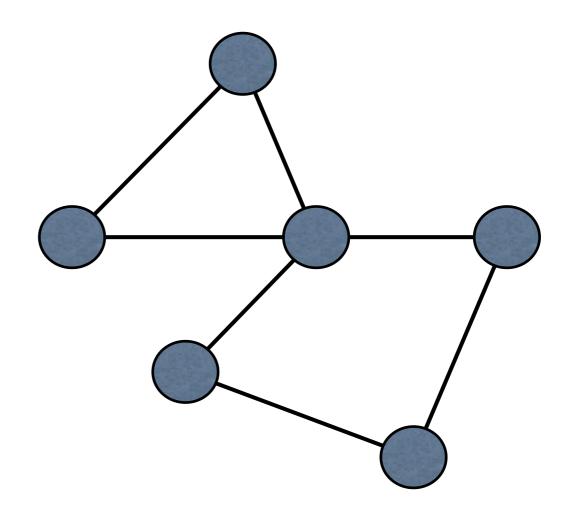
Independent and Dominating Sets

Why dominating or independent sets?

Independent Sets

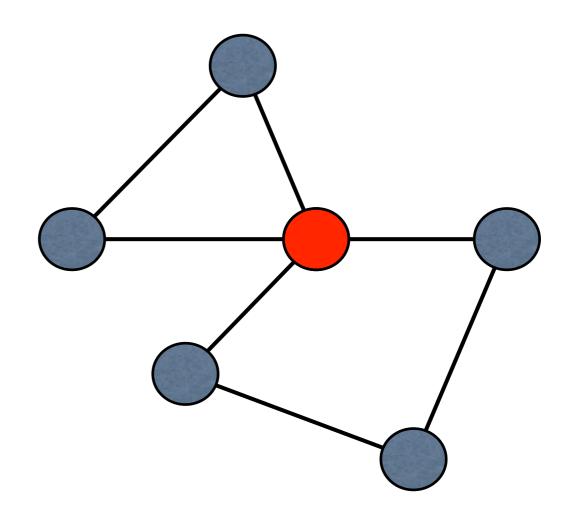
Independent Set

 Given a graph G=(V,E), an independent set is a subset of vertices, U, such that no two nodes in U are neighbors in G.



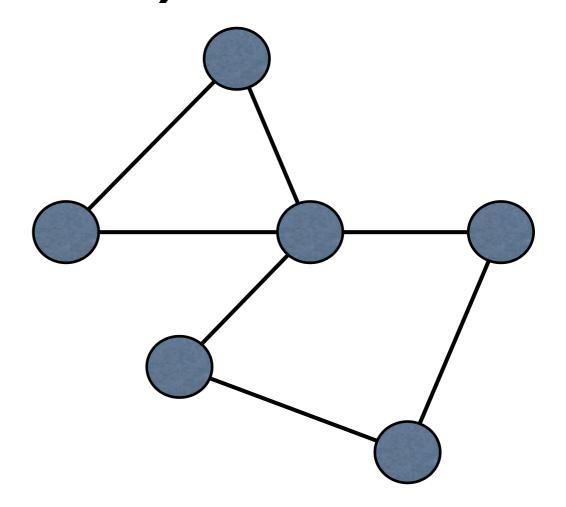
Independent Set

 Given a graph G=(V,E), an independent set is a subset of vertices, U, such that no two nodes in U are neighbors in G.



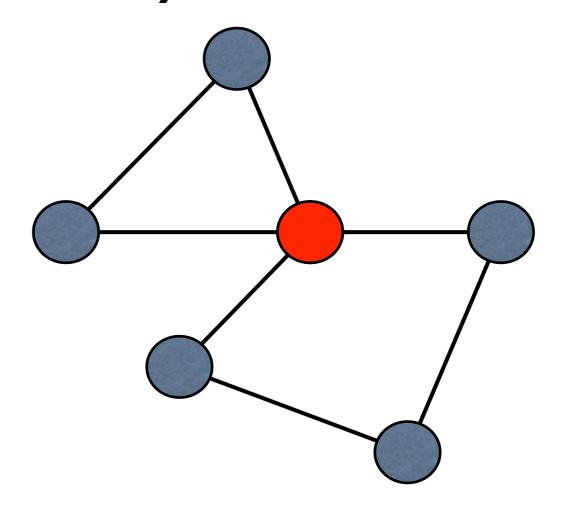
Maximal Independent Set (MIS)

- Given a graph G=(V,E), a
 MIS is a subset of vertices, U, such that :
 - Independence: no two nodes in U are neighbors in G
 - Maximality: no vertex can be added to U without violating the independence



