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Abstract 
 
     With the growth of the computing power of personal computer and the proliferation of 
broadband access to the Internet, media streaming has widely diffused. The high 
bandwidth required by live streaming multimedia greatly limits the number of clients that 
can be served by a source using unicast. IP Multicast should be a good solution to this 
problem, but the fact that the current Internet does not widely support IP Multicast force 
us to find other ways. Another existing solution is the proxy caching technique that can 
accomplish effective media streaming, but it cannot adapt to the variations of user 
locations and diverse user demands. Under this situation, the applying of P2P systems on 
live media streaming become a attracting direction. By using the P2P communication 
architecture, media streaming can be expected to smoothly react to network conditions 
and changes in user demands for media-streams. 
 
     In recent years, there are many end host multicast solutions have been proposed, for 
example, PeerCast, ZigZag, Promise,Narada, Delaunay, CoopNet, and  SplitStream etc. 
The main problem they emphasized are slight different, but all of them would have 
addressed the common basic streaming problem, for instance the problem of transience, 
the problem of control of end-to-end delay, etc. 
       
     In this paper, we propose a PeerCast like P2P media streaming solution. We focused 
on the maintaining algorithm of a single source, receiver driven media streaming delivery 
tree with a desirable end host performance metrics. Our proposed solution is featured by 
its tree maintaining algorithm that organize the multicast tree according to the 
geographical characteristic of nodes.  The main idea in our algorithm is the concept 
“nodelist” and the process of “sorting” and “adjusting”.  Both the theoretical analyses and 
the simulation studies proved that under a client-base size of hundreds, our solution can 
maintain a ‘balanced” streaming tree and gain a relatively good end user performance.  
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I. Introduction 

     It is generally believed that the streaming media will constitute a significant fraction of 
the Internet traffic in the near future. Almost all of the existing matured model for 
multimedia streaming is based on client/server models. Since multimedia streaming 
requires high bandwidth, the source server network bandwidth runs out rapidly if unicast 
client/server model is used.  The multicast should be a good solution to the bandwidth 
bottleneck problem, but the lack of widespread support for IP multicast in today’s Internet 
(especially at the interdomain level) forces us to find other ways. Recently, the concept of 
P2P has recently gained popularity thanks to the wide deployment of P2P file sharing 
applications over the Internet. Therefore, the combination of these two problems becomes 
an interesting idea. We dare say that P2P model is ideal one to solve the server link 
bottleneck problem and  what we have interest is the application of P2P to real-time media 
streaming, which is a more challenging problem than ordinary file-sharing. In file-sharing 
systems, a client first downloads the entire file and then uses it, termed as the 
“open-after-downloading” model; while in media streaming systems, a client consumes the 
content of a media file while the file is being downloaded, termed as the 
“play-while-downloading” model.  
      
     The P2P media streaming network is dynamically constructed by instances of joining 
and leaving the network by peers. A consumer peer searches a desired media stream by 
itself and retrieves it from an appropriate provider peer. At this time, the consumer peer can 
become a provider peer of the media stream for other peers if the media stream is cached 
there. It is easy to understand but it is not easy to realize it in practice. The challenge is to 
design good peer join and leave strategies to realize high quality streaming sessions. The 
quality of a streaming session depends on a combination of factors, ranging from the 
characteristics of the streaming sources (e.g., link capacity, availability, and offered rate) to 
the characteristics of the network paths (e.g., available bandwidth, packet loss rate, and 
overlap of paths from sources to receiver). In this paper, we will only concentrate on the 
affection of the algorithm that maintain the streaming tree and ignored the other factors. 
When we consider the algorithm, there are several issues that are important in designing an 
efficient P2P media streaming solution, for example: the transience of nodes, the 
end-to-end delay, the control of overhead, the control of the height of tree, etc. The detail 
can be found in the following text.  
      
     In this paper, we present and simulate the design of a single-source, receiver-driven P2P 
live media streaming architecture that can scale to hundreds of autonomous, short-lived 
nodes under the scope of Internet. Our solution is featured by the algorithms that organize 
the multicast tree according to the geographical characteristic of nodes. Through the 
join/leave/adjusting algorithm, our solution will maintain a ‘balanced” streaming tree and 
gain a good end user performance. In section V and VII, we have the detail about the 
description of the algorithm and the result of simulation. The rest of the paper is organized 
as follows. In Section II, we give an overview of content Distribution and P2P Model of 
Computing. Next, in Section III, we have an overview about the basic concept and problem 
about media streaming over P2P model.  In section IV, we discussed several existing media 
streaming solution over P2P network. In section VI, we give a description about the 
environment of simulation. 
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     Note: in this paper, the word “source”, “server” and “root” have the same meaning. It 
means the machine or group of machines that contain the entire multimedia object; this 
machine or group of machines have a public address that can be used by the coming client 
to find the server; it is the first member of the multicast tree. The word “client”, “node” and 
“peer” have the same meaning. It means the machine in the network (LAN or WAN, 
Intranet or Internet, depending on the environment to which the software/application is 
applied) who want to get the multimedia from the source. When it joins into the tree, it 
becomes a “node” or a “peer” of the tree. 
  
II. Overview of Content Distribution and P2P Model of Computing 
 
     The problem of media streaming is a part of content distribution problem in Internet. 
For better understanding, firstly, we will have an overview to content distribution and P2P 
model. 
 
1. Content Distribution 
 
     Content distribution on the Internet uses many different service architectures, ranging 
from centralized client/server to fully distribute.  
 
1.1. World Wide Web 
 
     At the very beginning of Internet, the World Wide Web has become one of the main 
channels for distributing information in the world today [1]. The Web is client/server 
architecture. Content on the Web is hosted on web servers and is served using the 
Hypertext Transfer Protocol (HTTP). Users use browser software to access the content 
stored on the servers. But the problem of this architecture is obvious: it is inefficient to 
satisfy the quickly increasing demand of Internet users, especially the multimedia content 
such as audio and video. 
 
1.2. Proxy Caching 
 

 
Figure1. Proxy caching 
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     The first solution was to setup a caching proxy at the client site. This is show in Figure 1. 
In this approach the client sends its request to the caching proxy which checks if it has the 
requested object in its cache. If it does, it can return the object directly to the client and 
avoid contacting the server (also called origin server) which can be far away in the network 
[1]. If the caching proxy does not have the requested object, it will download it from the 
origin server, deliver it to the client, and cache a copy of the object.  
      
     The main problem with this approach is that the content provider has no control over the 
content once it has been retrieved from the origin server and placed into the caches. The 
content provider has no good way of ensuring that if the content changes, then all users 
would always get the new content. In order to avoid the problem of caches delivering stale, 
some content providers have resorted to marking all of their content as non-cacheable so 
that the caching proxies would not store it. This solution, while effective at solving the 
problem of stale content, defeats the purpose of installing caches because they cannot store 
content anymore. This problem was the primary motivation behind the development and 
success of content distribution networks (CDN).  
 
1.3. Content Distribution Networks 
  
     Content Distribution Networks is a popular model of content distribution and have often 
been used among the large content providers. Figure 2 shows the architecture of a CDN. 
  

 
Figure2. CDN architecture 

      
     A CDN makes agreements with the content providers (O) to distribute their content to 
the users. The CDN operates content servers (C) that are typically placed near the users, for 
example at the dial-up ISPs. The user requests are redirected to these content servers which 
are able to serve the content fast. The internal network of the CDN connects the origin 
servers and content servers and is used to transfer content from the origin servers to content 
servers (or moving content from one content server to another). The main difficulty in 
creating a CDN is redirecting the clients to the content servers. Ideally, one would want 
this to be completely transparent to the clients so that no modifications to client software 
are needed nevertheless modern CDNs achieve this by manipulating information in the 
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Domain Name System (DNS) [1]. Because CDNs charge a high price for their services, 
they are mostly applicable to larger companies wanting to distribute their content. 
Individuals or small organizations would typically not be able to accord the services of a 
CDN; hence they would have to rely on client-side caching to help distribute their content. 
 
1.4. Peer-to-Peer Networks 
  
     The latest development in content distribution is peer-to-peer networks. The first P2P 
was Napster [2] which allowed users to share MP3-files with each other. The main 
application for peer-to-peer networks has been file sharing, in which users make some files 
available on their computers and others can download these files. But now, more and more 
attention has been paid to the domain of live media streaming over P2P networks.   
      Generally, a P2P network can have three possible architectures: 
 
Centralized Architecture  
     Figure 3 shows an example of a centralized and distributed P2P architecture. The 
centralized architecture requires that some central authority operates a single central server. 
This central server is responsible for answering the queries, hence all the query traffic is 
directed to it.  
 
Distributed Architecture  
     In a distributed architecture all of the peers are equal each other and no peers keep any 
permanent information about which objects are stored where; also there is no directory of 
the peers which are a part of the network. An example of this architecture is Gnutella [3].  
 
Hybrid architectures 

This architecture want to keep a balance between the accuracy of the centralized 
architecture and the lower load of the distributed architecture. 

 
 

 
Figure3. Centralized versus distributed P2P architecture  

 
2. The P2P Model of Computing 
     Below, we will have a further discussion on P2P architecture. 
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2.1. The concept of P2P 
   
     The concept of P2P is not new. Many earlier distributed systems have adopted a similar 
model, such as switched networks. The term P2P is also not new. In one of its simplest 
forms, it refers to the communication among the peers. Generally speaking, the term 
“peer-to-peer” (P2P) refers to the systems and applications that take use of the distributed 
resources to perform a function in a decentralized manner. With the rapid popularization of 
computers, P2P is increasingly receiving attention in research, product development, and 
investment circles. It is just because that P2P network have shown many advantages: 
     It enabled the resource aggregation [4]; 
     It enabled direct communication among clients and therefore reduced the need for 
costly infrastructure; 
     It improved the extensibility of Internet application; 
     It made us avoid dependency on centralized points and therefore made the availability 
of information greatly increased. 
      
     We can predict that P2P computing is an alternative to the centralized and client/server 
models of computing, where there is typically a single or small cluster of servers and many 
clients. In its purest form, the P2P model has no concept of server; rather all participants 
are peers. Every single peer has the possibility to play the traditional role of server. 
 
2.2. Goals of P2P 
  
     Like any other computing system, the goal of a P2P system is to support applications 
that satisfy the requirements of users. In a general way, a P2P approach has the following 
goals [4]:  
(1). Resource aggregation and interoperability: Each node in the P2P system brings with it 
certain resources such as compute power or storage space. Applications that benefit from 
huge amounts of these resources, such as compute-intensive simulations or distributed file 
systems, naturally lean toward a P2P structure to aggregate these resources to solve the 
larger problem. 
(2). Cost sharing and cost reduction: When that main cost becomes too large, a P2P 
architecture can help spread the cost over all the peers.  
(3). Improved scalability/reliability: With the lack of strong central authority for 
autonomous peers, improving system scalability and reliability is an important goal. As a 
result, algorithmic innovation in the area of resource discovery and search has been a clear 
area of research, resulting in new algorithms for existing systems, and the development of 
new P2P platforms.  
(4). Increased autonomy. In many cases, users of a distributed system are unwilling to rely 
on any centralized service provider. Instead, they prefer that all data and work on their 
behalf be performed locally. P2P systems support this level of autonomy simply because 
they require that the local node do work on behalf of its user.  
(5). Anonymity/privacy. Anonymity and privacy are related to autonomy. A user may not 
want anyone or any service provider to know about his or her involvement in the system. 
With a central server, it is difficult to ensure anonymity because the server will typically be 
able to identify the client, at least by Internet address. By employing a P2P structure in 
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which activities are performed locally, users can avoid having to provide any information 
about themselves to anyone else.  
(7). Dynamism. P2P systems assume that the computing environment is highly dynamic. 
That is, resources, such as compute nodes, will be entering and leaving the system 
continuously. When an application is intended to support a highly dynamic environment, 
the P2P approach is a natural fit.  
(8). Enabling ad-hoc communication and collaboration. Related to dynamism is the notion 
of supporting ad-hoc environments. By ad hoc, we mean environments where members 
come and go based perhaps on their current physical location or their current interests. 
Again, P2P fits these applications because it naturally takes into account changes in the 
group of participants.  
 
2.3. The location and classification of P2P 
  
     The classification of computer systems from the P2P perspective is showed in figure 4. 
All computer systems can be classified into centralized and distributed. Distributed 
systems can be further classified into the client/server model and the P2P model. The C/S 
model can be flat where all clients only communicate with a single server (possibly 
replicated for improved reliability), or it can be hierarchical for improved scalability. In a 
hierarchal model, the servers of one level are acting as clients to higher level servers. The 
P2P model can either be pure or it can be hybrid. In a pure model, a centralized server does 
not exist. An example of a pure P2P model is Gnutella. In a hybrid model, a server is 
approached first to obtain meta-information, such as the identity of the peer on which some 
information is stored, or to verify security credentials, then, the P2P communication is 
performed, examples of hybrid models are Napster or Groove. 
 

 
Figure4. Taxonomy of Computer Systems Architectures 

 
2.4. Infrastructure Components 
  
     The components for an informal P2P systems architecture [4] include communication, 
group management, and robustness, class-specific and application specific. 
  
(1). Communication 
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     The P2P model covers a wide spectrum of communication paradigms. At one end of the 
spectrum are desktop machines mostly connected via stable, high-speed links over the 
Internet [4]. At the other end of the spectrum, are small wireless devices such as PDAs or 
even sensor-based devices that are connected in an ad-hoc manner via a wireless medium. 
The fundamental challenge of communication in a P2P community is overcoming the 
problems associated with the dynamic nature of peers. 
  
(2). Group management  
     Peer group management includes discovery of other peers in the community and 
location and routing between those peers. Discovery of peers can be highly centralized 
such as in Napster, highly distributed such as in Gnutella, or somewhere in between.  

(3). Robustness  
     There are three main components that are essential to maintaining robust P2P systems:  
a. Security is one of the biggest challenges for P2P infrastructures, because, transforming a 
standard client device into a server poses risks to the system.  
b. Resource aggregation in P2P systems is difficult because there are a wide variety of 
resources that may be aggregated across peers.  
c. Reliability. The inherently distributed nature of peer networks makes it difficult to 
guarantee reliable behavior.  
 
(4). Class-specific  
     Compute-intensive tasks are broken into pieces that must be scheduled across the peer 
community. Metadata describes the content stored across nodes of the peer community and 
may be consulted to determine the location of desired information.  

(5). Application specific  
     Tools, applications, and services implement application-specific functionality, which 
correspond to certain P2P applications running on top of the underlying P2P infrastructure.  

2.5. Algorithms 
  
     There are three most common algorithms implemented in P2P systems: Centralized 
directory model, flooded requests model, Document routing model. 
  
Centralized directory model 
 

 
Figure5. Central index algorithm 
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     In this model the peers connect to a central directory (Figure 5) where they publish 
information about the content they offer for sharing. Upon request from a peer, the central 
index will match the request with the best peer in its directory that matches the request. The 
best peer could be the one that is cheap cheapest, fastest, or the most available, depending 
on the user needs. Then a file exchange will occur directly between the two peers. This 
model requires some managed infrastructure (the directory server), which hosts 
information about all participants in the community. This can cause the model to show 
some scalability limits, because it requires bigger servers when the number of requests 
increase, and larger storage when the number of users increase. Napster [2] is based in this 
model. 
 
Decentralized structured model (Document routing model)  
     In the document routing model, each peer from the network is assigned a random ID 
and each peer also knows a given number of peers (see Figure 6). When a document is 
published (shared) on such a system, an ID is assigned to the document based on a hash of 
the document’s contents and its name. Each peer will then route the document towards the 
peer with the ID that is most similar to the document ID. This process is repeated until the 
nearest peer ID is the current peer’s ID. Each routing operation also ensures that a local 
copy of the document is kept. When a peer requests the document from the P2P system, the 
request will go to the peer with the ID most similar to the document ID. This process is 
repeated until a copy of the document is found. Then the document is transferred back to 
the request originator, while each peer participating the routing will keep a local copy. 
FreeNet[5], Chord[6], CAN[7], Tapestry[8] and Pastry[9] are implemented in the model. 
 

 
Figure6. Document Routing Algorithm 

 
Decentralized unstructured model (flooded requests algorithm)  
     This is a pure P2P model in which no advertisement of shared resources occurs (see 
Figure 7). Instead, each request from a peer is flooded (broadcast) to directly connected 
peers, which themselves flood their peers etc., until the request is answered or a maximum 
number of flooding steps (typically 5 to 9) occur.  
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Figure 7 Flooded Requests Algorithm 

 
     This model requires a lot of network bandwidth and it does not prove to be very scalable, 
but it is efficient in limited communities such as a company network. By manipulating the 
number of connections of each node and appropriately setting the TTL parameter of the 
request messages, the flooded requests model can scale to a reachable horizon of hundreds 
of thousands of nodes. Gnutella[3], FastTrack [10], and Kaza[11] are based in this model. 

Conclusion  
     Each of these models has their advantages and disadvantages, however, the 
decentralized unstructured systems are the most commonly used in today’s Internet. The 
fundamental point is that in these unstructured systems, because the P2P network topology 
is unrelated to the location of data, the set of nodes receiving a particular query is unrelated 
to the content of the query. A host doesn’t have any information about which other hosts 
may best be able to resolve the query. Thus, these “blind” search probes can not be on 
average more effective than probing random nodes. 
 
2.6. The features of P2P technology 
  
     The features, which have a major impact on the effectiveness and deployment of P2P 
systems and applications, are: 
  
Decentralization  
     While a centralized system is ideal to a more easily managed of the security and the 
access rights, its topology may yield inefficiencies, bottlenecks and wasted resources [4]. 
Therefore the decentralization put emphasis on the users’ ownership and control of data 
and resources. In a fully decentralized system, every peer is an equal participant. This 
makes the implementation of the P2P models difficult in practice because there is no 
centralized server with a global view of all the peers in the network or the files they 
provide.  

Scalability  
     An immediate benefit of decentralization is improved scalability. Scalability is limited 
by factors such as the amount of centralized operations (e.g, synchronization and 
coordination) that needs to be performed, the amount of state that needs to be maintained, 
the inherent parallelism an application exhibits, and the programming model that is used to 
represent the computation. Scalability also depends on the ratio of communication to 
computation between the nodes in a P2P system.  
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Anonymity  
     One goal of P2P is to allow people to use systems without concern for legal or other 
ramifications. There are three different kinds of anonymity between each communicating 
pair [4]: sender anonymity; receiver anonymity and mutual anonymity. Besides the kinds 
of anonymity, it is also very important to understand the degree of anonymity a certain 
technique can achieve. There are six popular techniques for enforcing different kinds of 
anonymity with different kinds of constraints: multicasting, spoofing the sender’s address, 
identity spoofing, covert paths, intractable aliases, non-voluntary placement.  

Self-Organization  
     In P2P systems, self-organization is needed because of scalability, fault resilience, 
intermittent connection of resources, and the cost of ownership. P2P systems can scale 
unpredictably in terms of the number of systems, number of users, and the load. It is very 
hard to predict any one of them, requiring frequent reconfiguration of centralized system. 
The significant level of scale results in an increased probability of failures, which requires 
self-maintenance and self-repair of the systems [4]. Similar reasoning applies to 
intermittent disconnection; it is hard for any predefined configuration to remain intact over 
a long period of time. Adaptation is required to handle the changes caused by peers 
connecting and disconnecting from the P2P systems.  

Cost of ownership  
     Shared ownership reduces the cost of owning the systems and the content, and the cost 
of maintaining them. This is applicable to all classes of P2P systems, but it is probably 
most obvious in distributed computing. In P2P collaboration and communication systems, 
and in platforms, elimination of centralized computers for storing information also 
provides reduced ownership and maintenance costs.  
 
Ad-Hoc Connectivity  
     The ad-hoc nature of connectivity has a strong effect on all classes of P2P systems. P2P 
systems and applications in distributed computing need to be aware of this ad-hoc nature 
and be able to handle systems joining and withdrawing from the pool of available P2P 
systems. While in traditional distributed systems this was an exceptional event, in P2P 
systems it is considered usual. In content sharing P2P systems and applications, users 
expect to be able to access content intermittently, subject to the connectivity of the content 
providers. In systems with higher guarantees, such as service-level agreements, the ad-hoc 
nature is reduced by redundant service providers, but the parts of the providers may still be 
unavailable. In collaborative P2P systems and applications, the ad hoc nature of 
connectivity is even more evident. Collaborative users are increasingly expected to use 
mobile devices, making them more connected to Internet and available for collaboration. 
To handle this situation, collaborative systems support transparent delay of communication 
to disconnected systems.  

