users and the existing 
applications aren't extremely demanding, but we can suppose that soon, with more 
and more people having access to the internet and with applications growing more 
and more “hungry” of resources, free riders exploiting the P2P systems will severely 
harm their performance. This problem becomes more complicated because of the 
intelligent nature of free riders, who tend to adapt their habits to fit those of new 
comers, in order to pass unnoticed by the potential defence mechanisms of P2P 
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networks. In my opinion, a serious solution to this phenomenon would implicate a 
kind of learning function, maybe involving a neuron network, in order to create an 
always evolving profile of a free rider, which would eventually allow us to catch him 
on the act.  
Another direction of this aspect would be the implementation and testing of new 
fairness mechanisms, which would aim at reinforcing the sentiment of community 
inside a P2P network. On the contrary, the introduction of more and more strict rules, 
efficient as it may be, has as a consequence the disintegration of every member of 
this virtual community, and on the same time malicious users tend to always find a 
way to trick the system. 
Finally, we could focus on the limitations of the mechanisms studied, which were 
mentioned in the previous paragraph, and try to ameliorate their performance. 
 
The second direction concerns the technique of the simulation itself. I think that the 
next step of tests would be to incorporate the implemented algorithms in an existing 
protocol and then repeat the experiments in a real environment, the actual internet. 
The difficulty encountered at this point is that, in order to derive comprehensive 
results, a great number of peers should implement the new mechanisms and, what's 
more, we should be able to watch these peers closely. The only existing environment 
with such properties is Planet Lab but again, since it is an experimental network with 
many applications running on the same time, we couldn't really be sure that the 
results are representative. An intermediate solution would be to repeat the 
simulations with NS2 or with an existing event driven simulator of a higher level. 
 
Until now few studies have been done on the domain of incentive mechanisms for 
P2P live streaming, and the research of a definite solution is far from finished. I think 
that the need for a comparative study of the existing algorithms is urgent, in order to 
discern the direction of the future research and to allow and promote a creative 
evolution of today’s systems.  
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7. Appendix 
 

7.1 Main Program Pseudo Code 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Global Variables 

 

Vecarray-> Each line represents the buffer of a node 

Globalbuffer->Each line represents the bitmap of a node, 

that is the interest window 

Upload->Each element represents the upload limit of each 

node, periodically updated 

Node pseudo 

 

Wait until all threads have started 

While inbound>0 do 

 If all nodes have been used, exit 

 If the buffer is full, exit 

 If there are no available resources, exit 

 Choose a not already used node at random beginning 

with those with those with the biggest upload rate 

 Load its bitmap 

 Find a missing block available in that node’s bitmap 

 Demand it 

 Wait RTT to get the answer 

 If its upload limit hasn’t been reached 

  Update your bitmap 

  Decrease other node’s upload limit 

  Decrease your own download limit 

  Continue with other missing blocks 

  If you have already used one third of your 

download     bandwidth on one node, change node 

 Endif 

Endwhile 

If your download limit hasn’t been reached yet, do for as 

many pieces as you have already downloaded+3 

Use a certain distribution to obtain packets from your 

neighbors outside the 15 known nodes 

Update your bitmap 

Decrease your download limit 

Endif 

Wait until all thread have finished 

Update bugger vector with the new bitmap 

Slide the interest window 
Update the globalbuffer with new bitmap 

Main pseudo 

 

Create the RTT array 

Create random bitmaps for the nodes 

Attribute random number of packets to each node in random 

positions in the bitmap 

While there is change in the globalbuffer 

 Create and start threads with proper parameters 

 Guarantee that all threads start and finish 

simultaneously 

 Wait for every thread to finish 

 Continue with updated bitmaps at each new iteration 

Endwhile 
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7.2 Upload Capacity Based Selection: Figures for 60 Iterations 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Left Continuity Index, Right Buffer Progress of node 4 
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