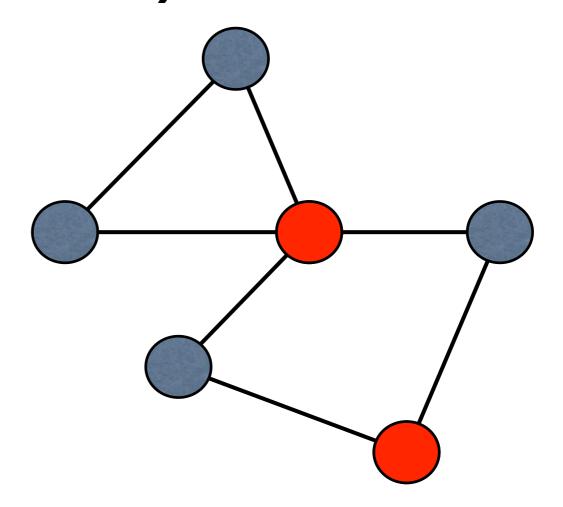
Maximal Independent Set (MIS)

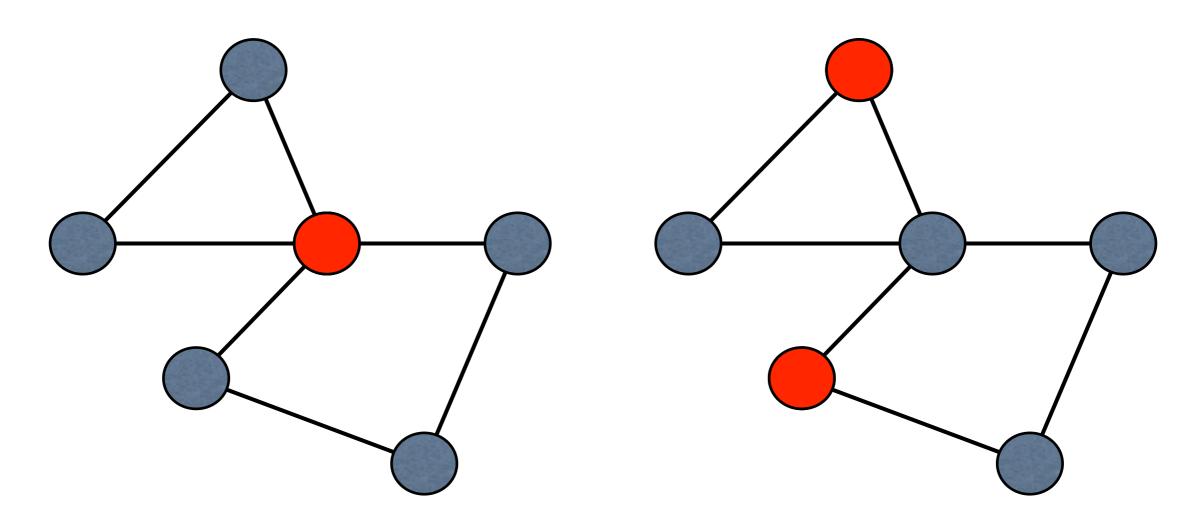
- Given a graph G=(V,E), a
 MIS is a subset of vertices, U, such that :
 - Independence: no two nodes in U are neighbors in G
 - Maximality: no vertex can be added to U without violating the independence