Performance  
     Performance is a significant concern in P2P systems. P2P systems aim to improve 
performance by aggregating distributed storage capacity and computing cycles of devices 
spread across a network. Because of the decentralized nature of these models, performance 
is influenced by three types of resources: processing, storage, and networking. Networking 
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delays can be significant in wide area networks. Bandwidth is a major factor when a large 
number of messages are propagated in the network and large amounts of files are being 
transferred among many peers. This limits the scalability of the system. Performance in 
this context tries to answer questions of how long it takes to retrieve a file or how much 
bandwidth a query will consume. There are three key approaches to optimize performance: 
replication, caching, and intelligent routing [4].  
(1).Replication puts copies of objects/files closer to the requesting peers, thus minimizing 
the connection distance between the peers requesting and providing the objects.  
(2).Caching reduces the path length required to fetch a file/object and therefore the number 
of messages exchanged between the peers.  
(3).Intelligent routing and network organization. To fully realize the potential of P2P 
networks, it is important to understand and explore the social interactions among peers. For 
example, we can determine “good” peers based on interest, and dynamically manipulate 
the connections between peers to guarantee that peers with a high degree of similar 
interests are connected closely [14]. Establishing a good set of peers reduces the number of 
messages broadcast in the network.  
 
Security  
     P2P systems share most of their security needs with common distributed systems: trust 
chains between peers and shared objects, session key exchange schemes, encryption, 
digital digests, and signatures [4]. Extensive research has been done in these areas, and new 
security requirements appeared with P2P systems, some are: Multi-key encryption, 
Sandboxing, Digital Rights Management, Reputation and Accountability, Firewalls.  

Transparency and Usability  
     In distributed systems, transparency was traditionally associated with the ability to 
transparently connect distributed systems into a seamlessly local system. The P2P software 
should not require any significant set up or configuration of either networks or devices in 
order to be able to run. Also, P2P systems should be network and device transparent 
(independent). They should work on the Internet, intranets, and private networks, using 
high-speed or dial-up links. They should also be device transparent, which means they 
should work on a variety of devices, such as handheld personal digital assistants (PDAs), 
desktops, cell phones, and tablets. Another form of transparency is related to security and 
mobility [4].  

Fault Resilience  
     One of the primary design goals of a P2P system is to avoid a central point of failure. 
Although most P2P systems (pure P2P) already do this, they nevertheless are faced with 
failures commonly associated with systems spanning multiple hosts and networks: 
disconnections/unreachability partitions, and node failures. These failures may be more 
pronounced in some networks (e.g., wireless) than others (e.g., wired enterprise networks). 
It would be desirable to continue active collaboration among the still connected peers in the 
presence of such failures. Replication of crucial resources helps alleviate the problem [4].  
 
Interoperability  
     Although many P2P systems already exist there is still no support to enable these P2P 
systems to interoperate. Some of the requirements for interoperability include [4]: 
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self-determination for interoperation, communication among systems, exchange of request 
and data, and execution task in higher protocol levels, advertise and maintain about same 
level of security, QoS and reliability. In the past, there were different ways to approach 
interoperability, such as standards, common specifications, and common source code, 
open-source and de facto standards [4]. 
 
III. Streaming media over P2P model 
 
     Now, we have already the basic concept about P2P network and content distribution in 
Internet, we can find that although there have been significant research efforts in 
peer-to-peer systems during the last years, one category of P2P systems has so far received 
less attention: the P2P media streaming system [12]. 
 
1. The reason to stream media over P2P model 
 
     At the present time, mainly used media streaming applications over Internet are still 
based on the traditional client/server model of Content Delivery Networks (CDN). The 
performance we can get through this model is very limited. Even the large streaming 
servers are not able to feed more than a few hundred streaming sessions simultaneously. 
The streaming server is the single point of failure and high rate network access is costly. In 
addition, the selection of the best streaming server in a CDN during a session is difficult. 
Peer-to-Peer (P2P) networks provide characteristics and possibilities that can deal with 
these limitations.  
      
     A P2P communication infrastructure is built upon an overlay network whose topology 
is independent of the underlying physical network. Currently, many researchers are 
investigating how to implement media streaming in P2P networks in order to provide an 
efficient and scalable multimedia distribution service. Stringent Quality of Service (QoS) 
requirements for media distribution as well as dynamically changing transmission capacity 
and availability in P2P-networks pose many challenges. 
 
2. What are a stream and a live Streaming? 
  
     A stream is a time-ordered sequence of packets belonging to a specific media file. This 
sequence of packets is not necessarily downloaded from the same serving node. Neither is 
it required to be downloaded in order. It must be displayed by the client in a specific order. 
It is the responsibility of the scheduler of final application to download the packets from a 
set of possible nodes before their scheduled display time to guarantee non disruptive 
playing of the media. 
   
     Live streaming refers to the synchronized distribution of streaming media content to 
one or more clients. (The content itself may either be truly live or pre-recorded.). A live 
stream has the important property of being history-agnostic: the group-member is only 
interested in the stream from the instant of its subscription onwards [13]. Live streaming 
media will form a significant fraction of the internet traffic in the near future. Recent trade 
reports indicate that if the current acceptance rate among end-users persists, streaming 
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media could overtake television with respect to the size of the client base. The adoption 
trends for streaming media are expected to be particularly remarkable in the context of 
peer-to-peer (P2P) systems. Since video streams are high bandwidth applications, even a 
small number of clients receiving the stream by unicast are often sufficient to saturate 
bandwidth at the source. Thus, IP Multicast is a natural paradigm for distributing such 
content, but the deployment of IP Multicast has been slowed by difficult issues related to 
scalability, and support for higher layer functionality like congestion control and reliability, 
the service is to be simulated over unicast links between hosts, forming an overlay network 
over end-hosts. The application-layer assumes responsibility for providing multicast 
features like group management and packet replication. An end-host multicast solution 
then seems to be an ideal fit. However, a P2P system presents a challenging domain. A P2P 
system can have hundreds of nodes at any given instant. More significantly, nodes are 
autonomous, unpredictable, and may have short (of the order of minutes) lifetimes. Thus, a 
solution must be capable of good performance over a large and dynamic system. In [14] is 
proposed a tree-based end-host multicast architecture for streaming live media that can 
scale to hundreds of nodes in a P2P system. 
 
3. Multiple Description Coding (MDC) 
  
     Multiple description coding is a method of encoding the audio and/or video signal into 
M>1 separate streams, or descriptions, such that any subset of these descriptions can be 
received and decoded into a signal with distortion (with respect to the original signal) 
commensurate with the number of descriptions received; that is, the more descriptions 
received, the lower the distortion (i.e., the higher the quality) of the reconstructed signal. 
This differs from layered coding, in MDC every subset of descriptions must be decodable, 
whereas in layered coding only a nested sequence of subsets must be decodable. For this 
extra flexibility, MDC incurs a modest performance penalty relative to layered coding, 
which in turn incurs a slight performance penalty relative to single description coding. 
Several multiple description coding schemes have been investigated over the years [15]. A 
particularly efficient and practical system is based on layered audio or video coding, 
Reed-Solomon coding, priority encoded transmission, and optimized bit allocation [16]. In 
such a system the audio and/or video signal is partitioned into groups of frames (GOFs), 
each group having duration T = 1 second or so. Each GOF is then independently encoded, 
error protected, and packetized into M packets, as shown in Figure 8.  
      
     If any m ≤M packets are received, then the initial Rm bits of the bit stream for the GOF 
can be recovered, resulting in distortion D(Rm), where 0 = R0≤R1≤…..≤RM and 
consequently D(R0)≥D(R1)≥ …..≥D(RM). Thus all M packets are equally important; only 
the number of received packets determines the reconstruction quality of the GOF. Further, 
the expected distortion is Mm=0 p(m)D(Rm), where p(m) is the probability that m out of M 
packets are received. Given p(m) and the operational distortion-rate function D(R), this 
expected distortion can be minimized using a simple procedure that adjusts the rate points 
R1,..,RM subject to a constraint on the packet length [16]. By sending the mth packet in each 
GOF to the mth description, the entire audio and/or video signal is represented by M 
descriptions, where each description is a sequence of packets transmitted at rate 1 packet 
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per GOF. It is a very simple matter to generate these optimized M descriptions on the fly, 
assuming that the signal is already coded with a layered codec. 
 

 
Figure8. Priority encoded packetization of a group of frames 

 
4. Receiver driven (on-demand) streaming 
  
     On-demand streaming refers to the distribution of pre-recorded streaming media 
content on demand (e.g., when a user clicks on the corresponding link). As such, the 
streams corresponding to different users are not synchronized. When the server receives 
such a request, it starts streaming data in response if its current load condition permits. 
However, if the server is overloaded, say because of a flash crowd, it instead sends back a 
response including a short list of IP addresses of clients (peers) who have downloaded (part 
or all of) the requested stream and have expressed a willingness to participate. The 
requesting client then turns to one or more of these peers to download the desired content. 
Given the large volume of streaming media content, the burden on the server (in terms of 
CPU, disk, and network bandwidth) of doing this redirection is quite minimal compared to 
that of actually serving the content, this redirection procedure will help reduce server load 
by several orders of magnitude [16]. Many solution that are proposed are base on the model 
on-demand streaming, like PeerCast [14], ZigZag[17], etc. Our solution in this paper is 
also a kind of receiver driven, on demand streaming solution. 
 
5. Strategies for the media distribution 
  
     For getting a relatively satisfied QoS (Quality of Service) requirement for media 
distribution over P2P networks. People have developed many techniques and strategies. 
Here, we will have an overview on replication, caching, pre-fetching, reputation, trust and 
semantic. And here, what we have interested in is the multimedia streaming, but the 
strategy of replication is often used in the algorithm of content/file sharing, so we will only  
give a more detailed discuss on the strategy caching and prefetching that are related with 
the media streaming. 
 
5.1. Replication 
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     In P2P systems, for providing a high availability, we need many copies of the same 
content to be replicated across peers in the systems. At the same time, content should not be 
excessively replicated, because it will waste bandwidth and storage resources.  
      

     Article [18] proposed replication schemes that solve the following difficult problems: 
availability, adaptive and distributed. Article [19] proposed replication strategies in the 
decentralized unstructured P2P systems and this kind of system is the most commonly used 
in today’s Internet. In these decentralized unstructured P2P systems, the hosts form a P2P 
overlay network; each host has a set of “neighbors” that are chosen when it joins the 
network. A host sends its query to other hosts in the network. The fundamental point is that 
in these unstructured systems, because the P2P network topology is unrelated to the 
location of data, the set of nodes receiving a particular query is unrelated to the content of 
the query. A host doesn’t have any information about which other hosts may best be able to 
resolve the query. Thus, these “blind” search probes can not be on average more effective 
than probing random nodes. To improve system performance, one wants to minimize the 
number of hosts that have to be probed before the query is resolved. One way to do this is to 
replicate the data on several hosts. That is, either when the data is originally stored or when 
it is the subject of a later search, the data can be proactively replicated on other hosts.  

5.2. Caching 
 
     In the domain of streaming media delivery, Caching is a well known and proven 
concept [20]. The client who is playing the content can retrieve the cached media content 
from many different sources. A kind of Metadata has been attached to the content. It can 
help clients determine if they should retrieve the content from the cached copy or from the 
original source, refreshing the cache.  
      
     At early stage, the P2P caching systems needed to keep redundant copies of data 
because there was very little metadata about the files. Besides, the cached copy could only 
be retrieved from a single source. Quickly, people developed the systems that could 
retrieve data from different cache sources. And these sources could be selected based on 
hop count, latency, and some other factors. With the maturing of the solutions, more and 
more caching techniques could be combined with the new features of peer-to-peer such as 
dynamic peer detection in order to provide a very fault-tolerant system. 
      
     Nowadays, the sizes of multimedia have becoming more and more lager, for example 
the music, the films and cartoons. The large sizes of multimedia objects make the 
full-object caching strategies impossible. A film can easily consume the whole cache space. 
For solving this problem, a number of segment-based proxy caching strategies have been 
proposed [21]. These strategies cache segments of a media object instead of the entire 
object to reduce network traffic as well as the disk bandwidth requirements of media server. 
Besides, the client startup delay is reduced if beginning portions of media object are 
cached.  
      
     These caching methods can be classified in two types. The first type focuses on 
reducing client startup delay by always giving a high priority to cache the beginning 
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segment of media object. Among this type of caching methods prefix caching, has been 
proposed to segment the media object as a prefix segment and a suffix segment. The proxy 
caches the prefix segments only and tries to cache as many prefix segments as possible. 
Prefix caching is effective when clients mostly access initial portion of media objects [21]. 
More recently, the uniform and exponential segmentation strategies have been developed. 
The uniform segmentation strategy segments all media objects into fixed-length segments 
while the exponential segmentation strategies segments media objects with an 
exponentially increased segment length. This strategy is based on the assumption that later 
segments of media objects are less likely to be accessed. Thus, the beginning segments are 
given a high priority for being cached. 
     
      The second type of method tries to improve the server traffic reduction. An example of 
this type of caching methods is found in the adaptive-lazy segmentation [22], in this 
strategy, each object is fully cached by the aggressive admission policy when it is accessed 
for the first time. The fully cached object is kept in the cache until it is chosen as an eviction 
victim by the replacement policy. At which time, the object is segmented using the lazy 
segmentation method and some segment are evicted by the replacement policy. From then 
on, the segments of the object are adaptively admitted or adaptively replaced segment by 
segment.  
 
5.3. Prefetching 
  
    Segment-based proxy caching schemes have been effectively used to deliver streaming 
media objects. However, this approach does not always guarantee the continuous delivery 
because the to-be-viewed segments may not be cached in the proxy in time. The potential 
consequence is the playback jitter at the client side due to the proxy delay in fetching these 
uncached segments, thus this problem is called proxy jitter [23].  
      
    The key to solve the proxy jitter problem is to develop prefetching schemes to preload 
the uncached segments in time. Prefetching refers to media that the user might use in the 
near future. Thus, future parts of media can be stored at intermediate node in the networks 
to enable play back. In order to improve the media delivery quality for segment-based 
caching schemes, [23] proposed two simple and effective prefetching methods, namely, 
look-ahead window based prefetching and active prefetching to address the problem of 
proxy jitter. The major action of the look-ahead window based prefetching is to prefetch 
the succeeding segment if it is not cached when the client starts to access the current one. 
The window size is thus fixed for the uniform segmentation strategy and is exponentially 
increasing for the exponential segmentation strategy. The basic idea of the second method, 
active prefetching, is to preload uncached segments as early as the time when the client 
starts to access a media object. 
      
     Prefetching can either be speculative, where the knowledge about future accesses is not 
perfect, or informed, where the look-ahead to future accesses is certain. In [24] is 
investigated speculative prefetching using an analytical model which incorporates retrieval 
delay. To the best of our knowledge, even though retrieval delay is the main justification 

 16



for prefetching, it has never been incorporated into previous models for prefetching. 
Previous studies focus on building access models for the purpose of access prediction and 
investigate these models empirically. In [24] is assumed the existence of one, such model 
to provide some knowledge about future access and investigate analytically the 
performance of a prefetcher that utilises this knowledge. Currently, prefetching is more 
often used in mobile computing, because resources are severely constrained, performance 
prediction is as important as access prediction. The growing trend of using multimedia 
aggravates the resource problem. Due that peers can be either mobile or stationary a 
prefetching scheme that anticipates the information needs of users could be useful. 
 

IV. Existing media streaming solution over P2P networks 
 
     Now, we need to have an overview about several existing solution of  live media 
streaming on P2P networks. 
 
1. PeerCast 
  
     PeerCast [14] is a tree-based end-hosts multicast architecture for streaming live media 
to multiple peers, it focuses on dynamic construction of a multicast tree which connects 
peers requesting the live media and it is designed to scale to hundreds of short lifetime 
nodes that participate in long-durational multicast session transmitted over unreliable 
unicast UDP/RTP. 
 
1.1. Peering layer 
  
     PeerCast proposed a peering layer design philosophy. The peering layer runs between 
the application and transport layers on each client peer (reference figure9.) and hide 
topology changes from final application. It controls maintenance of streaming tree: joining 
and leaving of peers. PeerCast use peering layer to separate the Data transfer sessions from 
Application sessions. Data transfer sessions are composed of the data channel and control 
channel of a media stream, they are established between the peering layers at two nodes. 
Application sessions are established between the peering layer and the end application. All 
communication between application and transport layers passes through the peering layer. 
The final application (application layer) can specify which media stream to obtain, but it is 
the peering layer to locate the server which can provide the stream, and establishes a 
data-transfer session with the server. When a termination of data transfer happened, it is the 
peering layer to locate a new server and restart the flow of data. Like that, the changes of 
data transfer session are hided from the application session. The final application does not 
need to care about the changing of multicast topology, it is to say that, using peering layer, 
we can mask peer transience form end application. 
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Figure9. Peering Layer  

 
1.2. Redirect primitive 
 
     The main primitive supported by peering layer is Redirect. PeerCast use it as a basic 
means to build topology-maintaining algorithms. Most of the basic operations are finished 
by the help of redirect primitive, including discovering an unsaturated node to connect 
when a new node incoming, enabling the recovery process of the connecting of descendant 
nodes when a father node unsubscribed and handling the failures of nodes. We should 
know that the redirect messages are produced and used just at the peering layer and the 
final application know nothing about such message. The process of Redirect is very 
simple:  
     Node p sends a redirect message to node c; 
     Node c closes its data transfer session with p and tries to connect to node t. 
     Note that the information of target node t is included in the redirect message sent from p 
to c; when c received the redirect massage, c close the session with p immediately 
regardless of the situation of data session between node p and node c.  
 
1.3. Basic policies for maintaining topology 
 
     Having discussed the mechanism of peering layer and redirect primitive, article [14] 
give us some basic policies for maintaining topology. We have known that PeerCast uses 
an overlay spanning tree, and the shape of the tree has great affection on the end-system 
metrics. We can prove that an almost-complete spanning tree is the optimal overlay tree for 
packet loss, packet delay, and time to first packet metrics. So, our goal now is to find a 
policy that can maintain an almost-complete spanning tree. Article [14] gives us several 
options based on a relatively simple cost function. For Join Policies, we suppose that each 
node to know only its local topology apart from the source, a saturated node will redirect 
the requesting node only to its immediate children. Therefore on choosing the redirect 
target, we will have several options:  
1. Random: chooses one of its children at random as the target t.  
2. Round-Robin (RR): choose the target according to a list of its children, beginning with 
the head of the list and then move the used one to the end of the list.  
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3. Smart-Placement (SP): Each node need maintain the network locations of its children. 
The client sends traceroute information along-with its request to node n and the node 
redirects to a child that has least access latency.  
      
     For Leave/Recover Policies, we have known that each node can get stream from at least 
two target nodes: 1. its parent; 2.the source. When a node unsubscribed/failed, all of its 
descendants need to find a new target node to recover the stream. We have two choices of 
operation: 1. Each transient descendant itself try to contact a target node; 2. Only some 
children C(one or several) of unsubscribed node try to contact a target node, the rest of its 
descendants will become the descendants of C.  
Combining these two groups of choices, we have following four possibilities. 
1. Root-All (RTA): redirect all descendants of specifying to source.  
2. Grandfather-All (GFA): redirect all descendants of specifying to its parent. 
3. Root (RT): only redirect C to source. 
4. Grandfather (GF): only redirect C to the node’s parent. 
      
    One point that is worth to be mentioned here is that PeerCast use heart beat message to 
detect the status of the peers, when a node failed, its parent and descendants will detect this 
failure after a predefined period, so the policy to recover from failure is similar to the leave 
policy. 
      
     The PeerCast solution can work with short-lived nodes, and allows relatively cheap 
deployment. Importantly, existing applications at a peer do not need to be changed to use 
the peering layer, and are thus conveniently enabled for such a stream distribution. In the 
context of P2P systems, the contributions of Peercast is an architecture for streaming media 
over a dynamic P2P network that uses a basic peering layer to efficiently enable a 
connected topology. PeerCast insulates end-applications from router transience, thus 
enabling good end-system performance that degrades gracefully with increasing numbers 
and decreasing lifetimes of clients. 

 
2. Zigzag 
  
     Like PeerCast, ZigZag [17] is a P2P streaming technique proposed for the problem of 
streaming live media from one single source to a large numbers of clients on Internet. 
     The transience of peers is naturally one of the main designing objectives of ZigZag. 
This solution also takes the control of the tree height and the overhead of controlling 
information into account for the reason of the scalability of the system with a large number 
of clients. The main difference between PeerCast and ZigZag is the later one organizes the 
nodes into a hierarchical cluster structure and introduces a set of rule to confine the 
multicast tree. The number of hierarchical level and the size of cluster can be controlled 
and the multicast tree is built based on these constraints of predefined structure and rules. 
And the key characteristic of ZigZag’s design is the use of a foreign head other than the 
head of a cluster to forward the content to the other members of that cluster. 

 
ZigZag solution includes the description of:  

1. The administrative organization that represents the logical relationships among the 
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nodes; 
2. The multicast tree that represents the physical relationships among the nodes; 
3. The rules applied to construct administrative organization and multicast tree; 
4. The control protocol with which nodes exchange state information; 
5. The Join/Leave/Optimization Policies. 
 
2.1. Administrative organization 
 

An administrative organization is a multi-layer hierarchy structure organized into 
clusters. 

  

 
Figure10. Administrative organization of peers 

 
 

     All of the peers are the members of the lowest layer (layer 0) and are divided into 
clusters of predefined size; Layer H is composed by the “head” peers of layer H-1, a head is 
a peer selected form one cluster of lower layer (layer H-1). H is the number of layers; The 
size of cluster is predefined, for example [k, 3k] (k >3 is a constant); And according the 
proposed structure, we have H = Θ (logkN). Please reference figure10. 
 
2.2. The predefined rules 
 

In ZigZag, the building of multicast tree and the applying of Join/Leave/Optimization 
Policies must obey a set of predefined rules, the main contents are: 
1. A peer not at its highest layer cannot have any link to or from any other peer.  
2. A peer at its highest layer can only link to its foreign subordinates.  
3. Non-head members of a cluster must get the content from a foreign head.  

(In fact, rule 2 and 3 is the two sides of one rule.) 
 
The terms used in rules: 
Subordinate: Non-head peers of a cluster headed by a peer X are called 

“subordinate” of X. 
Foreign head: A non-head (or server) clustermate of a peer X at layer j > 0 is called a 

“foreign head” of layer (j-1) subordinates of X. 
Foreign subordinate: Layer-(j-1) subordinates of X are called “foreign subordinates” of 

any layer-j clustermate of X. 
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Foreign cluster: The layer-(j-1) cluster of X is called a “foreign cluster” any layer j 
clustermate of X. 

 
 

 
Figure11. Relationships among clusters and peers 

  
     With the description of administrative organization and constraints rules, we can 
already try to present a ZigZag multicast tree, reference the following figure12 and 
figure13 in next page. 
 
2.3. Control protocol and Join/Leave Policies 
 
     For maintaining the shape of multicast tree and the structure of administrative 
organization, ZigZag use a control protocol to exchange controlling information among 
nodes. Each node in a cluster must periodically communicate with its clustermates, its 
children and parent in the multicast tree. The exchanged information include the peer 
degree, the relation between foreign head and its descendants, the flag Reachable(x) 
(representing the reachability from x to a layer 0 peer) and the flag Addable(x) 
(representing the possibility of joint of new client under x), depending the role played by 
the peers.  
      
     Making use of the flags Reachable(x), Addable(x) and cost functions D(Y ) and d(Y , P) 
(D(Y )=end-to-end delay from the server observed by a peer Y; d(Y , P)=the delay from Y 
to P measured during the contact between Y and P), ZigZag proposed a join algorithm. In 
fact, the main idea of this algorithm has no essential difference with that proposed by 
PeerCast: using flag to judge the possibility of reaching and joining and than using a cost 
function to get a better result against the end system performance.  

The differences rest with that: 
1. ZigZag’s join algorithm can not violate the rules described above, it is to say, the 
 forming of multicast tree is constrained by the administrative organization. In contrast, 
PeerCast have no this kind of limitation. 
2. For the reason of existing of limited size cluster, ZigZag need to apply periodically a 
split algorithm. It will split evenly an oversize cluster into two clusters. In contrast, 
PeerCast does not need this kind of operation. 
     With regard to the Leave/Failure policies, the one proposed by ZigZag is a different one 
with PeerCast. Here, no matter purposed or accidental departure of a node will be known 
by its parent peer, all subordinate peers and all children peers thanks to the control protocol. 
If the leaving node x is a non head peer, its cluster head is responsible to select an x’s 
clustermate to replace x; If x is a head peer, a subordinate of x in layer 0 will be chose to 
replace x. So, we can find that this leave policy based totally on the structure of 
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administrative organization and is totally different with PeerCast. Besides, ZigZag need a 
periodical merge procedure of the undersized cluster caused by the departure of nodes to 
reduce overhead and maintain the balance of tree structure. 
 
 

 
Figure12. The multicast tree atop the administrative organization 

 
 

 
Figure13. The multicast tree in another perspective 

 
2.4. A conclusion for PeerCast and ZigZag 
 
     Just like anyone solution, PeerCast and ZigZag have their limitation and large room to 
improve on. For example: 
(1). One big and common limitation of PeerCast and ZigZag is that the peers in the tree can 
only have one parent, this presupposition heavily limits the utilization of bandwidth of 
peers and the efficiency of streaming even it simplified the problem. So the multi source 
problem is an interesting direction to work on. 
(2). Both of PeerCast and ZigZag does not give enough attention to the problem of 
heterogeneity, the algorithm is still not smart enough and affect the efficiency. 
(3). To PeerCast, the effective control of height of tree is still a problem. 
(4). To PeerCast, the performance when extending to thousands or larger number of clients 
in Internet is still very limited. 
(5). To ZigZag, the structure of administrative organization brought some unbalanced 
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characteristic, such as some peer can only have one child and some peer supports many 
children just like in a Star topology. 
(6). Both PeerCast and ZigZag are application-level multicast technique and by far, in 
general practice, the multicast infrastructure in the network is still not widely adopted, so 
these end system level multicast solution that use end host to route and distribute multicast 
message have to use only unicast network service. 
 
3. PROMISE 
  
     This system is presented in [25] as a P2P media streaming system with key functions of 
peer lookup, peer-based aggregated streaming, dynamic adaptations to network and peer 
conditions. PROMISE is based on an application level P2P service called CollectCast [26].  
 
3.1 The major functions of PROMISE 
 
(1). inferring and leveraging the underlying network topology and performance 
information for the selection of senders;  
(2). monitoring the status of peers and connections and reacting to peer/connection failure 
or degradation with low overhead;  
(3). dynamically switching active senders and standby senders. In Promise the dynamic 
and diversity are reflected in both peers and network connections among peers. A sender 
may stop contributing to a P2P streaming session at any time, the outbound bandwidth 
contributed by a sender may change, the connection between a sender and the receiver may 
exhibit different end-to-end bandwidth, loss, and failure rate, the underlying network 
topology determines that the connections between the senders and the receiver are not 
independent of each other, with respect to their loss and failure rate. 
 
3.2. PROMISE architecture 
  
     The architecture (Figure14) consists of peers interconnected through a P2P substrate. 
The P2P substrate maintains connectivity among peers, manages peer membership, and 
performs object lookup. Operations are independent of the underlying P2P substrate. 
Therefore, PROMISE can be deployed on top of P2P substrates such as Pastry, Chord and 
CAN. In PROMISE prototype Pastry is used and modified. PROMISE assumes that peers 
exhibit heterogeneous characteristics and they do not have server-like capability: They 
contributed limited capacity, and may fail or reduce their sending rates unexpected. Each 
peer p is associated with two parameters: offered rat (Rp) and available (Ap). The offered 
rate is the maximum sending rate that a peer can contribute to the system. A lower bound 
on the offered rate (Rpmin) is imposed by the system to limit the maximum number of peers 
required to serve a request. This limited the number of concurrent connections that the 
requesting peer needs to maintain. The availability is the fraction of time a peer is available 
for serving. The available of peer p is represented as a binary random variable Ap, 1.0 
indicate “available for streaming” and 0.0 otherwise. The rate and availability information 
is collected by a daemon running in each participating peer. The rate could be a parameter 
set by the user during initial set up. The availability can either be set by the user or 
measured by collecting statistics during the regular operation of the peer. Due PROMISE is 
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based on CollectCast and it chooses the sending peers and orchestrates them in order to 
yield the best quality for the receiver. CollectCast encompasses a number of techniques for 
selecting the best sending peers, inferring and monitoring the characteristics of the 
underlying network, assigning streaming rates and data segments to the sending peers, and 
deciding when a change of the sending is need. 
  

 
Figure14. PROMISE architecture 

 
3.3. PROMISE operation 
  
     In PROMISE a peer requesting a movie runs the receiver procedure and the procedure 
first issues a lookup request to the underlying P2P substrate, which will return a set of 
candidate peers (10 to 20 peers) who have the movie. The protocol then constructs and 
annotates the topology connecting the candidate peers with the receiver. The selection 
algorithm determines the active sender set using the annotated topology; the active set is 
the best subset of peers that is likely to yield the best quality for this streaming session. 
(The rest of candidate peers are kept in a standby sender set). Once the active set is 
determined, the receiver establishes parallel connections with all peers in the active set. 
The receiver assigns a sending rate to each of the active senders based on the sender’s 
offered rate and the goodness of the path from that sender to the receiver. The streaming 
session continues as far as there is not need to switch to a different active sending set. A 
switch is needed if a peer fails or the network path becomes congested. At which time, the 
topology is update with new values measured passively during streaming and a new active 
set is selected. Upon receiving a control packet, the sender determines the rate and the 
subset of data it is supposed to send. The sender keeps sending till a new control packet 
arrives with new assignment.  

3.4. Selection of the best peers 
  
     Search return a set of candidate peers from which the receiving peer chooses the active 
set to start streaming the movie. In PROMISE tree selecting techniques are possible: 
random, end-to-end and topology-aware. The random technique randomly chooses a 
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number of peers that can fulfill the aggregate rate requirement, even though these peers 
may have low availability and share a congested path [19]. The end-to-end technique is 
based on the quality of the individual paths and on the availability of each peer, the 
technique chooses the active set and estimates the “goodness” of the path from each 
candidate peer to the receiver. 
  

 
Figure15. Topology-aware selection 

 
     The end-to-end technique does not consider shared segments among paths. The 
topology-aware technique infers the underlying topology and its characteristics and 
considers the goodness of each segment of the path. Thus, it can make a judicious selection 
by avoiding peers whose paths are sharing a tight segment (Figure15). First is defined the 
goodness topology and how it is annotated by network performance metrics and peers 
characteristics. Then the goodness topology is used to estimate the peer goodness for the 
session being established. Goodness topology T is a directed graph that interconnects the 
candidate peers and the receiving peer. Each segment i→j∈T is annotated with a goodness 
random variable gi→j. Each leaf node represents a peer p from the set of candidate peers P 
and has two attributes: a fixed offered rate Rp and a random variable Ap that describes the 
availability of p for streaming.  

4. CoopNet 
  
     CoopNet, described in [16] is an approach to content distribution that combines aspects 
of infrastructure-based and peer-to-peer content distribution; it is focused on distributing 
streaming media content, both live and on-demand, in order to replace the traditional 
client-server framework. Specifically, Coop-Net considers the problem that arises when 
the server is overwhelmed by the volume of requests from its clients. For instance, a news 
site may be overwhelmed because of a large “flash crowd” caused by an event of 
widespread interest, such as a sports event or an earthquake. A home computer might be 
overwhelmed even by a small number of clients because of its limited network bandwidth. 
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In fact, the large volume of data and the relatively high bandwidth requirement associated 
with streaming media content increases the likelihood of the server being overwhelmed in 
general. Server overload can cause significant degradation in the quality of the streaming 
media content received by clients.  
      
     CoopNet addresses this problem by having clients cooperate with each other to 
distribute content, thereby alleviating the load on the server. In the case of on-demand 
content, clients cache audio/video clips that they viewed in the recent past. During a period 
of overload, the server redirects new clients to other clients that had downloaded the 
content previously. In the case of live streaming, the clients form a distribution tree rooted 
at the server. Clients that receive streaming content from the server in turn stream it out to 
one or more of their peers. The key distinction between CoopNet and pure P2P systems 
like Gnutella is that CoopNet complements rather than replaces the client-server 
framework of the Web. There is still a server that hosts content and (directly) serves it to 
clients. CoopNet is only invoked when the server is unable to handle the load imposed by 
clients. The presence of a central server simplifies the task of locating content. In contrast, 
search for content in a pure P2P system entails an often more expensive distributed search. 
Individual clients may only participate in CoopNet for a short period of time, say just a few 
minutes, which is in contrast to the much longer participation times reported for systems 
such as Napster and Gnutella [19]. For instance, in the case of live streaming, a client may 
tune in for a few minutes during which time it may be willing to help distribute the content. 
Once the client tunes out, it may no longer be willing to participate in CoopNet. This calls 
for a content distribution mechanism that is robust against interruptions caused by the 
frequent joining and leaving of individual peers. To address this problem, CoopNet 
employs multiple description coding (MDC). The streaming media content, whether live or 
on-demand, is divided into multiple sub-streams using MDC and each sub-stream is 
delivered to the requesting client via a different peer. This improves robustness and also 
helps balance load amongst peers.  
      
     A distribution tree rooted at the server is formed, with clients as its members. Each node 
in the tree transmits the received stream to each of its children using unicast. The out 
degree of each node is constrained by the available outgoing bandwidth at the node. In 
general, the degree of the root node (i.e., the server) is likely to be much larger than that of 
the other nodes because the server is likely to have a much higher bandwidth than the 
individual client nodes. One issue is that the peers in CoopNet are far from being dedicated 
servers. Their ability and willingness to participate in CoopNet may fluctuate with time. 
For instance, a client’s participation may terminate when the user tunes out of the live 
stream. In fact, even while the user is tuned in to the live stream, CoopNet-related activity 
on his/her machine may be scaled down or stopped immediately when the user initiates 
other, unrelated network communication. Machines can also crash or become disconnected 
from the network. With a single distribution tree, the departure or reduced availability of a 
node has a severe impact on its descendants. The descendants may receive no stream at all 
until the tree has been repaired. This is especially problematic because node arrivals and 
departures may be quite frequent in flash crowd situations. To reduce the disruption caused 
by node departures, we advocate having multiple distribution trees spanning a given set of 
nodes and transmitting a different MDC description down each tree. This would diminish 
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the chances of a node losing the entire stream (even temporarily) because of the departure 
of another node. The distribution trees need to be constantly maintained as new clients join 
and existing ones leave. A centralized approach is advocated to tree management, which 
exploits the availability of a resourceful server node, coupled with client cooperation, to 
greatly simplify the problem.  
 
     For the evaluation of potential in CoopNet in the case of on-demand streaming the goals 
are study the effects of client cooperation on load reduction at the server and additional 
load incurred by cooperating peers [16]. The cooperation protocol used in simulations is 
based on server redirection. The server maintains a fixed size list of IP addresses of 
CoopNet clients that have recently contacted it. To get content, a client initially sends a 
request to the server. If the client is willing to cooperate, the server redirects the request by 
returning a short list of IP addresses of other CoopNet clients who have recently requested 
the same file. In turn, the client contacts these other CoopNet peers and arranges to retrieve 
the content directly from them. Each peer may have a different portion of the file, so it may 
be necessary to contact multiple peers for content. In order to select a peer (or a set of peers 
when using distributed streaming) to download content from, peers run a greedy algorithm 
that picks out the peer(s) with the longest portion of the file from the list returned by the 
server. If a client cannot retrieve content through any peer, it retrieves the entire content 
from the server. Note that the server only provides the means for discovering other 
CoopNet peers. Peers independently decide who they cooperate with.  
      
     In CoopNet a receiver can receive all the descriptions in the best case. A peer failure 
only causes its descendant peers to lose a few descriptions. The orphaned are still able to 
continue their service without burdening the source. However, this is done with a quality 
reduction. Furthermore, CoopNet puts a heavy control overhead on the source since the 
source must maintain full knowledge of all distribution trees.  
 
5. Other architectures 
      
     There are others architectures proposed such as MAPS [27] and SplitStream [28]. In 
MAPS is proposed systems architecture extends existing P2P infrastructures with several 
modules in order to achieve improved media service over heterogeneous peer networks. 
Modules are collated into the Media Accelerating Peer Service (MAPS), thus the system’s 
software layers are, from bottom to top: the traditional underlying operating system and 
related services, the P2P service layer, the MAPS media support modules; and the 
application layer. The P2P service layer provides basic functionality such as peer discovery, 
user and group management, name resolution, and delivery primitives. MAPS extends this 
layer with a plug-in architecture for customizing basic search and delivery operations. 
MAPS provides two extensions: a module enabling real-time media streaming (via RTP 
over UDP) and a module for enhanced search capabilities (via distributed SQL). The 
MAPS media support modules use the P2P service layer for network and resource access 
and provide transformation and computation services on data obtained from or sent to the 
P2P service layer.  
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     Other architecture called SplitStream concerned with application-level multicast in 
cooperative environments. In such environments the participants contribute resources in 
exchange for using the service and they expect that the forwarding load be shared among 
all participants. SplitStream enables efficient cooperative distribution of high-bandwidth 
content, whilst distributing the forwarding load among the participating nodes and it can 
also accommodate nodes with different network capacities and asymmetric bandwidth on 
the inbound and outbound network paths. Subject to these constraints, it balances the 
forwarding load across all the nodes. In SplitStream the key idea is to split the multicast 
content into kstripes, and multicast each stripe in a separate multicast tree. Participants join 
as many trees as there are stripes they wish to receive. The aim is to construct this forest of 
multicast trees such that an interior node in one tree is a leaf node in all the remaining trees. 
In this way, the forwarding load can be spread across all participating nodes. It is possible, 
for instance, to efficiently construct a forest in which the inbound and outbound bandwidth 
requirements of each node are the same, while maintaining low delay and link stress across 
the system. The approach also offers improved robustness to node failure and sudden node 
departures. Since ideally, any given node is an interior node in only one tree, its failure can 
cause the temporary loss of at most one of the stripes. With appropriate data encodings 
such as erasure coding of bulk data or multiple description coding (MDC) of streaming 
media, applications can thus mask or mitigate the effects of node failures even while the 
affected tree is being repaired. 
      
    In [29, 30, 31, 32 and 33] are presented others more recent advances about media 
distribution on peer-to-peer, such as PALS, where the main contribution of it is a 
receiver-driven coordination and adaptation framework for streaming from multiple, 
congestion-controlled, sender peers that is able to cope with unpredictable variations in 
throughput from each sender peer, as well as with dynamics of peer participation. PALS 
allows a receiver to orchestrate the adaptive delivery of stored layer encoded streams from 
multiple sender peers to a single receiver. Given a set of sender peers, PALS progressively 
evaluates various combinations of senders to determine a subset of the senders that can 
collectively provide maximum throughput. Once such a subset of senders is selected, the 
receiver monitors the overall throughput and periodically determines what is the target 
overall quality (i.e., the total number of coding layers) that can be delivered from all 
senders. Then, the receiver determines a proper distribution of the overall throughput 
among active layers (i.e., what portion of the overall throughput should be allocated for 
delivery of each layer), and finally divides allocated bandwidth to each layer among active 
senders (i.e., which segments of each layer should be delivered by each sender) in order to 
effectively cope with any sudden change in throughput of individual senders. 
 
 
V. Our solution 
      
     Now, we will propose a P2P live media streaming solution. 
 
1. Background and Related Research 
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     Streaming media will constitute a significant fraction of the Internet traffic in the near 
future. Since multimedia streaming requires high bandwidth, server bandwidth will run out 
rapidly if client/server model is used. A peer-to-peer model is ideal to serve the server link 
bottleneck problem. Recent years, many researches have been done on investigating the 
applicability of P2P to the problem of streaming live media. And as a result, there are many 
solutions have been proposed, such as PeerCast, ZigZag (one to many), PROMISE (many 
to one), CoopNet etc. We have a simple description of these solutions in section IV. 
      
    All of these solutions have common ground: 
(1). The purpose of these solutions is to construct a tree-based application-level multicast 
architecture that can return a good end user performance. 
(2). The whole delivery tree is built rooted at one source; 
(3). Only a subset of receivers can get the content directly from the source, the most part of 
the others would get the multimedia content from the receivers in its upstream;  
(4). The core of these solutions is the algorithm that can be used to construct and maintain 
the multicast tree and manage the behavior of the nodes in the trees;  
 
     Some of these architectures have different assumption or precondition; these 
differences come from the different complexities and the scale of problem that the solution 
tries to focus on. For example, Zigzag is a “one to many” solution that means each node in 
Zigzag’s multicast tree would have only one parent (the coming source of the multimedia 
contents) and PROMISE is a “many to one” solution that permit the nodes in the tree can 
have more than one parents; PeerCast contributes itself to solve the problem of transience 
of nodes but SplitSteam pay more attention to the heterogeneity of nodes and the problem 
of multisource; PeerCast can only scale to hundreds of nodes but Zigzag can easily extend 
to thousands of nodes. 
 