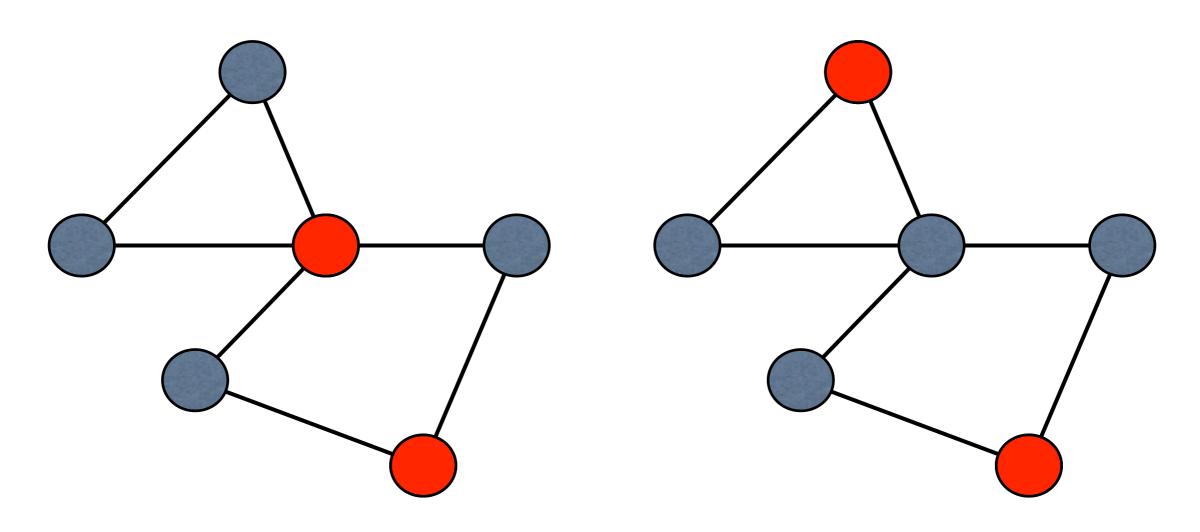


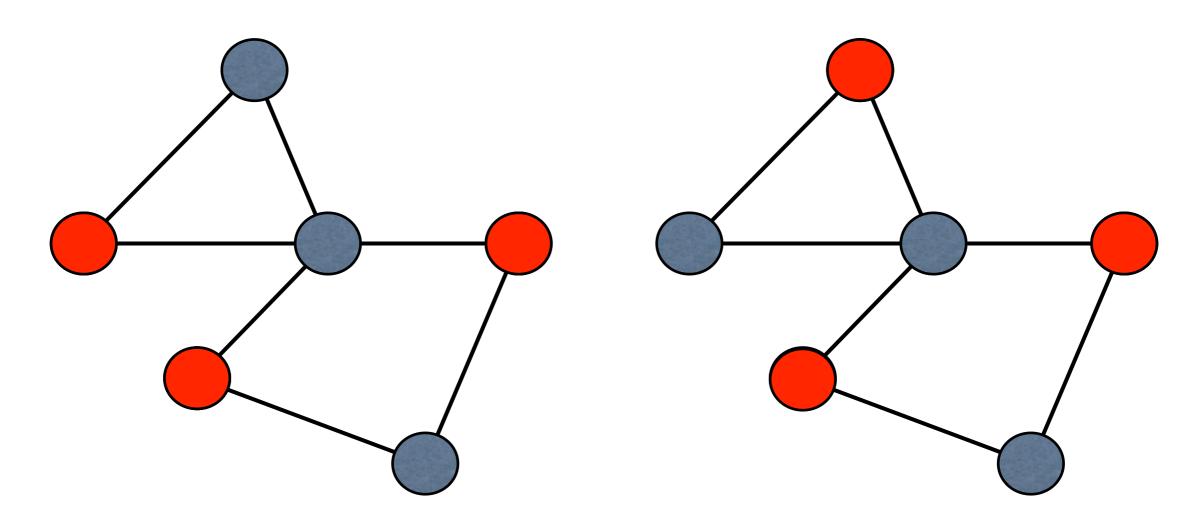
Maximal Independent Set (MIS)

- Given a graph G=(V,E), a
 MIS is a subset of vertices, U, such that :
 - Independence: no two nodes in U are neighbors in G
 - Maximality: no vertex can be added to U without violating the independence

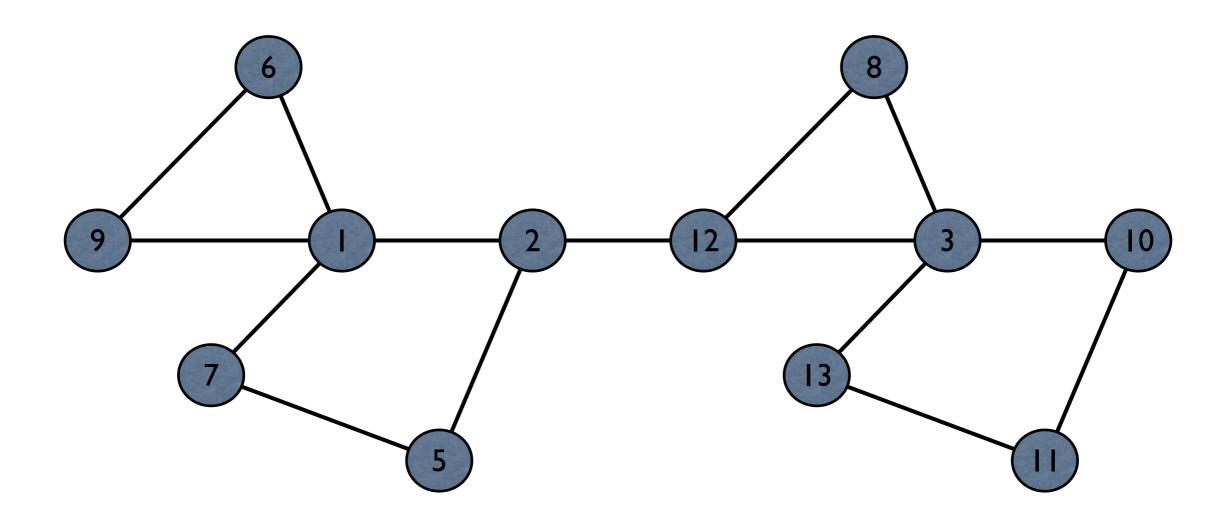


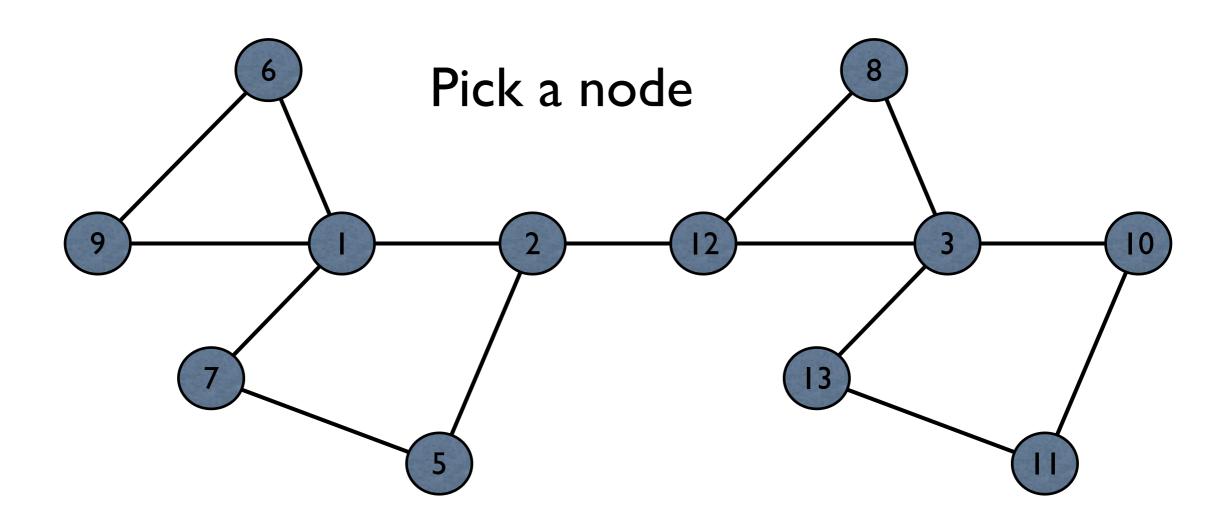


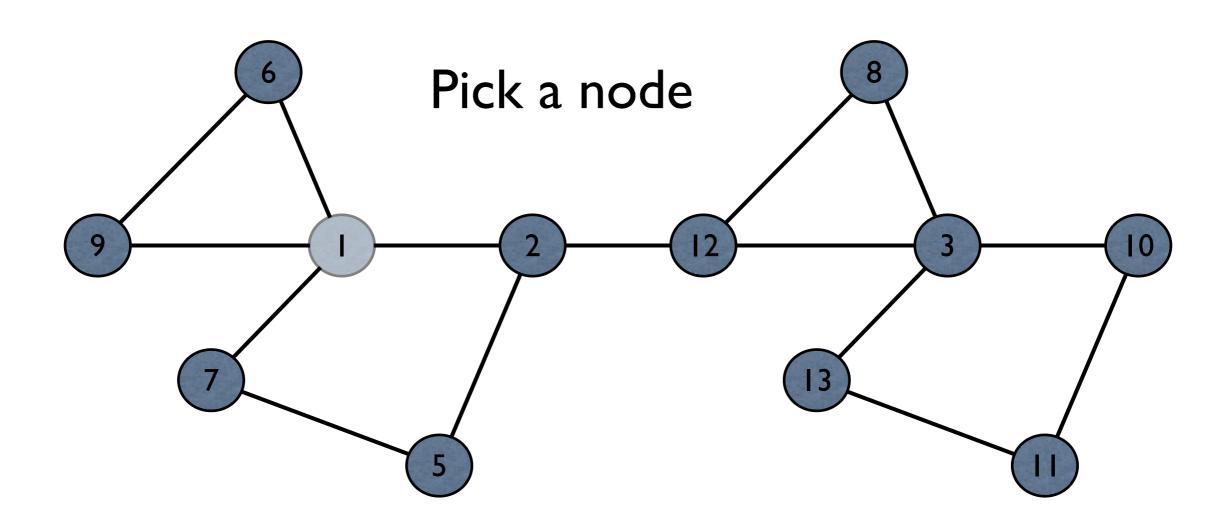