     So, if we try to propose a new P2P live streaming architecture, firstly we must take the 
common problems into account, the second step is to find a new algorithm to maintain the 
delivery tree and finally we must prove that the new schema is worth to be developed 
through the results of experiments or simulations. 
  
      In this paper, we want to propose a new join/leave algorithm that can manage the 
joining or leaving behavior of nodes according to its geographical characteristic, and 
though this algorithm, to maintain a relatively balanced multicast tree that can give us a 
satisfied end user performance. In fact, our architecture is a kind of PeerCast like solution, 
some basic come from the PeerCast solution. Because from article [14], we can find that 
the PeerCast solution is just a frame of structure instead of a detailed design like ZigZag or 
Splitstream. Its shortcoming is obvious. For example, in the join policies, it is very hard to 
build a enough balanced and efficient multicast tree using Random and RR because the 
choosing of redirect target is not based on any functional factor but a list order; in the leave 
policies, RTA and GFA redirect all of the nodes affected by the leaving of certain node, 
make the overhead of recovery is hard to control. Like the result of simulation, only SP and 
GF/RT is recommended. Other disadvantages include the insufficient of control of height 
of tree, adaptation to the heterogeneity of peers, insufficient control to overhead, 
insufficient of optimization algorithm, etc. At the same time, this basic frame have its 
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advantages, based on the proposed basic concepts (the idea of peering layer; basic 
primitive redirect; basic Join/Leave policies) we can have enough space to improve on by 
developing new algorithm or adding new characteristics.  
     
      Therefore, based on the basic concepts of PeerCast, we will try to propose a new 
algorithm to maintain the delivery tree. We will have the details in the following chapter.  
 
2. Basic assumptions and preconditions 
 
(1). The delivery tree is a single-source media streaming tree. The source would contain the 
entire contents of the multimedia object. One source does not mean one machine; maybe 
there is more than one machine simultaneously supplying the multimedia content, but they 
will have the same address that is used by the clients to find the server. From here, we can 
find that, in fact, our live streaming media P2P network is hybrid P2P architecture. This 
architecture can keep a balance between the accuracy of the centralized architecture and 
the lower load of the distributed architecture and therefore it is ideal to deal with the live 
streaming media problem. 
   
(2). Except the source (we suppose that the source is stable and has a relative high out 
bandwidth), the behavior of all of the nodes in the delivery tree is unpredictable; they are 
dynamic, autonomous, short-lived. Every one of them is free to join and leave the service at 
any time. When a node leaves it will abandon all of its descendant peers, this will make the 
descendants leave the streaming tree too. Therefore the whole tree is totally dynamic, with 
the joining and leaving of the peers, it changes continuously. 
     
 
(3). Here we would only deal with the “one to many” situation that means each node in the 
delivery tree would have only one parent and several children. In practice, especially to the 
normal public internet user, the incoming bandwidth is often bigger than out coming 
bandwidth, the well known example is ISDN or ADSL. It means that the “one to many” 
model is not the optimal solution when considering the end user’s bandwidth. It will be 
more ideal and efficient if a node can download media content from multiple sources and at 
the same time take into account the heterogeneity of each node and not just regulate a 
uniform maximum number of children for each node but adjust this number dynamically. 
But apparently, this will make the problem more complicated, like SplitStream. For 
simplicity and easy to realize, we suppose that each node has only one parent and Cmax 
children. (Cmax is a parameter that we predefined.) 
      
     Note, in this paper, the word “father”, “parent” and “ancestor” have the same meaning. 
It represents the nodes that provide media streaming to their downriver nodes; the word 
“children”, “offspring” and “descendant” has the same meaning. It represents the nodes 
that receive media streaming form their upriver nodes.\ 
 
(4). Under the given network environment (LAN or WAN, here we suppose our solution 
will be applied to Internet), we suppose that all of the potential clients (who possibly have 
interest in the streaming media) are: 
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   Very well geographically decentralized (distributed); 
   Every potential client has the same probability to join in the multicast tree; 
   Every client that has already joined into the tree has the same probability to leave the 
multicast tree, including the normal leaving (before it’s departure, the node would inform 
its parent and children) and abnormal leaving, namely failure of node(it’s departure is 
suddenly happened and neither it’s parent nor it’s children would be informed it’s 
departure). 
 
3. Our purpose 
     We want to propose a live media streaming solution over P2P systems that can scale to 
hundreds or thousands of autonomous, short-lived nodes under the circumstance of 
Internet. This architecture will organize the multicast tree according to the geographical 
characteristic of nodes. Through the join/leave/adjusting algorithm, our solution will 
maintain a balanced streaming tree and gain a good end user performance. 
  
4. Our solution for basic problems 
      
      Before giving the detail of tree-maintaining algorithm, we must have a discussion on 
some of the basic relative problems. 
    
4.1. The problem of Transience. 
      
     The primary challenge in a P2P end-host multicast system is the transience of peers 
(routing-elements). In practice, the behavior of peers is unpredictable: they are free to join 
and leave the tree at any time. And what make the situation worse is that the role of router 
in IP-Multicast is replaced by end-host (now, the routing-elements is end host) with the 
migration of multicast functionality from network-layer to the application-layer. 
Compared with IP-Multicast under which the Router failures are not so frequent, the 
unpredictable leaving of a peer in a multicast tree of an end host system will affect its entire 
descendant peers. Therefore, we need a mechanism to insulate end-applications from peer 
(router) transience in order to return a good performance. 

 
Here, we have to measure to respond this problem: 
a. Hide the changes of the topology of streaming tree from the final application at each 

client. When we want to carry out a design schema into practice, for example, developing 
software to realize the function on the client machine, it is not very difficult to separate the 
Data transfer sessions from Application sessions. A Data transfer sessions are composed of 
the data channel (media content) and control channel (control information) of a media 
stream, they are established between two nodes. Application sessions run at each node 
itself. The final application (application layer) can specify which media stream to obtain, 
but it does not need to know how to locate the server which can provide the stream, and 
how to establishes a data-transfer session with the server. When a termination of data 
transfer happened, it is not the final application but the other functional part of the software 
running on transport layer to locate a new server and restart the flow of data. Like that, the 
changes of data transfer session are hided from the application session. The final 
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application does not need to care about the changing of multicast topology, it is to say that, 
using this can of designing philosophy, we can mask peer transience form end application. 

b. A recovery mechanism.  When a node leaves, consequently, all its descendants are 
left out of the tree. And at this moment, the most important thing is to make the 
descendants continue receiving the feed as quick as possible, and guarantee that there is a 
minimal effect on the QoS perceived by its descendants. For achieving this goal, we must 
have an effective rejoin algorithm; we discuss recovery mechanisms in the following 
chapter. 
 
4.2. The end-to-end delay 
 
     Compared with the underlying network traffic, the end-to-end delay is mostly due to 
local delays at intermediate clients due to queuing and processing. The local delay at such 
an intermediate client is mostly affected by its bandwidth contention. But we can not 
control the bandwidth and the only thing we can do is to adapt it using the proposed 
algorithm.  
 
     Our solution can keep small end-to-end delay small thanks to the geographical feature 
of the join algorithm. Besides, the number of hops, namely, the height of the tree will be the 
main factor that affects the end to end delay. We will have a discussion in the section of 
optimizing algorithm.  
 
4.3. The clients how to locate the media source server? 
 
     All of the client who wants to get the streaming media should know where to find the 
media content server. It is easy to realize: the sources sever only needs to have an 
address---- IP address or URL. Here we have a actual instance, on the yellow page of 
PeerCast organization sit [40], we can find about one hundred channel of radio station, in 
this page each channel very provide a link address with that we can be directly connected to 
the radio station server. For example, if you want to hear the Japan-A-Radio pop music 
station, the link address will be: 
peercast://pls/E8E52DF85616E9F6337EEB6E7191CAE1?tip=68.5.0.195:7144. The 
format of this address is determined by the software that you want to use. We can find that 
in this address there is the IP address. Using this IP address, the clients would be able to 
send the request of joining to the server. Of course, before you want to enjoy the music you 
must install the software of PeerCast. 
      
4.4. Control of overhead 
 
     There are two kind of overhead for each node:  
(1). The load of local resources in every node. It includes the processing power, memory, 
or bandwidth capacity. But in the P2P network, each peer is independent unit and it knows 
its own capacity, besides, the load of running a P2P live media streaming software like 
PeerCast is very low to current PC computer, it is so low as to be ignored. As for the 
bandwidth capacity, each node can adjust the maximum limit on the number of children 
according to it. 
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So, there is no the problem of overload. 
 
(2). The control overhead. In the streaming session, each node needs to communicate and 
change information with the other nodes. Every operation during the streaming session will 
contribute to the control overhead, for instance, the join operation needs to find a proper 
node to connect and that will include tens of even hundreds time of sending request and 
receiving information; the leave operation will include a recovery action of its descendants 
and it means a rejoin procedure that contribute overhead, besides that the leave node itself 
will send message to inform its parent and children that it would leave, this also increases 
the overhead. It is easy to understand that the larger the number of nodes to witch an 
operation needs to consult is the higher the control over head is. But for efficient use of 
network resources and due to the resource limitation at each node, the control overhead at 
each node should be kept low. This is important to the scalability of a system with a large 
number of receivers. In next section, the part of mechanism of administration, we will 
discuss the overhead problem in our solution. 
 
4.5. The Redirect Primitive 
      
     From above paragraph we have known how to locate a media server. At the begging of 
the construction of the streaming tree if the serve is unsaturated it is easy to solve, we only 
need to connect the client directly to the server. But our tree is not a star topology; the 
maximum number of children of server is very limited, at most hundred nods. Therefore in 
the situation server is already full the new comer must know how to find the next 
destination to request the streaming media. In our solution, we will use “redirect” 
mechanism, the same thing just like in PeerCast. As shown in Figure 16, a redirect message 
is sent by a peer p to another peer c which is either opening a data-transfer session with p, 
or has a session already open. The message specifies a target peer t. On receipt of the 
redirect message, c closes its data-transfer session with p, and tries to establish a 
data-transfer session with t, for the same stream URL. Note that such redirect messages are 
produced and used at the peering layer, and the application above is unaware of such 
messages. Thus, the application session persists despite changes in the data-transfer 
sessions. The redirect primitive proves to be an effective, efficient and economic (Its needs 
very low communication overhead) mechanism used in algorithm of tree maintaining. 
 

 
Figur16. Redirect primitive 

 
5. Algorithm of maintaining the media streaming tree 
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     Like we have mentioned above, our purpose is to propose a media streaming tree that 
can provide us an acceptable end user performance, this performance is related to 
parameters like packet loss, end to end delay, control of overhead, etc. And these 
parameters will be affected by the shape of the delivery tree that is the direct result of the 
topology-maintaining algorithm. Without doubt, the join/leave/optimizing algorithms that 
control the client joining, normal leaving, failure of the nodes is the core of our solution of 
P2P live media streaming network. 
 
   Among these algorithms, the most important one is the join algorithm, because the leave 
algorithm is based on the join algorithm. After a node’s leaving, we need a quick rejoining 
of its descendants, the rejoining action apply the join algorithm. And if the optimizing 
algorithm wants to adjust the position of node, it also needs the join/leave algorithm. In our 
solution, we will propose a geographic characteristic join algorithm that is efficient and 
effective. 
 
5.1 Join algorithm 
    
     What we finally concerned is end user performance. Normally, the end-system 
performance is characterized by packet loss, packet delay, and time to first packet. In 
article [14], it has been proved that under homogeneous unicast edge and node 
characteristics, an almost-complete spanning tree is the optimal overlay tree for packet loss, 
packet delay, and time to first packet metrics. But we have said that we want to apply our 
solution on Internet. Under the circumstance of Internet, the nodes that will have interest in 
the media streaming would be so distributed and so different in local conditions and 
network condition, it is to say, there is no a homogeneous environment. An 
almost-complete spanning tree would not be enough to provide us satisfied end user 
performance. So, here, when applying to Internet, the tree that we want to construct should 
be a “balanced” one. 
 
5.1.1. So called “balanced” tree 
 
 

 
Figur17. “banlanced” or not 
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     Reference figure17, can we say the tree in the right is a more “balanced” one compared 
with the left tree? Absolutely not, the so called “balanced” is not pointed to the shape of the 
spanning tree, the shape of the tree is only a logical topology that represent the relation 
between the nodes, the real physical location of the nodes have been concealed. The 
criterion to weight a tree is balanced or not, is not the shape of the tree, but the final 
performance at end host. The criterion that we would use to construct the tree is the 
“network condition”. Just like in above figure, if there is a 100Mbps connection among 
nodes 1, 3, 5,7,8,9 in left figure and it has only a 56kbps connection among nodes 2,7,8,9 in 
right figure; there is a bigger possibility that node 9 would get a better end user 
performance. And of course, the depth of the tree will heavily affect the performance, it 
will result in more packet loss, packet delay, here we just simply suppose that the depth of 
tree in this discussion will be kept in a acceptable level.   
      
     But the question still continues, under the circumstance of Internet, how can we know 
the “network condition” between nodes and then decide where to connect them? These 
peers that we will treat with are so distributed and autonomous, can we simply say the 
network condition between two nodes is direct ratio with the geographical distance? In 
Internet, perhaps we can, the larger is the physical distance between two nodes, the worse 
the network condition between them are, although that is not always exact. 
 
     Our way to solve this problem is to use time parameter to represent the distance 
parameter, and then indirectly representing the network condition parameter. The simplest 
one is the command “ping”. The “ping” will send a ICMP ECHO_REQUEST packets to 
network hosts and it can calculate round-trip times and packet loss statistics. From these 
returned value result we can get a simple conclusion about the network condition. We can 
choose other more complicated method to judge the network condition more exactly, but 
here, for simplicity, we will only choose the command “ping”. 
 
     After knowing using what kind of parameter to judge the network condition, we would 
decide how to construct the tree using the parameter. 
 
     The ideal situation is:  
     when a new client comes, it will “ping” all of the existing nodes in the spanning tree, 
return the “round-trip times” for each node; and then we choose the node that have the least 
round-trip times to connect; if this node is unsaturated, it is ok, just connect to it; if this 
node has already the maximum number of children, we choose the node that take the 
second place, it is to say, we will sorting all of the existing nodes according the value of 
“round-trip times” from the incoming node. Obviously, by that, we can construct a almost 
balanced tree. But, it is impossible to adopt this kind of method. When the spanning tree is 
relatively large, for example, hundreds of nodes or even thousands of nodes, the overhead 
of communication will be enormous; the value of time to first packet will be unacceptable. 
So, this method can be descripted but it is impossible to realize it in practice. 
 
     But we can improve it. The method “sorting” can still be used. And this time, we 
introduce a concept of “nodelist” that used to choose the proper node to connect. 
 

 35



5.1.2. Presentation of our algorithm 
  
     Next, for better understanding the processes of join and the nodes how to maintain the 
“nodelist” for themselves, we will use figure and text together to explain our join algorithm. 
For simplicity, we make the maximum number of children of nods equal 3, including the 
source server. Besides, suppose we have two node x and y, we use distance[x][y] represent 
the “round-trip times” from x to y(x “ping” y). We can understand it just like physical 
distance, but in fact, it represents the network condition. 
 

 
Figure[1]                            Figure[2]                                     Figure[3] 

Figur18. Join algorithm 
 
     The node joining process begin, new nodes come and would be added to source server 
node 0. In figure [1], Node 1 would directly connect to server node 0, because there is 
available place, the server is not saturated, the nodelist maintained by node 1 would be: 
{0}. 
      
     In figure [2], Node 2 comes, sends a joining request to server node 0, it would be able to 
get the returned information that server node 0 have child node 1; so 2 would get a nodelist: 
{0,1}; compare distance[2][0] and distance[2][1]; if node 2 is closer to node 0,nodelist 
would be {0,1}; if node 2 is closer to node 1,the nodelist would become {1,0}; So there is a 
process of sorting distance order. 
 
     Now, pay attention to the first node number in the nodelist and judge that if there is 
available place to connect the new comer node2; Here, either node 0 or node 1 can accept 
node2, we suppose distance[2][1] is smaller, the final nodelist for node 2 would be {1,0}; 
node 2 would connect to node 1. 
      
     In figure [3], node 3 comes and it would send request to server node 0, then get it childe 
nodes list, one child node 1; so node 3 get a nodelist: {0,1}; if node 3 is closer to node 
0,nodelist would become {0,1}; if node 3 is closer to node 1,nodelist would become {1,0}. 
Here, we suppose distance [3][0] is smaller, the final nodelist for node 3 would be {0,1}; 
node 3 would connect to node 0. 
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     (Note: node 3 does not need to ask node 2 because now the node1 and node0 have 
enough places available for node 3 ;) 
 

 
Figure[4]                               Figure[5]                              Figure[6] 

Figur18. Join algorithm 
 
     In figure [4], node 4 comes and it would send request to server node 0, then get it childe 
nodes list, node 1 and node 3; so node 4 would get a nodelist: {0,1,3}; the next step is 
sorting the nodelist according to comparing result among distance[4][0], distance[4][1], 
and distance[4][3]. Suppose finally we have the nodelist for node 4 would be {1, 3, 0}, it is 
to say node1 is closest; Now, judge that if node 1 have available place, here it has, add node 
4 into node1; 
     
     In figure [5], node 5 comes, repeat the requesting and sorting process, Suppose finally 
we have the nodelist for node 5 would be {0, 1, 3}, add node 5 into node 0; 
   
     In figure [6], repeat the same process and we suppose after sorting we get the nodelist 
for node 6 is: {0, 1, 3, 5}; Now, try to connect node 6 to node 0, but node have reached its 
maximum number or children, under this kind of situation, we must have adjusting process 
of nodelist: if the first node in the nodelist is saturated, we would reference the rest of node 
number, if all of children nodes of the first node, here is node 0, are already listed in the 
nodelist, we must remove the first saturated node number from the nodelist. Here, node 0 
has children node 1, 3, 5 and all of them is in the nodelist, so we must remove node 0 from 
the list. Like that, the final nodelist for node 6 would be {1, 5, 3}; Node 6 would be 
connected to node 1. 
    
     (Note: the step of adjusting the nodelist and removing the saturated node number is just 
for the purpose to get a reasonable nodelist, and in next part we will have the detail; and in 
this part, at the begging of joining process, the server node 0 is a little special, compared 
with the normal peer in the tee.) 
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Figure[7]                                                                 Figure[8] 

Figur18. Join algorithm 
 
     In figure [7], new client 7 comes; it would get the original nodelist: {0,1,3,5}; if sorting 
result is {3,x,x,x},added node7 to node 3; if sorting result is {5,x,x,x}, added node 7 to 
node 5;  
   
     If sorting result is {0, x, x, x}; like in figure [6], we have a process of adjusting of 
nodelist, node 0 is removed from the nodelist. The rest nodes in list include 1, 5 and 3. we 
suppose that we have the result as {1,x,x}({1,5,3} or {1,3,5}, the other node number 
except the first one is not important). 
   
     Now, judge that if node 1have available places, here no. so adjusting the nodelist, put 
all of children of node 1 (node 2, 4, 6) into the nodelist, at the same time remove node 1 
from nodelist; the new nodelist would become {3, 5, 2, 4, 6} (node 0 and node 1 have been 
removed). Resort it according the distance between {3, 5, 2, 4, 6} and node7; if the sorting 
result is: 
{2,x,x,x,x} or {4,x,x,x,x}or {5,x,x,x,x}or{6,x,x,x,x}, ,we can directly connect node7 to 
node 2 or node 4 or node 5 or node 6. 
   
     In this example, we can find that the adjusting process of nodelist including not only the 
removing of saturated node but also the processes of add children nodes. 
   
     In fact, no matter how to change the nodelist, we focus on the first unsaturated node that 
is the closest to the now coming node. From next example, it will be clearer.  
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Figure[9] of Figur18. Join algorithm 

 
     Following figure [8], we suppose add node 7 into node 6; We suppose that node 8 and 
node 9 have the same situation with node 7, we discuss node 10: now, node 10 comes; after 
joining request, it would get the original nodelist {0, 1, 3, 5}; After sorting, suppose we get 
{0, x, x, x}, node 0 is saturated, we need adjusting, all of node 0’s children are in the 
nodelist, remove node 0 from the nodelist; sorting among {1, 3, 5};If result is {1,x,x}; the 
first node 1 is saturated, adjusting, add all of its children into the nodelist and remove node 
1 from the nodelist. Sorting among {3,5,2,4,6} ; if the sorting result is :{6,x,x,x,x},the first 
node 6 is full, adds all of its children into the nodelist and remove itself form the list; 
sorting among {3,5,2,4,7,8,9}; 
      
     In one word, our join algorithm is a process like that: 
Send joining request---get original nodelist---sorting it---adjusting it---sorting it 
---adjusting it---sorting it …………………..  repeat this process until the new comer find a 
node to join. 
 