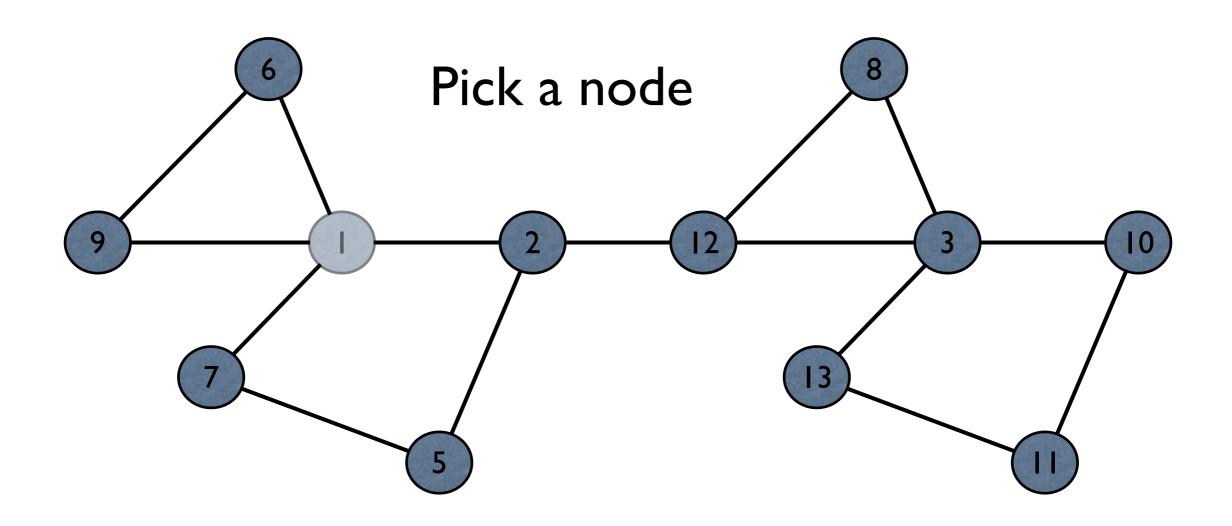


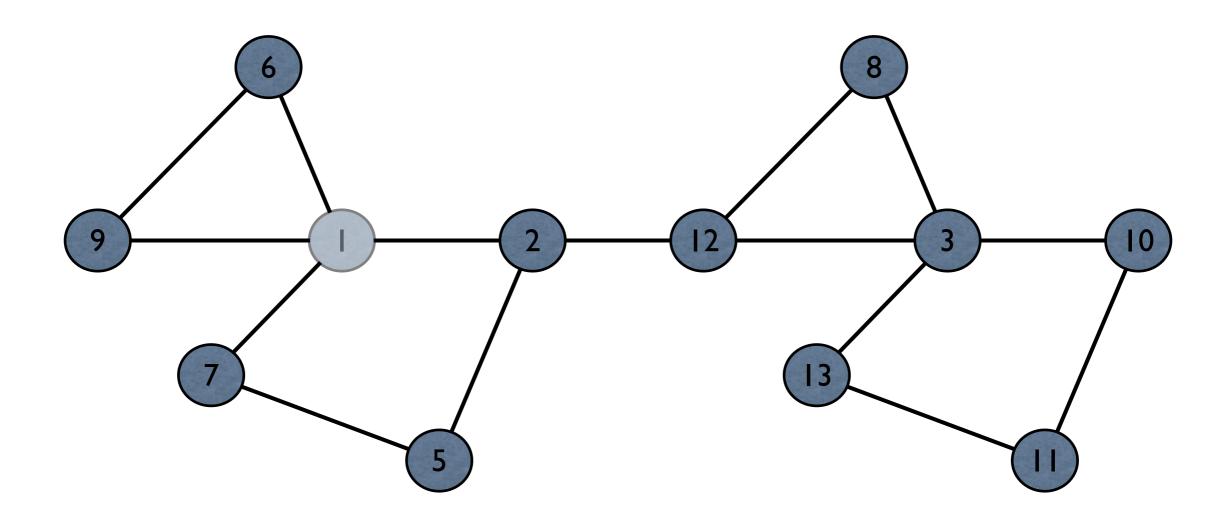
MIS Implementation

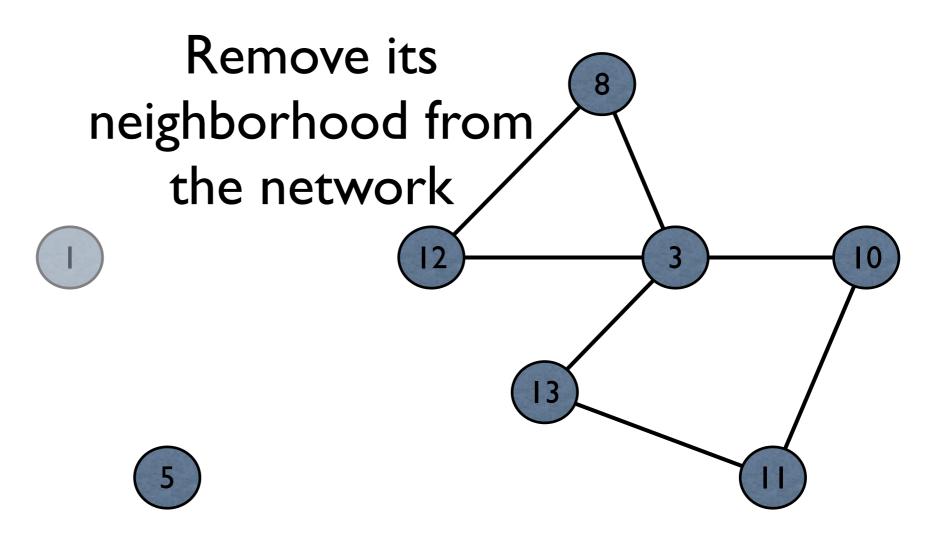


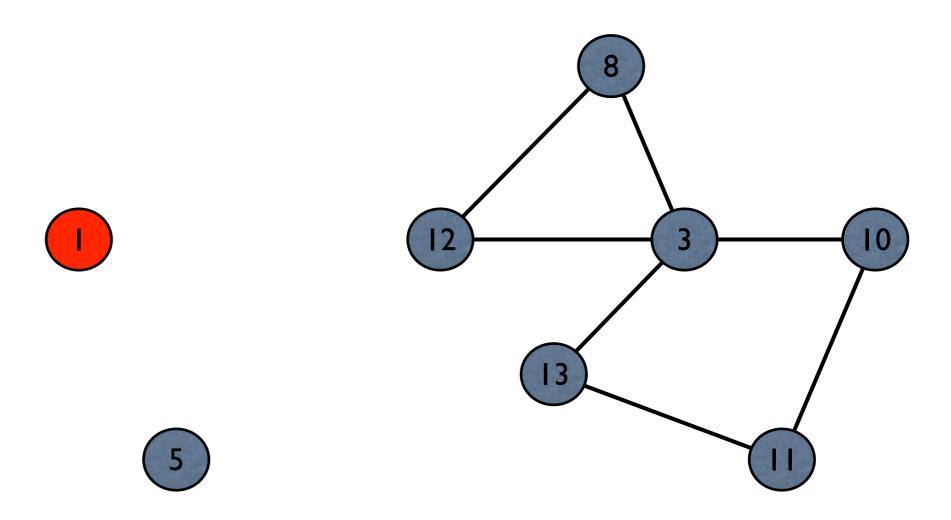


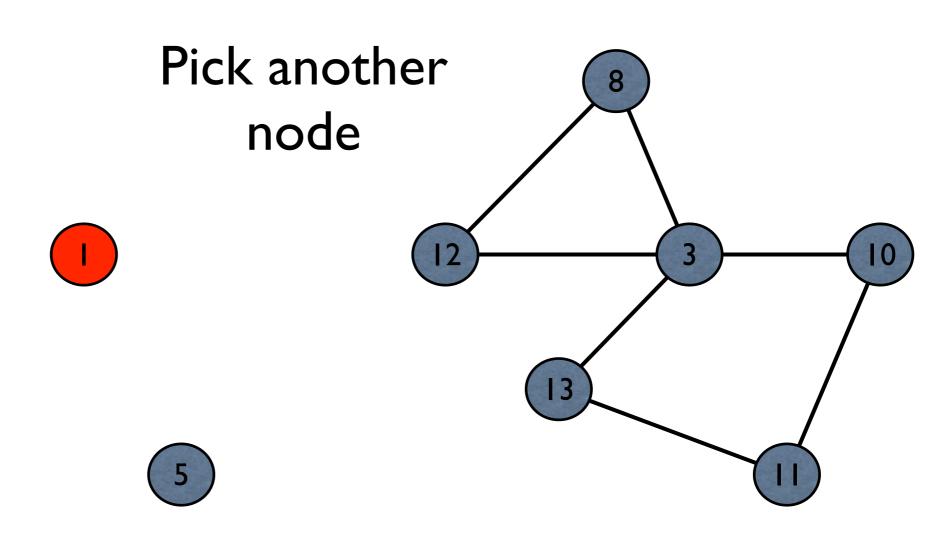


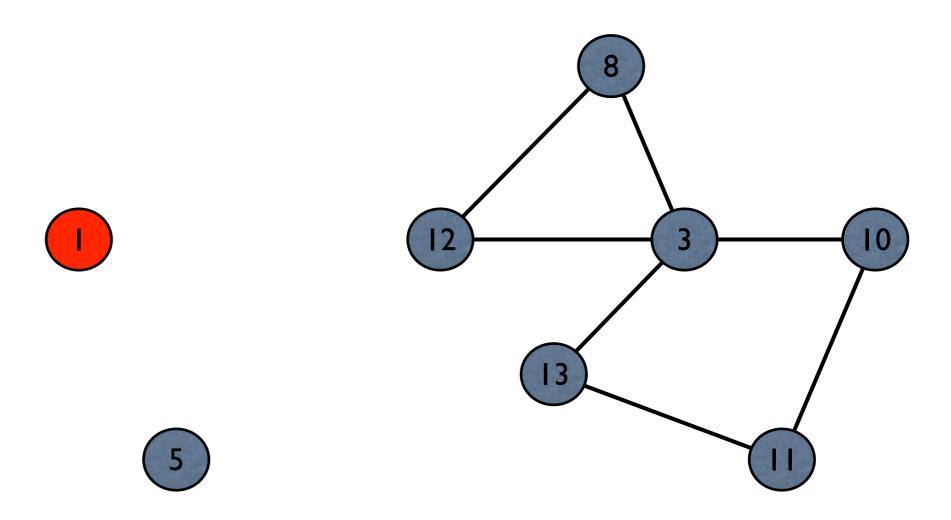