    
5.2. Leave algorithm 
 
     No matter a normal leave or an abnormal failure would cause a transient problem of 
nodes. Only when the leaving node is in the lowest layer, namely, a leaf, it would not affect 
others. In reality, a leaf node and a non leaf node have the same possibility to fail. As we 
have mentioned above, one of our method to deal with the transient problem is an effective 
and efficient relatively recovery mechanism. This recovery procedure must be included in 
the leave algorithm.  In the following paragraph, we provide two kinds of algorithm for our 
solution. 
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     The first one is to redirect all of the descendants of the leaving node to a proper target 
node. Each node is definitely aware of two nodes in the network at least: its parent, and the 
source. Thus, there are two least candidate values for the target to redirect. Here, we choose 
the parent of the leave node as our redirect target instead of choosing the source server. The 
reason to do so is easy to understand. The recovery process includes a rejoin process that 
would use the join algorithm, and recall our join policy, the main ideal is to construct the 
tree according its geographical features, it means that a node is closer to the nodes in the 
same branch of tree than the nodes in the other branches. If we redirect all the descendants 
to the source server respectively, according to the join algorithm, they would be 
reconnected to the same branch just like the situation before the node leaving. So, here, we 
just redirect all the descendants to the parent of the leaving node. Like in the figure19, node 
n has failed; all of the descendants would be redirected to the parent of n, namely, node f, 
and use the join policy to reconnect them. The advantage of such a policy is that the effect 
of the fail of node is limited to the sub-tree rooted at node f. Moreover, the source s is 
protected from such requests in the event of multiple simultaneous failures. Yet the tree is 
expected to remain balanced as the sub-tree is reconstructed from the same nodes as before. 
 

 
Figur19. Leave algorithm, method 1 

 
     For a normal leave, there is no problem to apply this policy, before leave, node n would 
inform all its descendent its leave and the address of the node f. But for abnormal leave, 
node n would have no time to do so. Reference the section mechanism of administration, 
we use the heartbeat message to detect the failure of a node and then we let the node x, y, z 
keep the information about node f. so, when the abnormal leave of node n has been 
detected, node x, y, z would know where to go and inform its descendants the information 
of node f. 
 
     The second one is to choose the closest child to replace the place of leaving node. The 
detail is below. 
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Figur20. Leave algorithm, method 2 

 
     In figure20, node n fail, no matter normal or abnormal fail, its children would know that. 
Now, compare the distance[f][x], distance[f][y] and distance[f][z], notice that we do not 
compare distance[n][x],[n][y],[n][z]. not only for the reason that node n has failed we can 
not get the distance value, but also for the reason that the future streaming source of this 
branch would be node f, so the distance from node f is more important. We suppose here 
node y is the closest, and then node y replace the place of node n; after that we can only 
compare the distance between node y and its direct child, suppose node v is the closer one, 
then v replace the place of y, reconnect the other ancient child of node y, namely, node u 
and node w, to node v; and just repeat the same procedure until reach the leaf layer. 
 
     The advantage of this method is that the number of affected nodes is very limited; the 
change of the tree is very small. And this process does not affect the source server at all, 
decrease the load of source. The disadvantages the time of recovery, each step need a 
comparing calculation and it would waste time. 
         
5.3. Mechanism of administration 
      
     Our solution is a P2P network solution, therefore there is no a central administration 
mechanism. But we still need to describe the procedures of changing information among 
nodes during the streaming session, because it is related to the problem of control of 
overhead. 
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     In our join algorithm, we proposed a nodelist and we only need to compare the distance 
value between the new comer and the nodes in the list, by that we find the node that can be 
connected. Why we do not put the entire nodes in the tree into the nodelist and compare of 
all of them? That will be more accurate for choosing the closest nodes. It is easy to 
understand that in reality this kind of policy is inapplicable because when the tree is big 
enough the communication overhead will be too large to tolerate. In our leave algorithm, 
the children of leaving node will execute the rejoin procedure from the parent of leaving 
node instead of the source server; it is also measure that limits the control overhead. 
 
     Besides during these operation, even after the node has been added to the tree it also 
need to keep some information about other nodes for steaming purpose and for dealing 
with the unpredictable failure. 
 
     In our solution, we say, each node in the tree need to keep the information about all of 
its children, parent and it grandparent. This information mainly includes the address of the 
node. 
   
   

 
Figur21. Control information 

 
     Reference figure 21, in the schema we have proposed, one node in the tree has only one 
parent, and then the grand parent must be one; if we suppose the maximum number of 
children is 3, then in the tree, the number of node with which one node need to 
communicate is only 3+1+1=5. Every given interval, 30 seconds for example, the node n 
send a heartbeat message to node d, f, x, y, z to verify the status of these nodes. For every 
node in the tree has the same situation, we can find that the communication overhead like 
that is relatively low, because it does not need to communicate with its neighbor in the 
same layer like in ZigZag [17]. 
 
5.4. Optimizing  
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     Our solution have many shortcomings, here we try to propose some method to repair 
them and increase the adaptability and performance our streaming schema. One of the 
main disadvantages of our join algorithm is scarcity of a mechanism to control the height 
of the tree.  
 
5.4.1. Control of height of the tree 
 
     Our geographical featured join algorithm has no a mechanism to control the height of 
the tree. But the height of tree would affect the end to end delay and then affected the end 
host performance. We can make the nodes keep the information about its layer, it knows in 
which layer it rest. We give out a parameter, for example, 20 layers. If the number of layer 
of a node is smaller than 20, we do nothing; if this value is greater than 20, this node would 
execute a rejoin procedure, this time it would use still the join algorithm we propose, it has 
a big possibility for the node to join into a layer smaller then 20, because the tree is 
changing at every moment with the node leaving. If this time this node is still connected to 
a layer that is deeper the 20, it means that geographically there are too many nodes that is in 
the same area with this new comer have been connected to the tree and have occupied the 
possible place.  So when we redirect it to the source the second time, we would use a almost 
complete tree constructing algorithm instead our algorithm, in section of simulation, we 
have the detail of the algorithm. In this way, we can limit the height of the tree. 
  
5.4.2. Heterogeneity of nodes 
 
     The bandwidth and network situation of each peer is differed from each other. If we 
choose one peer as an interior node to burden with forwarding stream only base on its 
geographical location, we can say that it is reasonable, but it is not enough efficient and 
powerful. In this paper, we suppose each node in the tree would have only one parent, it 
means a single source of media stream, it is simple but not reasonable, there are already 
many solution to address problem like Splitsteam. If we do not change this assumption, we 
have other space to improve: the number of children of the node. We can make each node 
have the ability to choose a parameter value about its number of children instead of only 
giving an invariable (like we have chosen 3 in simulation program). In reality, it would be 
the final application running on the node control the number of children according to the 
type of steaming media and the situation of inbound/outbound bandwidth. 
    
     These two points are just conceived methods with which we do not consider the detail 
and the feasibility in reality. To any solution, there will be a lot of room to ameliorate. 
 
VI. Simulation 
 
     In order to verify that whether our P2P live media streaming solution works or not and 
to investigate the performance of join/leave algorithm under various scenarios, we would 
carry out a simulation based study. We would consider performance metrics like depth of 
tree, nodes degrees, the factors that can affect the shape of tree like the division of nodes 
and the other parameters like peer stretch. 
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1. The environment of simulation 
 
1.1 The Internet topology generator and the distance matrix 
 
     We have mentioned that we want to apply our solution in the environment of Internet, 
therefore for the purpose of simulation; we must model an Internet topology. We chose to 
use BRITE [34], a universal topology generation tool to generate several graphs for the 
simulation purpose. We want to know whether our solution can work well with thousands 
of nodes, so we have generated 10 nodes, 100 nodes, 1000 nodes, 2000 nodes, 3000 nodes, 
4000 nodes and 5000 nodes, 8 graph of topology. The 10 nodes and 100 nodes network 
topology are used for testing program and representing purpose. The larger networks form 
1000 nodes to 5000 nodes are used for the purpose of statistic. 
 

 
Figure22. The format of BRITE file and the distance Matrix 

 
 
     Each BRITE Output file includes Nodes section and Edges section. In nodes section, we 
can get the unique id for each node, x-axis coordinate in the plane, y-axis coordinate in the 
plane, using this information, helped by proper tools like xfig, we can draw out the physical 
topology of the generated network. In edges section, we can find node id of source, node id 
of destination, Euclidean length between them and the propagation delay between them. 
Using the information of propagation delay between nodes, we can easily build up a 
distance matrix for the network. In such a distance matrix (a binary file), we can get the 
distance between any two node. We use distance[x][y] to represent the distance between x 
and y, and in fact the value distance [x][y] represent the propagation delay between them, 
We use this value as the standard of calculating when we sort the order of nodelist. 
  
1.2.The event list 
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      We have already the topology and distance matrix for simulation, but for studying the 
performance of our algorithm, that is not enough. We still need an event list that describes 
the behavior of nodes. Here, the event list means the order of nodes that would join, leave 
the tree with the passing of time. 
      
     For some statistical function, the result has no relation with the time or the order of 
nodes. We only need to select the joining nodes randomly to construct a spanning under a 
given topology. For instance, if we need to study the division of nodes in each level of tree 
under different scale of interesting clients, we do not need to propose a given event list, 
because what we want is an average value, we can get it by calculating. In order to make 
the result more reasonable and believable, we must construct the tree using the nodes that is 
randomly chosen. Like what we have done in the section VII. 
 
     But for some statistical purpose that has relation with the time, we need a given event 
list. For example, if we want to study with the time passes how the shape of the streaming 
tree change and what is the effect when a node leaves the tree, we need a proposed event 
list. In figure 12, the left side is our proposed event list file, in this file we can find the time 
of joining the tree for each node. To make the simulation closer to the reality, we arrange 
these joining nodes according to a Gaussian distribution function, like the right side of 
figure 12. The 3600 is a central point of time we chosen, it means in this point of time there 
are most number of nodes come to join into the streaming tree.  
      
 

 
 

Figure23. Event list file and the distribution of joining node with time 
 
 
1.3. Leaving possibility of nodes 
 
   The leave or failure of a node is totally unpredictable, with the beginning of the tree 
constructing, there would be node leaving. For the purpose of simulation, we must define 
clear leaving behaviors.  We have several methods to deal with it. First one:  we suppose a 
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percentage of failure, for instance, 10%, than in an eventlist that including 1000 different 
joins we would randomly choose 100 different nodes ID from the existing tree as the failed 
one. This method should be used to the statistical function that has no relation with time. 
Second one: We let a number (for example 100) of peers fail sequentially with time and 
evaluated the affection of leaving of node on the shape of tree. Third one: see the 
discussion of eventlist in part 1.2, for simulating a reality situation, we would propose a 
failure model that would also accord a Gaussian function with the pass of time. It is 
reasonable, because the more the nodes add the higher the possibility of leave is. When the 
client-base is 1000, we suppose 10% leave possibility and that we can propose an eventlist 
that include both join and leave just like in reality. 
 
2. The algorithm that used for comparing purpose 
 
     For the purpose of simulation, we have programmed the algorithm that we proposed. 
But we need a comparing object to make the statistical result clearer. So we propose a 
algorithm of constructing the streaming tree that is used for comparing. 
 
     We use this algorithm to construct an almost complete tree. We have two reasons to do 
this. The first one is this kind of algorithm is relatively simple to realize. The second one is 
this kind of algorithm is a good object for comparing. Form article [1], we know that under 
homogeneous unicast edge and node characteristics, an almost-complete spanning tree is 
the optimal overlay tree for packet loss, packet delay, and time to first packet metrics, an 
optimal policy is one that maintains an almost complete spanning tree. Although here we 
have no homogeneous unicast edge and node characteristics, but for simulation purpose, 
this algorithm that accord with the PeerCast design schema would be a good object.  
We call this algorithm as algo1 and call our own algorithm as algo2. 
 
2.1. Join policy of algo1 
 
      Algo1 is propose for construct a almost complete tree, so the biggest characteristic 
would be that the streaming tree is construct layer by layer. Only when the upper layer is 
full, the node will create a lower layer.It would be better to use the figure to describe the 
process of joining. Reference figure24: Figure [1][2][3] mean that the first 3 (the maximum 
number of children of source server) coming node would be added to node 0 (source server) 
directly. Figure [4] means if the node 0 has no more places, the new comer node 4 would be 
redirected to node 0’s children. Now, comparing the distance [4][1], distance[4][2] and 
distance[4][3], there is a process of sorting like algo2. Suppose distance [4][2] is the 
smallest one, node 4 is added to node 2. We suppose that node 5 and 6 have the same 
situation with node 4. Reference figure [5][6][7].Figure [8] means when node 7 come, it 
would be redirect to node 1, 2, 3. If the sorting result is {2, 1, 3}, but now node 2 is 
saturated, and the purpose of algo1 is to construct an almost complete tree that have the 
minimum number of layers, so node 7 would be connected to node 1 if node 1 have 
available place. If node 1 is saturated, node 7 would be added to node 3, it means the 
coming node would be added to according to sorting result and only be operated in the 
same layer. In figure [9][10], node 8 and node 9 would be added to the same layer with 
node 7 because there is still place in this layer. 
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Figure24. Join algorithm of algo1 
 
 
2.2. Leave policy of algo1 
 
     Node N leaves, all of descendants lost connection with streaming. Here, we will use a 
recovery mechanism just the same as our solution algo2; the detail is in section V, part 5.2, 
leave policy method 1. 
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VII. The result of simulation 
 
     In this section, we study the performance of our P2P media streaming algorithm by a 
simulating method. We choose the C as our programming language and the Linux as our 
testing platform. 
 
     Before studying, we should know to choose which network topology for simulation, 
100 nodes or 5000 nodes? It means that we must know what the size of client-base is, 
namely, our algorithm can be applied to how many clients, hundreds, thousands, or ten 
thousands? The most important factor that limits the size of clients is end to end delay that 
would effect the end host performance heavily. The end-to-end delay from the source to a 
node may be excessive because the content may have to go through a number of 
intermediate receivers, namely, hops or layers. In order to shorten this delay, the tree height 
(the depth of the tree) must be kept small. Therefore, no matter there is the mechanism to 
control the depth of tree or not, there must be a bounded degree of node. To us, we would 
use the simulation result to determine the size of client-base. 
 
1. The division of nodes 
  
     By studying the division of node, we would know the percentage of nodes in each layer; 
in fact, it is also a kind of the information about the shape of tree and shows us how the join 
policies (here, the result is given in the absence of unsubscribe or failures of clients) affect 
the shape of tree and the number of layer of the tree. 
 
     From article [14], we know that the buffering mechanism at the application level 
ensures that cumulative delay is acceptable until approximately 15 hops. Thus, if the 
percentages of nodes that fall at the depths greater than 15 are too high, for example, higher 
than 5%, it means that there is a relative high ratio of nodes that can not ensure a reasonable 
end-system performance. 
 
     As in figure25 and figure26, the X-axis plots the level number in the tree. The Y-axis 
plots the average percentage of nodes subscribed to the tree at a certain level.  
 
     Figure 25 is the result of a client-base that includes no more than one thousands nodes. 
From this figure, we find that the deepest layer of the tree is smaller than 20, the layer in 
that the most percentage of nodes stays is between layer 5 and layer 6, The greatest 
percentage of nodes in certain layer is between 17% and 14%, only a little of fraction of 
nodes fall at the layer deeper than 15. From these result we can say the distribution of nodes 
is relatively equilibrated. 
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Figure25. The division of nodes based on the client-base size of 1000 nodes 

 
     In fact, this figure gives us the information about the shape of the tree, with the 
increasing of the client-base, the shape of the tree is kept stable, and only the position 
moved a little, it means that regarding the shape of tree the adaptability of the join 
algorithm under different size of clients group is good. The right side of the figure is the 
result of algo1, it curves peak to a very high value (between 63% and 48%) and fall to 0 
very sharply, it is the result of the almost complete tree constructing join algorithm. 
 
     Instead, the percentage of nodes of algo2 fall off slowly along higher levels, there is till 
several nodes at depths greater than 15. Its show that one of the disadvantages of our 
solution: the absence of an effective level control mechanism.  
 
     Figure26 is the result of a client-base that includes thousands nodes. From this figure, 
we find that the layer in that the most percentage of nodes stays is about 9, the greatest 
percentage of nodes in certain layer is between 12% and 10%, comparing with the result of 
figure 18; the nodes are much more distributed talking of the layer of the tree. There is a 
meaningful number of nodes fall at the layer deeper than 15. Even though the shape of the 
tree is kept, we can not say that this result would return us a good end user performance, 
after all the depth of the tree is one of the most important factor that affect the end to end 
delay between the source of and the nodes.  
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Figure26. The division of nodes based on the client-base size of 5000 nodes 

 
client-base Size 500 800 1000 1500 2000 3000 4000 

A* 14 18 18 23 30 33 37 
B* 0 2.61% 3.39% 7.72% 12.17% 18.28% 21.87% 
C* 0 0 0 3.27% 4.67% 6.93% 8.50% 
D* 6 7 7 7 9 9 9 
E* 17.53% 15.42% 14.4% 13.21% 12.18% 11.15% 10.47% 

Table 9 the statistical result of division of nodes based on different size of client-base 
 
A*: The deepest layer; 
B*: The percentage of nodes that fall at the depths greater than 15; 
C*: The percentage of nodes that fall at the depths greater than 20; 
D*: The layer in that the most percentage of nodes stays;   
E*: The greatest percentage of nodes in certain layer; 
     Note: this table just includes the statistical result for algo2; for algo1, it is not necessary 
to do so 
 
     From table 9, the data obviously show a trend that with the increasing of the size of 
client-base, the degree of distribution of nodes referring to the level of tree increase in a 
direct ratio. With the help of these data, we can conclude that to our join algorithm, the 
suitable size of client-base is between 1000 and 1500; this algorithm can ensure a good end 
user performance when there are hundreds of clients. Therefore, in the following statistic, 
we will base on the size of 1000 nodes client-base. 
 
     Note: there is one point need our attention. The maximum number of children in 
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simulation is set to 3, if this value is changed, for instance to 10, the result will be 
dramatically different. But for us, like mentioned above, we want to apply our solution to 
Internet, for the general application of audio and video, the average bandwidth of the media 
stream are from tens Kbps to hundreds kbps, for instance, the radio station West Michigan 
Scanner http://wmsr.tripod.com/  has a bit rate 35kbps and the TV station Star Ray TV 
http://tobroadcast.com/ has a bit rate 208kbps. And the prevail accessing technique and 
speed for ordinary Internet user now is 512k DSL or cable, but normally the upstream 
bandwidth is limited to only 214kbps or lower, so if we set the average maximum number 
of children to 3, we can get a result that is closer to reality. 
 
2. The depth of the tree 
 
     The concept of depth of the tree means the number of the lowest layer connecting the 
deepest nodes, namely, leaf of the tree. For instance, the deepest level of a tree is 15, and 
then we say the depth of this tree is 15. From the above simulation result, we know that our 
algorithm would return a good end user performance on a client-base of hundreds of clients. 
Figure 20 present the depth of the tree changes with the increasing of number of clients. 
The X-axis plots the number of nodes in the tree. The Y-axis plots the depth of the tree. 
    

 
Figure27. The deepest layer with the different size of client-base 

 
     Form figure 20, we observe that to algo 1, the almost complete tree, the depth of tree is 
very limited and low thanks to it algorithm that would fill in all of the layer by nodes except 
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the lowest leaf layer. To algo 2, we sampling 3 times of each given size of client-base, here 
we use the point instead of one average value, because this kind of result is a range of data, 
one value is meaningless and from the result we can find that there is a trends of 
exponential increasing with the augment of clients number. In fact, this statistical result is 
just the complementarities for the above statistical result no 1. 
 
 3. The longest path delay 
 
     The path delay of node x means the end to end delay from the source server to node x. 
Suppose from source server to node x, there are H hops, and this steaming path passes node 
N1, N2……Nh, and the path delay of node x  
= distance [0][N1]+distance[N1][N2]+distance[N2][N2]+…+distance[Nh-1][Nh]. The 
longest delay path means the longest path delay. Note that the node who has the longest 
delay is not always the node in the lowest layer. 
 

 
Figure28. The longest path delay 

 
     In figure 28, The X-axis plots the size of the client-base. The Y-axis plots the longest 
path delay.  
 
     We sampling 3 times of each given size of client-base, here we use the point instead of 
one average value, because this kind of result is a range of data. We observe that for both 
two algo there is a trends of exponential increasing with the augment of clients number. 
But obviously, the algo 1, the almost complete tree, has a relatively higher longest path 
delay than the algo 2. When N=500, algo1:algo2=80:65≈1.23; when N=800, 
algo1:algo2=89:70≈1.27;when N=1000,algo1:algo2=95:75≈1.26. Therefore, we can say 
that here there is a relation of direct ratio between these 2 algo regarding the longest path 
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delay. 
  