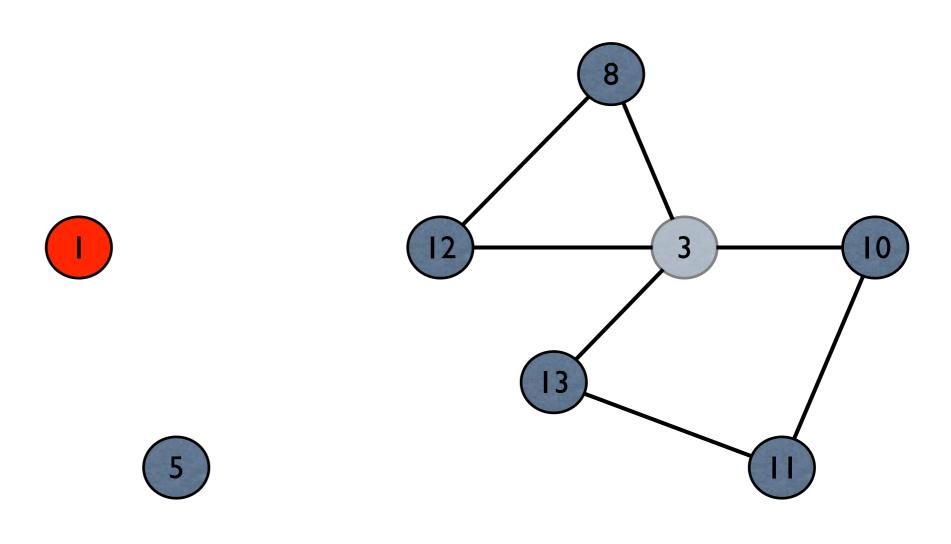


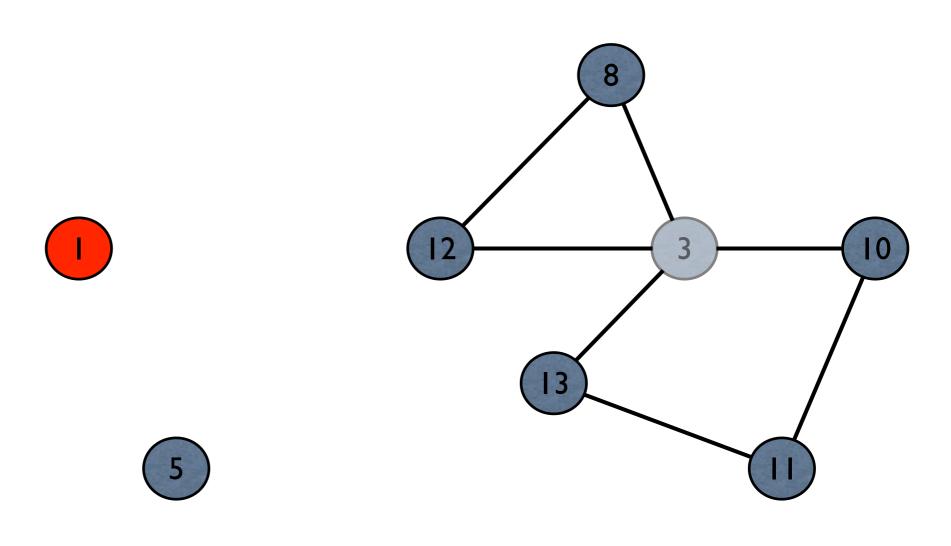