     But the problem is that algo2 have much deeper of the depth of tree. Combining with the 
simulation result 1 and 2, we find that even the algo 1 have a very limited and controlled 
depth of the tree, it can not give us a controlled path delay. We know that normally the 
lower the path delay is the better the end host performance is. So we can conclude that our 
algorithm can effectively limit the longest path delay and help to provide a good end user 
performance thanks to the geographical close connecting mechanism in our join algorithm. 
 

 
4. The cost of tree and the sum of distance 
 

 
Figure29. Cost of tree for various sizes of client-base 

 
     We define [14] the cost C of a tree T as CT ∝

1

n
nh∑ .  Here, let n be a node at depth hn 

in a source-rooted overlay tree. Since packet delays are additive across hops, the delays 
observed at n are proportional to hn. If ploss is the probability of a packet loss at a hop, then 
the probability of not receiving a certain packet at n is given by  1- ≈plosshn, for 
small ploss. Thus, packet losses observed at n are proportional to hn. Therefore, we can 

loss(1-p ) nh
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define the cost of a tree as CT. According these theory analyses, it is easy to find that an 
almost-complete tree will have the minimal cost. Thus, an optimal algorithm is one that 
maintains an almost complete spanning tree. 
 
     Figure 29 shows the cost of the tree in algo 1 that construct an almost complete tree and 
algo 2 that we proposed for different sizes of client-base. The X-axis plots the size of the 
client-base. The Y-axis plots the cost of the tree. The cost of the tree was taken to be the 
average of the result by sampling in 1000 nodes base with the maximum number of 
children set to 3. We observe that the algo 2 curves diverge from algo 1 as the size of the 
client-base increases. At N=500, the cost of algo 2 is 1.33 X the cost of algo 1, and at 
N=1000, the cost of algo 2 is 1.46 X the cost of algo 1.  The algo 1 construct an 
almost-complete source-rooted tree that minimizes C, therefore we conclude that our algo 
1 result in a near-optimal trees for small client-base sizes (hundreds of clients), but degrade 
with increasing size of client-base. 
     Note: The result would change dramatically when the maximum number of children in 
simulation changes, here it is 3. 
 
     Next, see the figure30,  

 
Figure30. The sum of distance 
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     We define the sum of distance of a tree as the sum of path delay of all of the nodes in the 
tree. Suppose there are N nodes in the tree, the sum of distance of 
tree=  . The sum distance has a sense like the cost of the tree; 
the lower this value is the better the final node performance is. And it is parameter that 
describing the characteristic of the whole tree. We observe that algo 2 has a smaller value 
of the sum of distance compared with algo 1. 

N

x=1
(path delay of node x) ∑

 
     Comparing figure29 and figure 30, we can conclude that even algo 2 have more layer in 
the tree and a higher cost of tree, but mentioned the sum of distance, it has a better result. 
Therefore in geographic, the tree constructed by algo2 is more compact than algo1.  
 
5. The effect of leave algorithm 
 
     Now, we would study the effect of the leave algorithm on the shape of the tree under the 
help by an eventlist.  
 

 
Figure31. The effect of leave algorithm 

 
     In figure 31, the X-axis plots simulation time, while the Y-axis plots the number of 
active nodes in the overlay tree. For the purpose of study, we started with the system 
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consisting of 1000 clients and we suppose that at the very beginning, all of these 1000 
client have been added to the tree and there is no failure.  We let a number of peers fail 
sequentially and each failure happened at a given time. Here, we have a sequential failure 
of 16 nodes, account for 16% of total nodes. And we suppose from the time point 2300, the 
fail begin to happen. What we want to study is how many nodes would be affected when a 
node failure occur. When the node leave happen to the leaf layer, the failure would do not 
affect the system because the node has no dependences. For those failures happening to 
higher layer nodes, the number of being affected nodes are mostly less than 100 (10% of 
client population). In the worst situation, in figure 23, time 4250, there are about 300 nodes 
being affected. We have discussed the leave algorithm in section V, from the theory side, it 
can ensure a rapid recovery, combing the simulation result here, the nodes that are affected 
by the action of leave would be very limited, therefore we can conclude that our leave 
algorithm are desirable, 
 
6. A session that simulate reality 
  

 
Figure32. Simulating procedure of a streaming session 

 
     Finally, we use a eventlist that include continues join and random leave in the 
simulation program and we represent the result in figure 24, the X-axis plots simulation 
time, while the Y-axis plots the number of active nodes in the overlay tree. These join node 
in the eventlist would be in a Gaussian function model like we have discussed in section VI. 
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At the very beginning, there would be already the node leave; the action of leave including 
the possibility of leave and the leaving model with the time would accord with the model of 
node failure that we discussed in section VI. We observe that under the ideal situation that 
has no failure or leave of node, the curve would be an exponential function, which is the 
reasonable result because the node joining is in the mode of a Gaussian function. As for the 
result including the node failure, we find that the trend of the curve accord with an 
exponential model and the effect of the leave action are limited. Therefore we can conclude 
that the result accord with the theory analysis and it show that our algorithm can return a 
desirable result. 
 
VIII. Conclusion and future works 
 
     Peer-to-peer media streaming systems are expected to become as popular as the 
peer-to-peer file sharing systems. That is what we want to discuss in this paper.  We 
focused on the maintaining algorithm of a single source, receiver driven media streaming 
delivery tree and though those tree constructing policies we try to get a reasonable, and 
acceptable, or even a desirable result in term of the end host performance metrics. Our 
proposed solution is featured by its tree maintaining algorithm that organize the multicast 
tree according to the geographical characteristic of nodes.  The main idea in our algorithm 
is the concept “nodelist” and the process of “sorting” and “adjusting”.  Both the theoretical 
analyses and the simulation studies proved that under a client-base size of hundreds (in fact 
the adaptable size is between 1000 nodes and 2000 nodes); our solution can maintain a 
‘balanced” streaming tree and gain a relatively good end user performance.  
 
1. The ability to deal with transience problem 
 
     We use the mechanism of hiding the changes of the topology of streaming tree from the 
final application at each client and a fast recovery mechanism to address this problem. The 
simulation result of show that the effecting of nodes failure can be control under a 
reasonable range.  
  
2. End-to-end delay 
 
     In theory, our geographical sorting join policy and fast recovery mechanism would 
ensure a small end-to-end delay at the time of the constructing of the streaming delivery 
tree. And the mechanism of control of the height of the tree would limit the worst 
end-to-end delay. The simulation result of the longest path delay show us that the worst 
delay in our tree is very limited compared with the almost complete tree under the same 
network topology environment and the same enventlist.  
 
3. Control overhead 
 
     In section V, part 2.4, we have discussed our control overhead. Under our schema, a 
node in the spanning tree only needs to periodically communicate with its parent, 
grandparent and all of its children. It does not need to change information with its 
neighbors in the same layer. It means the number of nodes that need to change information 
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is very small. This kind of measure can greatly limit the control overhead. And the 
overhead is a constant (if the maximum number of children is a constant) regardless of the 
client population, which is a big advantage. 
 
4. Efficient join and failure recovery 
 
     Our method of applying a “nodelist” reduce dramatically the number of nodes  that a 
new client need to request.  And our recovery policy changes the shape of the existing tree 
as little as possible. Therefore, we can say that our join and failure recovery mechanism are 
efficient. 
 
5. The stability of the streaming delivery tree 
 
     Both from the algorithm analysis and the result of simulation we can find that every 
operation pursues to affect the existing tree as little as possible. That means the most part of 
nodes in the tree would enjoy a relatively stable service. 
 
6. Future works 
 
     Of course, just like we have mention is the discussion of optimize policy, our tree 
constructing and maintaining schema have still many shortcomings, for example, a  
effective mechanism to control the height of the tree. These shortcomings mean a big room 
for improvement and ameliorate the end host performance. Our solution can be extended in 
many directions.  
      
     First, the dealing with of multi-source problem, the assumption of single-source is just 
for the simplifying the problem, and obviously, a multi-source tree will be a good direction 
to develop our schema.  
 
    Second, the extensibility to a larger size of client-base, from the discussion of simulation 
result we can find that the main factor that limits the client-base is the height of the tree and 
the maximum number of children. The height of tree can be control by an effective 
mechanism. 
 

     Third, the problem of heterogeneity of peers, the bandwidth and network situation of 
each peer is differed from each other. If we choose one peer as an interior node to be 
burden with forwarding stream  only base on its geographical location, it is reasonable, but 
not enough efficient and powerful. The simplest improving method is dynamically 
changing the number of maximum children. 
 
     In one word, the live media streaming over P2P network has a promising bright future 
and at the same time still has a long way to go. 
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Appendix1.  

The codes for simulation our algorithm: algo2 
/****************************************************************** 
** The name of file: simu_algo2.c   
** The date: 2004.08.07     
** Description: The join/leave algorithm; 
                The statistic function;       
** Version: 2004_07_28_DEBUG       
******************************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 
#include <time.h> 
 
/* Nodes */ 
#define NODE_SOURCE    0 
#define MAX_PARENTS 1   /*  the number of the parent of a node  */ 
#define MAX_CHILD 3   /*  the maximum number of children of a node  */ 
#define M_pV(pHead, c, x, y) (pHead+c*y+x)  
 /*  finish the function of dynamic two dimension array  */  
 
/*  define the structure of Node  */ 
typedef struct _Node 
{ 
  int Id;         /*  Node Id  */ 
  float Path_Delay;   /*  Path Delay  */ 
  struct Node* Parent[MAX_PARENTS];  /* sender = Parents[0] */ 
  struct Node* Child[MAX_CHILD]; 
}Node; 
 
/*  define the structure representing layer information  */ 
typedef struct _Layer_Info 
{ 

  int iLayer;       /*  current layer  */ 
  int iFull;        /*  the pointed node is full or not，0～MAX_CHILD represent 
the iFull th node is empty，MAX_CHILD means full  */ 
  Node* pNode;      /*  the pointer that point to the Node structure  */ 
}Layer_Info; 
 
/*  define double link table structure  */ 
typedef struct _DLinkList 
{ 
  Layer_Info* pLayer_Info;         
  struct _DLinkList* prior, * next; 
}DLinkList; 
 
/*  define global variable  */ 
float* g_Matr; 
Node* g_NodeinTree[1]; 
int g_numberofnodeinTree;       /*  the total number of nodes in the tree  */ 
int g_MatrixSize;           /*  the size of the distance matrix  */ 
DLinkList* g_pHeader = NULL;      /*  conserve the pointer of link table */ 
DLinkList* g_pSeekHeader = NULL;    /*  conserve the pointer of link table */ 
FILE* g_result;            
float g_Sum; 
int g_ichoice, g_iseeds, g_iremoved; 
int* g_pSelectArray; 
int* g_pRemoveArray; 
int Longest_Layer = 0; 
void ShowOnScreen(); 
 
/*****************************************************************             
** The name of function:    RandomFun                       
** Input:   int iTotalNum, int iSelectNum, int iRemoveNum 
** Titanium:   the total size 
** iSelectNum:   the number of random chosen nodes, keep it in the array 
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                 “g_pSelectArray” 
** iRemoveNum:  choose random number of node from iSelectNum, keep it in the 
array “g_pRemoveArray” 
** Output:   0——normal； 1——fail to allocate memery 
** Description:    random function 
                                     
****************************************************************/ 
int 
RandomFun(int iTotalNum, int iSelectNum, int iRemoveNum) 
{ 
  int i, j, tmp, ibool; 
  g_pSelectArray = (int *) malloc(sizeof(int) * iSelectNum); 
  g_pRemoveArray = (int *) malloc(sizeof(int) * iRemoveNum); 
  if (g_pSelectArray == NULL || g_pRemoveArray == NULL) 
      return 1; 
  srand((unsigned) time(NULL)); 
 
  for (i = 0; i < iSelectNum; i++) 
    { 
      ibool = 0; 
      while (ibool != 1) 
        { 
          tmp = (int) (((rand() / 10000) * iTotalNum) / (RAND_MAX / 10000)); 
          ibool = 1; 
          for (j = 0; j < i; j++) 
            { 
              if (tmp == g_pSelectArray[j] || tmp == 0) 
                { 
                  ibool = 0; 
                  j = i + 1; 
                } 
            } 
        } 

      g_pSelectArray[i] = tmp; 
    } 
 
  for (i = 0; i < iRemoveNum; i++) 
    { 
      ibool = 0; 
      while (ibool != 1) 
        { 
          tmp = (int) (((rand() / 10000) * iTotalNum) / (RAND_MAX / 10000)); 
          ibool = 1; 
          for (j = 0; j < i; j++) 
            { 
              if (g_pSelectArray[tmp] == g_pRemoveArray[j]) 
                { 
                  ibool = 0; 
                  j = i + 1; 
                } 
            } 
        } 
      g_pRemoveArray[i] = g_pSelectArray[tmp]; 
    } 
  return 0; 
}  /*  End of RandomFun  */ 
 
/*****************************************************************             
** The name of function:    ClearRandomArray                       
** Input:  No 
** Output:  No 
** Description:    release the memory used by random function                          
****************************************************************/ 
void 
ClearRandomArray() 
{ 
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  if (g_pSelectArray != NULL) 
      free(g_pSelectArray); 
  if (g_pRemoveArray != NULL) 
      free(g_pRemoveArray); 
}  /*  End of ClearRandomArray  */ 
 
/*****************************************************************                         { 
** The name of function:    InitMatrix                       
** Input:   No                       
** Output:   No 
** Description:  Initialize the distance matrix, keep it in “g_matr”, use 
“*M_pV(g_Matr, the column of matrix, visited x, visited y)” to find.                                       printf(" ----   Result  ----\n"); 
****************************************************************/ 
void 
InitMatrix() 
{ 
  int i, j, imaxchild; 
  FILE* fp; 
 
  g_ichoice = 0; 
  while (g_ichoice != 1 && g_ichoice != 2 && g_ichoice != 3) 
    { 
      printf("\nPlease Choose 1.'1000.adj'  2.'2000.adj'  3.'3000.adj'  \n"); 
      scanf("%d", &g_ichoice); 
    } 
 
  printf("Please Input the Number of Nodes Which should be Add to the Tree\n"); 
  scanf("%d", &g_iseeds); 
 
  if (g_ichoice == 1) 
      fp = fopen("r1000.adj", "rb"); 
  else if (g_ichoice == 2) 
      fp = fopen("r2000.adj", "rb"); 

  else 
      fp = fopen("r3000.adj", "rb"); 
 
  g_result = fopen("result.txt", "wt+"); 
 
  if (fread(&g_MatrixSize, sizeof(int), 1, fp) != 1) 

      fprintf(stderr, "Error: reading matrix size in"); 
      exit(21); 
    } 
 

  fprintf(g_result, " ----   Result  ----\n"); 
 
  imaxchild = MAX_CHILD;  
  printf("\nMAX_CHILD = %d\n", imaxchild); 
  fprintf(g_result, "\nMAX_CHILD = %d\n", imaxchild); 
 
  printf("Loading Matrix Size: %d x %d\n", g_MatrixSize, g_MatrixSize); 
  fprintf(g_result, "Loading Matrix Size: %d x %d\n", g_MatrixSize, 
          g_MatrixSize); 
 
  g_Matr = (float *) malloc(sizeof(float) * g_MatrixSize * g_MatrixSize); 
  if (g_Matr == NULL) 
    { 
      fprintf(stderr, "Error: allocate memory for the  distance matrix"); 
      exit(22); 
    } 
  i = g_MatrixSize * g_MatrixSize; 
  j = fread(g_Matr, sizeof(float), i, fp);  
  if (j != i) 
    { 
      fprintf(stderr, "Error: reading matrix size in"); 
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      exit(23); 
    } 
  printf("Loading matrix: File Read Succeed!\n"); 
  fprintf(g_result, "Loading matrix: File Read Succeed!\n");    
 
  for (i = 0; i < g_MatrixSize; i++) 
    { 
      for (j = 0; j < g_MatrixSize; j++) 
        { 
          /*fprintf(g_result, "Matr[%d][%d]=%f\n", i, j, *M_pV(g_Matr, 
g_MatrixSize, i, j));*/ 
        } 
    } 
  fclose(fp); 
}              
/*****************************************************************                     ** iNodeID:  the node ID of targeted node 
** The name of function:    InitNode                       
** Input:   No                       
** Output:   0---normal， 1---fail 
** Description:  initialize the node                                     
****************************************************************/ 
int 
InitNode() 
{ 
  int j; 
 
  /*  initialize node 0  */ 
  g_NodeinTree[0] = (Node *) (malloc(sizeof(Node))); 
  if (g_NodeinTree[0] == NULL) 
      return 1; 
 
  g_NodeinTree[0]->Id = 0; 
  g_NodeinTree[0]->Type = 2; 

  g_NodeinTree[0]->Path_Delay = 0; 
  g_NodeinTree[0]->Parent[0] = NULL; 
 
  for (j = 0; j < MAX_CHILD; j++) 
    { 
      g_NodeinTree[0]->Child[j] = NULL; 
    } 
  InitMatrix(); 
 
  return 0; 
} /*  End of InitNode  */ 
 
/***************************************************************** 
** The name of function:    FindMin                       
** Input:   int iNodeID, DLinkList ** pHeader 

** pHeader:   the pointer of link table for the serching object                       
** Output:   the pointer of the closest node 
** Description:  find the closest node                                     
****************************************************************/ 
 
Node* 
FindMin(int iNodeID, DLinkList** pHeader) 
{ 
  int k, x; 
  float distance; 
  Node* pNode; 
  DLinkList* p_tmpDLL; 
 
  distance = -1; 
  p_tmpDLL = *pHeader; 
 
  while (p_tmpDLL != NULL) 
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    { 
      if (distance == -1) 
        { 
          k = p_tmpDLL->pLayer_Info->pNode->Id; 
          pNode = (Node *) p_tmpDLL->pLayer_Info->pNode; 
          distance = *M_pV(g_Matr, g_MatrixSize, iNodeID, k); 
        } 
      x = p_tmpDLL->pLayer_Info->pNode->Id; 
      if (distance > *M_pV(g_Matr, g_MatrixSize, x, iNodeID)) 
        { 
          distance = *M_pV(g_Matr, g_MatrixSize, x, iNodeID); 
          k = x; 
          pNode = (Node *) p_tmpDLL->pLayer_Info->pNode; 
        } 
      p_tmpDLL = p_tmpDLL->next; 
    } 
 
  return pNode; 
} /*  End of FindMin  */   
 
 
/***************************************************************** 
** The name of the function:    Traversal_Tree                       
** Input:   Node* pNode, int iLayer, DLinkList ** pHeader 
** pNode:   the pointer of root node 
** iLayer:    the layer of pNode，the layer number of source is 0 
** pHeader:   to preserve the pointer of link table                       
** Output:   0——normal 
** Description:    traverse the tree                                     
****************************************************************/ 
 
int 
Traversal_Tree(Node* pNode, int iLayer, DLinkList** pHeader) 

{ 
  int i; 
  DLinkList* p_tmpDLL; 
 
  if (pNode != NULL) 
    { 
      /*  scan the whole tree  */ 
      p_tmpDLL = (DLinkList *) (malloc(sizeof(DLinkList))); 
      (DLinkList *) (p_tmpDLL->pLayer_Info) = (DLinkList *) 
                                              
(malloc(sizeof(DLinkList))); 
 
      p_tmpDLL->pLayer_Info->pNode = pNode; 
      p_tmpDLL->pLayer_Info->iLayer = iLayer; 
      p_tmpDLL->next = *pHeader; 
      p_tmpDLL->prior = NULL; 
      if (*pHeader != NULL) 
          (*pHeader)->prior = p_tmpDLL; 
      *pHeader = p_tmpDLL; 
 
      /* store the whole tree in the double linked list, not forget to free it */ 
      iLayer++; 
      /*  continue to traverse  */ 
      for (i = 0; i < MAX_CHILD; i++) 
        { 
          Traversal_Tree((Node *) pNode->Child[i], iLayer, pHeader); 
        } 
    } 
 
  return 0; 
} /* End of Traversal_Tree */ 
 
/*****************************************************************             
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** The name of function:    FreeDLinkList                       
** Input:   DLinkList ** pHeader 
** pHeader:   preserve the pointer of link table                       
** Output:   no 
** Description:    release the memory                                     
****************************************************************/ 
 
void 
FreeDLinkList(DLinkList** pHeader) 
{ 
  DLinkList* p_tmpDLL; 
  while (*pHeader != NULL) 
    { 
      p_tmpDLL = *pHeader; 
      *pHeader = (*pHeader)->next; 
      if (p_tmpDLL->pLayer_Info != NULL) 
          free(p_tmpDLL->pLayer_Info); 
      p_tmpDLL->pLayer_Info = NULL; 
      free(p_tmpDLL); 
      p_tmpDLL = NULL; 
    } 
} /* End of FreeDLinkList */ 
 
/*****************************************************************                     ** Input:   int iNodeID , Node* pNode 
** The name of function:    CountDelay                       
** Input:   Node * pNode 
** pNode:   the node that we want to calculate distance                       
** output:   the path delay from 0 to node pNode 
** Description:    the path delay from 0 to node pNode                                   ** Description:    join a new client                                     
****************************************************************/ 
 
float 
CountDelay(Node* pNode) 

{ 
  float distance; 
  Node* p_tmpNode; 
 
  if (pNode->Id == 0) 
      return 0; 
 
  p_tmpNode = (Node *) (pNode->Parent[0]); 
  distance = *M_pV(g_Matr, g_MatrixSize, p_tmpNode->Id, pNode->Id); 
 
  while (p_tmpNode->Parent[0] != NULL) 
    { 
      pNode = p_tmpNode; 
      p_tmpNode = (Node *) pNode->Parent[0]; 
 
      distance += *M_pV(g_Matr, g_MatrixSize, p_tmpNode->Id, pNode->Id); 
    } 
 
  return distance; 
} /* End of CountDelay */ 
 
/*****************************************************************             
** The name of function:    _AddNode                       

** iNodeID:  the ID of new comer 
** pNode:   the requested node 
** Output:   0——normal， 1——the inputting pointer is null， 2——fail to 
allocate memory to new pointer 

****************************************************************/ 
 
int 
_AddNode(int iNodeID, Node* pNode) 
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{ 
  int i, j; 
 
  if (pNode == NULL) 
      return 1; 
 
  for (i = 0; i < MAX_CHILD; i++) 
    { 
      if (pNode->Child[i] == NULL) 
        { 
          j = i; 
          break; 
        } 
    } 
 
  (Node *) pNode->Child[j] = (Node *) (malloc(sizeof(Node))); 
  ((Node *) (pNode->Child[j]))->Id = iNodeID; 
  ((Node *) (pNode->Child[j]))->Type = 0; 
  (Node *) ((Node *) (pNode->Child[j]))->Parent[0] = pNode; 
  ((Node *) (pNode->Child[j]))->Path_Delay = CountDelay((Node *) 
                                                        
(pNode->Child[j])); 
 
  for (i = 0; i < MAX_CHILD; i++) 
    { 
      ((Node *) (pNode->Child[j]))->Child[i] = NULL; 
    } 
 
  if (pNode->Child[j] == NULL) 
      return 2; 
 
  return 0; 
} /* End of _AddNode */ 

 
/*****************************************************************             
** The name of function:    AddToLinkList                       
** Input:   DLinkList** pHeader, Node* pNode 
** pHeader:   the pointer of link table 
** pNode:   the pointer of node that want to join the link table                       
** Output:   no 
** Description:    add certain node into the link table                                  
****************************************************************/ 
 
void 
AddToLinkList(DLinkList** pHeader, Node* pNode) 
{ 
  DLinkList* p_tmpDLL; 
  if (pNode != NULL) 
    { 
      p_tmpDLL = (DLinkList *) (malloc(sizeof(DLinkList))); 
      (DLinkList *) (p_tmpDLL->pLayer_Info) = (DLinkList *) 
                                              
(malloc(sizeof(DLinkList))); 
 
      p_tmpDLL->pLayer_Info->pNode = pNode; 
      p_tmpDLL->pLayer_Info->iLayer = -1; 
      p_tmpDLL->next = *pHeader; 
      p_tmpDLL->prior = NULL; 
      if (*pHeader != NULL) 
          (*pHeader)->prior = p_tmpDLL; 
      *pHeader = p_tmpDLL; 
    } 
} /* End of AddToLinkList */ 
 
/*****************************************************************             
** The name of function:    RemoveFromLL                       
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** Input:   DLinkList** pHeader, Node* pNode 
** pHeader:   the pointer of link table 
** pNode:   the pointer of the node that we want to delete from the link table                                 p_tmpDLL->pLayer_Info = NULL; 
** Output:   0——normal； 1——can not find the node 
** Description:    delete a certain node from a given link table                                               p_tmpDLL = NULL; 
****************************************************************/ 
 
int 
RemoveFromLL(DLinkList** pHeader, int iNodeID) 
{ 
  DLinkList* p_tmpDLL; 
 
  p_tmpDLL = *pHeader; 
  while (p_tmpDLL != NULL) 
    { 
      if (p_tmpDLL->pLayer_Info->pNode->Id == iNodeID) 
        { 
          if (p_tmpDLL->next != NULL) 
            { 
              (DLinkList *) (p_tmpDLL->next)->prior = (DLinkList *) 
                                                      
(p_tmpDLL->prior); 
            } 
          if (p_tmpDLL->prior != NULL) 
            { 
              (DLinkList *) (p_tmpDLL->prior)->next = (DLinkList *) 
                                                      
(p_tmpDLL->next); 
            } 
          else 
            { 
              *pHeader = (DLinkList *) p_tmpDLL->next; 
            } 

          if (p_tmpDLL->pLayer_Info != NULL) 
              free(p_tmpDLL->pLayer_Info); 

          free(p_tmpDLL); 

          return 0; 
        } 
      p_tmpDLL = p_tmpDLL->next; 
    } 
  return 1; 
} /* End of RemoveFromLL */ 
 
/*****************************************************************             
** The name of function:    IsNodeFull                      
** Input:   Node* pNode 
 
** pNode:   the pointer of the node that we want to detect                       
** Ourput:   0——this node is saturated； 1——unsaturated 
** Description:    detect whether a node is saturated                                   
****************************************************************/ 
 
int 
IsNodeFull(Node* pNode) 
{ 
  int i; 
  for (i = 0; i < MAX_CHILD; i++) 
    { 
      if (pNode->Child[i] == NULL) 
          return 1; 
    } 
  return 0; 
}  /* End of IsNodeFull */ 
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/*****************************************************************                           AddToLinkList(&g_pSeekHeader, (Node *) pNode->Child[i]); 
** The name of the function:    Add_Node                       
** Input:   int iNodeID,  Node* pNode, int istartID 
** iNodeID:   the node ID of new comer 
** pNode：    starting node 
** istartID：   the ID of connected node 
** Output:   0——normal， 1——the inputting pointer is null， 2——fail to 
allocate the memory for new pointer 
** Description:    add a new node                                     
****************************************************************/ 
 
int 
Add_Node(int iNodeID, Node* pNode, int istartID) 
{ 
  int i, ret; 
  DLinkList* p_tmpDLL; 
  Node* tmp_Node; 
 
  p_tmpDLL = NULL; 
  
 /*  add the starting node and its children  */ 
  if (pNode->Id == istartID && IsNodeFull(pNode) == 1) 
/*  the starting node is source and it is unsaturated  */ 
    { 
      AddToLinkList(&g_pSeekHeader, pNode); 
    } 
  else 
    { 
      RemoveFromLL(&g_pSeekHeader, pNode->Id); 
    } 
 
  for (i = 0; i < MAX_CHILD; i++)  /*  add its children  */ 
    { 

    } 
 
  /*  find the closest node  */ 
  tmp_Node = FindMin(iNodeID, &g_pSeekHeader); 
  if (IsNodeFull(tmp_Node) == 0) /*  saturated, recursion  */ 
    { 
      Add_Node(iNodeID, tmp_Node, istartID); 
    } 
  else/*  unsaturated, directly connect  */ 
    { 
      ret = _AddNode(iNodeID, tmp_Node); 
      if (ret != 0) 
          return ret; 
    } 
  FreeDLinkList(&g_pSeekHeader); 
 
  return 0; 
}  /* End of Add_Node */ 
 
/*****************************************************************             
** The name of function:    Remove_Node                       
** Input:   int iNodeID,  Node* pNode 
** iNodeID:  the ID of the node that we want to delete 
** pNode：    starting node 
** Output:   0——normal， 1——the inputting node pointer is null， 2——fail to 
allocate memory for new pointer 
** Description:    remove node                                     
****************************************************************/ 
int 
Remove_Node(int iNodeID) 
{ 
  int i, j, ilayer, ih, il; 
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  Node* pNode; 
  Node* pFatherNode; 
  DLinkList* p_tmpDLL, * pDlinklist; 
 
  pNode = NULL; 
  pDlinklist = NULL; 
 
  printf("\n\nNode ID = %d have left, all its descendant are disconnected;\n", 
         iNodeID); 
  fprintf(g_result, 
          "\n\nNode ID = %d have left, all its descendant are disconnected;\n", 
          iNodeID); 
  /* search for the target node */ 
  Traversal_Tree(g_NodeinTree[0], 0, &g_pHeader); 
 
  p_tmpDLL = g_pHeader; 
 
  while (p_tmpDLL != NULL) 
    { 
      if (p_tmpDLL->pLayer_Info->pNode->Id == iNodeID) 
        { 
          pNode = (Node *) p_tmpDLL->pLayer_Info->pNode; 
          ilayer = p_tmpDLL->pLayer_Info->iLayer; 
        } 
      p_tmpDLL = p_tmpDLL->next; 
    } 
  FreeDLinkList(&g_pHeader); 
  if (pNode == NULL) 
      return 3; 
 
  if (pNode->Id != 0) 
      pFatherNode = (Node *) pNode->Parent[0]; 
  else 

      pFatherNode = pNode; 
 
  /* find the offspring nodes of the target node */ 
  Traversal_Tree(pNode, ilayer, &pDlinklist); 
  p_tmpDLL = pDlinklist; 
  j = 0; 
 
  while (p_tmpDLL != NULL) 
    { 
      j++; 
      if (p_tmpDLL->pLayer_Info->pNode->Id == iNodeID) 
        { 
          if (p_tmpDLL->prior != NULL) 
              p_tmpDLL->prior->next = NULL; 
 
          if (p_tmpDLL->pLayer_Info != NULL) 
              free(p_tmpDLL->pLayer_Info); 
          p_tmpDLL->pLayer_Info = NULL; 
 
          free(p_tmpDLL); 
          p_tmpDLL = NULL; 
 
          break; 
        } 
      p_tmpDLL = p_tmpDLL->next; 
    } 
  for (i = 0; i < MAX_CHILD; i++) 
    { 
      if (((Node *) pNode->Parent[0])->Child[i] != NULL) 
          if (((Node *) ((Node *) pNode->Parent[0])->Child[i])->Id == iNodeID) 
              ((Node *) pNode->Parent[0])->Child[i] = NULL; 
    } 
  free(pNode);/* delete the node */ 
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  pNode = NULL; 
  if (j == 1) 
      pDlinklist = NULL; 
 
  ShowOnScreen();/*  show on screen the tree after node leaving  */ 
  printf("\nAdd it's offspring the tree! \n"); 
  fprintf(g_result, "\nAdd it's offspring the tree! \n"); 
 
  /* add the offspring nodes */ 
  p_tmpDLL = pDlinklist; 
  if (p_tmpDLL != NULL) 
    { 
      il = p_tmpDLL->pLayer_Info->iLayer;  
      ih = p_tmpDLL->pLayer_Info->iLayer; 
    } 
  while (p_tmpDLL != NULL) 
    { 
      if (p_tmpDLL->pLayer_Info->iLayer > ih) 
          ih = p_tmpDLL->pLayer_Info->iLayer; 
      if (p_tmpDLL->pLayer_Info->iLayer < il) 
          il = p_tmpDLL->pLayer_Info->iLayer; 
 
      p_tmpDLL = p_tmpDLL->next; 
    } 
 
  for (i = il; i <= ih; i++) 
    { 
      p_tmpDLL = pDlinklist; 
      while (p_tmpDLL != NULL) 
        { 
          if (p_tmpDLL->pLayer_Info->iLayer == i) 
            { 
              Add_Node(p_tmpDLL->pLayer_Info->pNode->Id, pFatherNode, 

                       pFatherNode->Id); 
            } 
          p_tmpDLL = p_tmpDLL->next; 
        } 
    } 
 
  FreeDLinkList(&pDlinklist); 
 
  return 0; 
} /* End of Remove_Node */ 
 
/*****************************************************************             
** The name of function:    ReclaimMem                       
** Input:   no 
** Output:   no 
** Description:    release the allocated memory                                     
****************************************************************/ 
 
void 
ReclaimMem() 
{ 
  DLinkList* p_tmpDLL; 
 
  Traversal_Tree(g_NodeinTree[0], 0, &g_pHeader); 
 
  p_tmpDLL = g_pHeader; 
 
  while (p_tmpDLL != NULL) 
    { 
      if (p_tmpDLL->pLayer_Info->pNode != NULL) 
        { 
          free(p_tmpDLL->pLayer_Info->pNode); 
          p_tmpDLL->pLayer_Info->pNode = NULL; 
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        } 
      p_tmpDLL = p_tmpDLL->next; 
    } 
  FreeDLinkList(&g_pHeader); 
  /*  release the Matrix memory，close the output file  */ 
  fclose(g_result); 
  if (g_Matr != NULL) 
      free(g_Matr); 
} /* End of ReclaimMem */ 
 
/*****************************************************************                               j = (int) 
** The name of function:    ShowOnScreen                       
** Input:   no 
** Output:  no  
** Description:    show all of the node in the tree                                                  p_tmpDLL->pLayer_Info->pNode->Id, 

p_tmpDLL->pLayer_Info->iLayer, ****************************************************************/ 
void 
ShowOnScreen() 
{ 
  int i, j; 
  int k; 
  int Number_Layer[25]; 
 
  int Sum_Layer = 0; 
  float Longest_Delay = 0; 
 
  DLinkList* p_tmpDLL; 
 
  for (k = 0; k < 26; k++) 
    { 
      Number_Layer[k] = 0; 
    }  
  Traversal_Tree(g_NodeinTree[0], 0, &g_pHeader); 

  p_tmpDLL = g_pHeader; 
  i = 0; 
 
  printf("\n\nList all the nodes in the current tree! \n"); 
  fprintf(g_result, "\n\nList all the nodes in the current tree! \n"); 
  while (p_tmpDLL != NULL) 
    { 
      if (p_tmpDLL->pLayer_Info->pNode->Id == 0) 
          j = 0; 
      else 

              ((Node *) 
               ((Node *) (p_tmpDLL->pLayer_Info->pNode)->Parent[0])->Id); 
      printf("Node ID = %d, Layer = %d Parent = %d Path_Delay = %f \n", 

             j, p_tmpDLL->pLayer_Info->pNode->Path_Delay); 
 
      if (Longest_Layer < p_tmpDLL->pLayer_Info->iLayer) 
          Longest_Layer = p_tmpDLL->pLayer_Info->iLayer; 
 
      if (Longest_Delay < p_tmpDLL->pLayer_Info->pNode->Path_Delay) 
          Longest_Delay = p_tmpDLL->pLayer_Info->pNode->Path_Delay; 
 
      Sum_Layer = Sum_Layer + p_tmpDLL->pLayer_Info->iLayer; 
 
      for (k = 0; k < 26; k++) 
        { 
          if (p_tmpDLL->pLayer_Info->iLayer == k) 
              Number_Layer[k] = Number_Layer[k] + 1; 
        }  
 
      fprintf(g_result, 



 13

              "Node ID = %d, Layer = %d Parent = %d Path_Delay = %f \n", 
              p_tmpDLL->pLayer_Info->pNode->Id, 
p_tmpDLL->pLayer_Info->iLayer, 
              j, p_tmpDLL->pLayer_Info->pNode->Path_Delay); 
      p_tmpDLL = p_tmpDLL->next; 
      i++; 
    } 
 
  printf("\nThere are %d nodes in the tree! \n", i); 
  fprintf(g_result, "\nThere are %d nodes in the tree! \n", i); 
  fprintf(g_result, "\nThe deepest layer is %d ! \n", Longest_Layer); 
  fprintf(g_result, "\nThe sum of layer is %d ! \n", Sum_Layer); 
  fprintf(g_result, "\nThe longest delay  is %f ! \n", Longest_Delay); 
 
  for (k = 0; k < 26; k++) 
    { 
      fprintf(g_result, "\nThe layer %d includes %d nodes ! \n", k, 
              Number_Layer[k]); 
    } 
 
  FreeDLinkList(&g_pHeader); 
} /* End of ShowOnScreen */ 
 
 
/*****************************************************************                     { 
** The name of function:    CountSum                       
** Input:   Node * pNode, int sum 
** pNode:   calculation starting point 
** Output :   the sum of distance 
** Description:    calculate the sum of distance                                     
****************************************************************/ 
 
float 

CountSum(Node* pNode) 
{ 
  int i; 
  Node* ptmpNode; 
  ptmpNode = NULL; 
  if (pNode != NULL) 
    { 
      /*  traverse the tree  */ 
      for (i = 0; i < MAX_CHILD; i++) 
        { 
          ptmpNode = (Node *) pNode->Child[i]; 
          if (ptmpNode != NULL) 
            { 
              g_Sum = g_Sum + *M_pV(g_Matr, g_MatrixSize, pNode->Id, 
                                    ptmpNode->Id); 
            } 
          CountSum(ptmpNode); 
        } 
    } 
  return g_Sum; 
} /* End of CountSum */ 
 
int 
main(int argc, char** argv) 

  int i, it; 
  float sum; 
  InitNode(); 
  it = 1; 
  for (; g_ichoice > 0; g_ichoice--) 
      it = it * 10; 
  RandomFun(it, g_iseeds, 1); 
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  printf("\n Add Node ID: "); 
  fprintf(g_result, "\n Add Node ID: "); 
  for (i = 0; i < g_iseeds ; i++) 
    { 
      printf(" %d, ", g_pSelectArray[i]); 
      fprintf(g_result, " %d, ", g_pSelectArray[i]); 
      Add_Node(g_pSelectArray[i], g_NodeinTree[0], 0); 
    } 
  printf("\nTatal %d Nodes.\n", g_iseeds); 
  fprintf(g_result, "\nTatal %d Nodes.\n", g_iseeds); 
  ShowOnScreen(); 
  g_Sum = 0; 
  sum = CountSum(g_NodeinTree[0]); 
  printf("Sum = %f", sum); 
  fprintf(g_result, "\nThe Sum = %f.\n", sum); 
  ReclaimMem(); 
  ClearRandomArray(); 
  return 0; 
} 



 1 

Appendix2.  

The codes for simulation our algorithm: algo1 
/****************************************************************** 
** The name of file: simu_algo1.c   
** The date: 2004.07.07     
** Description: The join/leave algorithm; 
                The statistic function;       
** Version: 2004_06_28_DEBUG     
******************************************************************/ 
#include <stdio.h> 
#include <stdlib.h> 
 
/*  define invariabel  */ 
#define MATRIXSIZE 1000  /* The size of distance Matrix  */ 
 
/* Nodes */ 
#define NODE_SOURCE   0 
#define NODE_RECEIVER 10 
#define MAX_PARENTS 1  /*  the number of the parent of a node  */ 
#define MAX_CHILD 3   /*  the maximum number of children of a node  */ 
 
/*  define the structure of Node  */ 
typedef struct _Node{ 
 int Id;     /*  Node Id  */ 
 float Path_Delay;  /*  Path Delay  */ 
 struct Node *Parent[MAX_PARENTS]; /* sender = Parents[0] */ 
 struct Node *Child[MAX_CHILD]; 
  
}Node; 
 
/*  define the structure representing layer information  */ 
typedef struct _Layer_Info{ 

 int iLayer;    /*  current layer  */ 
 int iFull;    /*  the pointed node is full or not，0～MAX_CHILD 
represent the iFull th node is empty，MAX_CHILD means full  */ 
 Node * pNode;  /*  the pointer that point to the Node structure  */ 
}Layer_Info;   
 
/*  define double link table structure  */ 
typedef struct _DLinkList{ 
 Layer_Info * pLayer_Info;     
 struct _DLinkList * prior, * next;    
}DLinkList;   
 
 
/*  define global variable  */ 
float g_Matr[MATRIXSIZE][MATRIXSIZE];    
Node * g_NodeinTree[MATRIXSIZE]; 
int g_numberofnodeinTree; /*  the total number of nodes in the tree  */ 
int g_MatrixSize;   /*  the size of the distance matrix  */    
float g_Sum; 
int Longest_Layer=0; 
 
int g_CurrentLayer = -1;  /*  recent filling layer number  */ 
DLinkList * g_pHeader = NULL; 
FILE * g_result; 
 
void initmatrix() 
     { 
          int i,j,imaxchild; 
          FILE *fp;                  
          fp=fopen("r1000.adj", "rb"); /* open a read only binary file */ 
          g_result=fopen("result.txt","wt+"); 
 
if ( fread( &g_MatrixSize, sizeof(int), 1, fp) != 1 )  
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    { 
      fprintf ( stderr, "Error: reading matrix size in"); 
      exit(21); 
    } 
 
         printf("    ----   Result  ----\n"); 
 fprintf(g_result, "   ----   Result  ----\n"); 
  
 imaxchild = MAX_CHILD;  
 printf("\nMAX_CHILD = %d\n", imaxchild); 
 fprintf(g_result, "\nMAX_CHILD = %d\n", imaxchild); 
 
 printf("Loading Matrix Size: %d x %d\n", g_MatrixSize, g_MatrixSize); 
 fprintf(g_result, "Loading Matrix Size: %d x %d\n", g_MatrixSize, 
g_MatrixSize);        
 
for ( j = 0; j < MATRIXSIZE; j++ ) /* running on columns */ 
    { 
      for ( i = 0; i < MATRIXSIZE; i++ ) /* running on lines */ 
 { 
   if ( fread( &g_Matr[i][j], sizeof(float), 1, fp) != 1 )  
     { 
       fprintf ( stderr,"Error: reading at column=%d, line=%d\n", j, i ); 
       exit(24); 
     } 
 } 
      printf("."); 
    } 
 
   for(i=0;i<MATRIXSIZE;i++) 
    { for(j=0;j<MATRIXSIZE;j++) 
      {   
        /* printf("Matr[%d][%d]=%f\n",i,j,g_Matr[i][j]);*/ 

               /*  fprintf(g_result,"Matr[%d][%d]=%f\n",i,j,g_Matr[i][j]);*/ 
          } 
    } 
          fclose(fp);    /*  close the file */ 
     }  
 
/***************************************************************** 
** The name of function:    InitNode                       
** Input:   No                       
** Output:   0---normal， 1---fail 
** Description:  initialize the node           
****************************************************************/ 
 
int InitNode() 
{  
 int i, j; 
  
 for(i=0; i < MATRIXSIZE; i++) 
 {   
  g_NodeinTree[i]=NULL; 
 } 
  
 g_NodeinTree[0] = (Node *)(malloc(sizeof(Node))); 
 if(g_NodeinTree[0] == NULL)return 1; 
 
 g_NodeinTree[0]->Id = 0; 
 g_NodeinTree[0]->Type = 2; 
        g_NodeinTree[0]->Path_Delay = 0; 
 g_NodeinTree[0]->Parent[0] = NULL; 
  
 for(j=0; j < MAX_CHILD; j++) 
    { 
  g_NodeinTree[0]->Child[j] = NULL; 
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 } 
 
 
 return 0; 
} /* End of InitNode  */ 
 
/***************************************************************** 
** The name of function:    FindMin                       
** Input:   float a[], int n 
** a[ ]::  the array that need sorting 
**n:   the size of array                       
** Output:   the order number of the smallest value 
** Description:  find the smallest value 
****************************************************************/ 
 
int FindMin(float a[], int n) 
{ 
 int i,k; 
 k = 0; 
 for(i = 1; i < n; i++) 
 { 
  if(a[i] < a[i-1]) 
  { 
   k = i; 
  } 
  else 
  { 
   a[i] = a[i-1]; 
  } 
 } 
 return k; 
} /* End of FindMin  */  
 

 
/***************************************************************** 
** The name of the function:    Traversal_Tree                       
** Input:   Node* pNode, int iLayer, DLinkList ** pHeader 
** pNode:   the pointer of root node 
** iLayer:    the layer of pNode，the layer number of source is 0 
** pHeader:   to preserve the pointer of link table                       
** Output:   0——normal 
** Description:    traverse the tree    
****************************************************************/ 
 
int Traversal_Tree(Node* pNode, int iLayer, DLinkList ** pHeader) 
{ 
 int i; 
 DLinkList * p_tmpDLL; 
 
 if(pNode != NULL) 
 { 
  /*  scan the whole tree  */ 
  p_tmpDLL = (DLinkList *)(malloc(sizeof(DLinkList))); 
  (DLinkList *)(p_tmpDLL->pLayer_Info) = (DLinkList 
*)(malloc(sizeof(DLinkList))); 
 
  p_tmpDLL->pLayer_Info->pNode = pNode; 
  p_tmpDLL->pLayer_Info->iLayer = iLayer; 
  p_tmpDLL->next = *pHeader; 
  p_tmpDLL->prior = NULL; 
  if(*pHeader != NULL)(*pHeader)->prior = p_tmpDLL; 
  *pHeader = p_tmpDLL; 
 
  /* store the whole tree in the double linked list, not forget to free it */ 
  iLayer++; 
  /*  continue to traverse  */ 
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  for(i=0; i < MAX_CHILD; i++) 
  { 
   Traversal_Tree((Node *)pNode->Child[i], iLayer, pHeader); 
  } 
 } 
 
 return 0; 
} /* End of Traversal_Tree */ 
 
/***************************************************************** 
** The name of function:    FreeDLinkList                       
** Input:   DLinkList ** pHeader 
** pHeader:   preserve the pointer of link table                       
** Output:   no 
** Description:    release the memory          
****************************************************************/ 
 
void FreeDLinkList(DLinkList ** pHeader) 
{ 
 DLinkList * p_tmpDLL; 
 while(*pHeader != NULL) 
 { 
  p_tmpDLL = *pHeader; 
  *pHeader = (*pHeader)->next; 
  if(p_tmpDLL->pLayer_Info != NULL)free(p_tmpDLL->pLayer_Info); 
  p_tmpDLL->pLayer_Info = NULL; 
  free(p_tmpDLL); 
  p_tmpDLL = NULL; 
 } 
} /* End of FreeDLinkList */ 
 
/***************************************************************** 
           

** The name of function:    CountDelay                       
** Input:   Node * pNode 
** pNode:   the node that we want to calculate distance                       
** output:   the path delay from 0 to node pNode 
** Description:    the path delay from 0 to node pNode ** 函数名: 
 CountDelay       
****************************************************************/ 
 
float CountDelay(Node * pNode) 
{ 
 float distance; 
 Node* p_tmpNode; 
  
 if(pNode->Id == 0)return 0; 
 
 p_tmpNode = (Node*)(pNode->Parent[0]); 
 distance = g_Matr[p_tmpNode->Id][pNode->Id]; 
  
 while(p_tmpNode->Parent[0] != NULL) 
 { 
  pNode = p_tmpNode; 
  p_tmpNode = (Node*)pNode->Parent[0]; 
   
  distance += g_Matr[p_tmpNode->Id][pNode->Id]; 
 } 
  
 return distance; 
} /* End of CountDelay */ 
 
/***************************************************************** 
** The name of function:    _AddNode                       
** Input:   int iNodeID , Node* pNode 
** iNodeID:  the ID of new comer 
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** pNode:   the requested node 
** Output:   0——normal， 1——the inputting pointer is null， 2——fail to 
allocate memory to new pointer 
** Description:    join a new client 
****************************************************************/ 
 
int _AddNode(int iNodeID, Node* pNode) 
{ 
 int i, j; 
  
 if(pNode == NULL)return 1; 
  
 for(i=0; i < MAX_CHILD; i++) 
 { 
  if(pNode->Child[i] == NULL) 
  { 
   j = i; 
   break; 
  } 
 } 
  
 (Node *)pNode->Child[j] = (Node *)(malloc(sizeof(Node))); 
 ((Node *)(pNode->Child[j]))->Id = iNodeID; 
 ((Node *)(pNode->Child[j]))->Type = 0; 
 (Node *)((Node *)(pNode->Child[j]))->Parent[0] = pNode; 
 ((Node *)(pNode->Child[j]))->Path_Delay = CountDelay((Node 
*)(pNode->Child[j])); 
  
 for(i=0; i < MAX_CHILD; i++) 
 { 
  ((Node *)(pNode->Child[j]))->Child[i] = NULL; 
 } 
 if(pNode->Child[j] == NULL)return 2; 

   
 return 0; 
}  
/***************************************************************** 
** The name of the function:    Add_Node                       
** Input:   int iNodeID 
** iNodeID:   the node ID of new comer 
** Output:   0——normal， 1——the inputting pointer is null， 2——fail to 
allocate the memory for new pointer 
** Description:    add a new node           
****************************************************************/ 
 
int Add_Node(int iNodeID) 
{ 
 int i,j,k,l,t,x,ret,ideep; 
 float * distance; 
 DLinkList * p_tmpDLL; 
 Node ** pNodetmp; /* the last two layers of the tree */ 
 
 distance = NULL; 
 pNodetmp = NULL; 
 
  
 Traversal_Tree(g_NodeinTree[0], 0, &g_pHeader); 
  
 p_tmpDLL = g_pHeader; 
 ideep = 0; 
 while(p_tmpDLL != NULL) 
 { 
  if(ideep < p_tmpDLL->pLayer_Info->iLayer)ideep = 
p_tmpDLL->pLayer_Info->iLayer; 
  p_tmpDLL->pLayer_Info->iFull = MAX_CHILD; 
  for(j=0;j < MAX_CHILD;j++) 
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  { 
   if(p_tmpDLL->pLayer_Info->pNode->Child[j] == 
NULL)p_tmpDLL->pLayer_Info->iFull = j; 
  } 
  p_tmpDLL = p_tmpDLL->next; 
 } 
 for(i = 0;i <= ideep;i++) 
 { 
  p_tmpDLL = g_pHeader; 
  k = 0; 
  while(p_tmpDLL != NULL) 
  { 
   if(p_tmpDLL->pLayer_Info->iFull == MAX_CHILD && 
p_tmpDLL->pLayer_Info->iLayer == i)k++; 
   p_tmpDLL = p_tmpDLL->next; 
  } 
  t = 1;  
  for(l = 0; l < i; l++) 
  { 
   t = t * MAX_CHILD; 
  } 
  if(k != t) 
  { 
   ret = i; 
   break; 
  } 
 } 
 if(ideep == 0) 
 { 
  ret = _AddNode(iNodeID, g_NodeinTree[0]); 
  if(ret != 0)return ret; 
 } 
 else 

 { 
  j = t - k; 
  pNodetmp  = (Node **)(malloc(j*sizeof(Node *))); 
  distance = (float *)(malloc(j*sizeof(float))); 
 
  p_tmpDLL = g_pHeader; 
  k = 0; 
  while(p_tmpDLL != NULL) 
  { 
   if(p_tmpDLL->pLayer_Info->iFull != MAX_CHILD && 
p_tmpDLL->pLayer_Info->iLayer == i) 
   { 
    pNodetmp[k] = p_tmpDLL->pLayer_Info->pNode; 
    k++; 
   } 
   p_tmpDLL = p_tmpDLL->next; 
  } 
  for(t=0; t < k; t++) 
  { 
   x = ((Node *)(pNodetmp[t]))->Id; 
   distance[t] = g_Matr[x][iNodeID]; 
  } 
  x = FindMin(distance, k); 
  ret = _AddNode(iNodeID, (Node *)pNodetmp[x]); 
  if(ret != 0)return ret; 
  
  
  if(distance != NULL)free(distance); 
  distance = NULL; 
  if(pNodetmp != NULL)free(pNodetmp); 
  pNodetmp = NULL; 
 } 
 FreeDLinkList(&g_pHeader); 
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 return 0; 
} 
 
/***************************************************************** 
** The name of function:    Delete_Node                      
** Input:   int iNodeID 
** iNodeID:  the ID of the node that we want to delete 
** Output:   0——normal， 1——the inputting node pointer is null， 2——fail to 
allocate memory for new pointer, 3—— this node does not exist 
** Description:    remove node           
****************************************************************/ 
 
int Delete_Node(int iNodeID) 
{ 
 int i,j,ilayer,ih,il; 
 Node * pNode; 
 DLinkList * p_tmpDLL, * pDlinklist; 
 
 pNode = NULL; 
 pDlinklist = NULL; 
 
 printf("Node ID = %d have left, all its descendant are 
                disconnected;\n",iNodeID); 
  
     /* search for the target node */ 
 Traversal_Tree(g_NodeinTree[0], 0, &g_pHeader); 
  
 p_tmpDLL = g_pHeader; 
  
 while(p_tmpDLL != NULL) 
 { 
  if(p_tmpDLL->pLayer_Info->pNode->Id == iNodeID) 
 

  { 
   pNode = (Node*)p_tmpDLL->pLayer_Info->pNode; 
   ilayer = p_tmpDLL->pLayer_Info->iLayer; 
  } 
  p_tmpDLL = p_tmpDLL->next; 
 } 
 FreeDLinkList(&g_pHeader); 
 if(pNode == NULL)return 3; 
 
 /* find the offspring nodes of the target node */ 
 Traversal_Tree(pNode, ilayer, &pDlinklist); 
 p_tmpDLL = pDlinklist; 
 j = 0; 
  
 while(p_tmpDLL != NULL) 
 { 
  j++; 
  if(p_tmpDLL->pLayer_Info->pNode->Id == iNodeID) 
  { 
   if(p_tmpDLL->prior != NULL)p_tmpDLL->prior->next = NULL; 
    
   if(p_tmpDLL->pLayer_Info != 
NULL)free(p_tmpDLL->pLayer_Info); 
   p_tmpDLL->pLayer_Info = NULL; 
 
   free(p_tmpDLL); 
   p_tmpDLL = NULL; 
    
   break; 
  } 
  p_tmpDLL = p_tmpDLL->next; 
 } 
 for(i =0; i < MAX_CHILD; i++) 
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 { 
  if(((Node *)pNode->Parent[0])->Child[i] != NULL) 
   if(((Node *)((Node *)pNode->Parent[0])->Child[i])->Id == iNodeID) 
   ((Node *)pNode->Parent[0])->Child[i] = NULL; 
 } 
 free(pNode);/* delete the node */ 
 pNode = NULL; 
 if(j == 1)pDlinklist = NULL; 
 
 /* add the offspring nodes */ 
 p_tmpDLL = pDlinklist; 
 if(p_tmpDLL != NULL) 
 { 
  il=p_tmpDLL->pLayer_Info->iLayer;  
  ih=p_tmpDLL->pLayer_Info->iLayer; 
 } 
 while(p_tmpDLL != NULL) 
 { 
if(p_tmpDLL->pLayer_Info->iLayer > ih)ih = p_tmpDLL->pLayer_Info->iLayer; 
if(p_tmpDLL->pLayer_Info->iLayer < il)il = p_tmpDLL->pLayer_Info->iLayer; 
 
  p_tmpDLL = p_tmpDLL->next; 
 } 
  
 for(i = il;i <= ih;i++) 
 { 
  p_tmpDLL = pDlinklist; 
  while(p_tmpDLL != NULL) 
  { 
   if(p_tmpDLL->pLayer_Info->iLayer == i) 
   { 
    Add_Node(p_tmpDLL->pLayer_Info->pNode->Id); 
   } 

   p_tmpDLL = p_tmpDLL->next; 
  } 
 } 
  
 FreeDLinkList(&pDlinklist); 
  
 return 0; 
} /* End of Delete_Node */ 
 
/***************************************************************** 
** The name of function:    ReclaimMem                       
** Input:   no 
** Output:   no 
** Description:    release the allocated memory  
****************************************************************/ 
 
void ReclaimMem() 
{ 
 DLinkList * p_tmpDLL; 
 
 Traversal_Tree(g_NodeinTree[0], 0, &g_pHeader); 
 
 p_tmpDLL = g_pHeader; 
  
 while(p_tmpDLL != NULL) 
 { 
  if(p_tmpDLL->pLayer_Info->pNode != NULL) 
  { 
   free(p_tmpDLL->pLayer_Info->pNode); 
   p_tmpDLL->pLayer_Info->pNode = NULL; 
  } 
  p_tmpDLL = p_tmpDLL->next; 
 } 
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 FreeDLinkList(&g_pHeader); 
} /* End of ReclaimMem */ 
 
/***************************************************************** 
** The name of function:    CountSum                       
** Input:   Node * pNode, int sum 
** pNode:   calculation starting point 
** Output :   the sum of distance 
** Description:    calculate the sum of distance        
****************************************************************/ 
 
float CountSum(Node * pNode) 
{ 
 int i; 
 Node * ptmpNode; 
 
 ptmpNode = NULL; 
 
 if(pNode != NULL) 
 { 
  /* traverse the tree  */ 
  for(i=0; i < MAX_CHILD; i++) 
  { 
   ptmpNode = (Node *)pNode->Child[i]; 
   if(ptmpNode != NULL) 
   { 
  
   g_Sum = g_Sum + g_Matr[pNode->Id][ptmpNode->Id]; 
   } 
 
   CountSum(ptmpNode); 
  } 
 } 

  
 return g_Sum; 
} /* End of CountSum */ 
 
/***************************************************************** 
** The name of function:    ShowOnScreen                       
** Input:   no 
** Output:  no  
** Description:    show all of the node in the tree 
****************************************************************/ 
void ShowOnScreen() 
{  
 int i,j; 
        int k; 
 DLinkList * p_tmpDLL; 
          int Number_Layer[25]; 
 
           int Sum_Layer=0; 
            float Longest_Delay=0; 
  
 for (k=0;k<26;k++) 
    {  
                    Number_Layer[k]=0; 
                  }  
  
 Traversal_Tree(g_NodeinTree[0], 0, &g_pHeader); 
 p_tmpDLL = g_pHeader; 
 i = 0; 
 
 printf("\nList all the nodes in the current tree! \n"); 
 while(p_tmpDLL != NULL) 
 { 
  if(p_tmpDLL->pLayer_Info->pNode->Id == 0)j=0; 
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else j = (int)((Node *)((Node 
*)(p_tmpDLL->pLayer_Info->pNode)->Parent[0])->Id); 
  
printf("Node ID = %d, Layer = %d Parent = %d Path_Delay = %f \n", 
   p_tmpDLL->pLayer_Info->pNode->Id, 
   p_tmpDLL->pLayer_Info->iLayer, 
   j, 
   p_tmpDLL->pLayer_Info->pNode->Path_Delay 
   ); 
  
if (Longest_Layer<p_tmpDLL->pLayer_Info->iLayer) 
    Longest_Layer=p_tmpDLL->pLayer_Info->iLayer; 
 
                
if(Longest_Delay<p_tmpDLL->pLayer_Info->pNode->Path_Delay) 
                  
Longest_Delay=p_tmpDLL->pLayer_Info->pNode->Path_Delay; 
Sum_Layer=Sum_Layer+p_tmpDLL->pLayer_Info->iLayer; 
 
  for (k=0;k<8;k++) 
    { if(p_tmpDLL->pLayer_Info->iLayer==k)  
                    Number_Layer[k]=Number_Layer[k]+1; 
                  }  
 
fprintf(g_result, "Node ID = %d, Layer = %d Parent = %d Path_Delay = %f \n", 
   p_tmpDLL->pLayer_Info->pNode->Id, 
   p_tmpDLL->pLayer_Info->iLayer, 
   j, 
   p_tmpDLL->pLayer_Info->pNode->Path_Delay 
   ); 
 
 
 

 
  p_tmpDLL = p_tmpDLL->next; 
  i++; 
 } 
 printf("\nThere are %d nodes in the tree! \n",i); 
        fprintf(g_result, "\nThere are %d nodes in the tree! \n",i); 
 
fprintf(g_result, "\nThe deepest layer is %d ! \n",Longest_Layer); 
        fprintf(g_result, "\nThe sum of layer is %d ! \n",Sum_Layer); 
        fprintf(g_result, "\nThe longest delay  is %f ! \n",Longest_Delay); 
 
 for (k=0;k<10;k++) 
    { 
   fprintf(g_result, "\nThe layer %d includes %d nodes ! \n",k,Number_Layer[k]); 
                   } 
  
 FreeDLinkList(&g_pHeader); 
} /* End of ShowOnScreen */ 
 
int main (int argc, char **argv) 
{ 
 int i; 
 int Eventlist[] = {a eventlist we proposed}; 
 
 float sum; 
 
        initmatrix(); 
 InitNode(); 
 
          for(i=0; i < 850; i++) 
  { 
  Add_Node(Eventlist[i]); 
  }  
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 ShowOnScreen(); 
 
g_Sum = 0; 
 sum = CountSum(g_NodeinTree[0]); 
 printf("Sum = %f", sum); 
 fprintf(g_result, "\nThe Sum = %f.\n", sum); 
 fprintf(g_result, "\nAdd Node ID:"); 
 for(i=0; i < 50; i++) 
 { 
   /*fprintf(g_result, "%d,",Eventlist[i]);*/ 
 } 
  ReclaimMem();  
 return 0; 
} 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