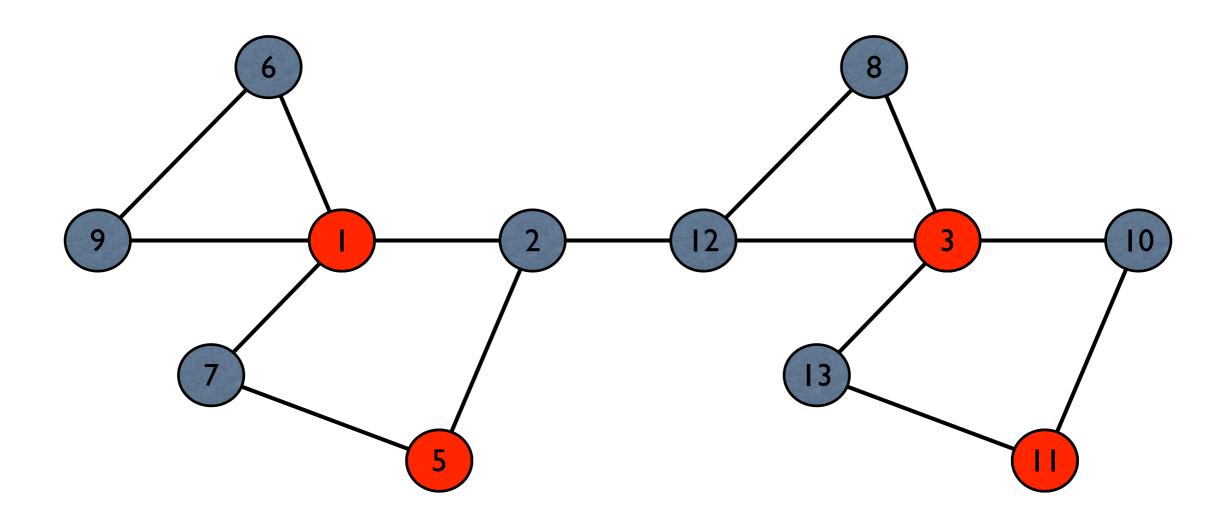
Remove its neighborhood from the network

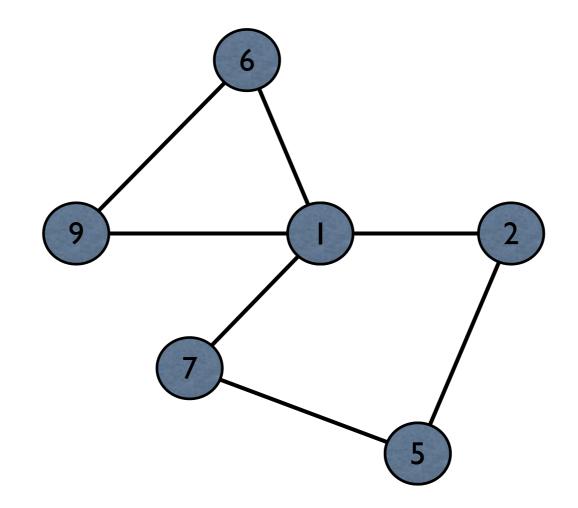
Pick another node

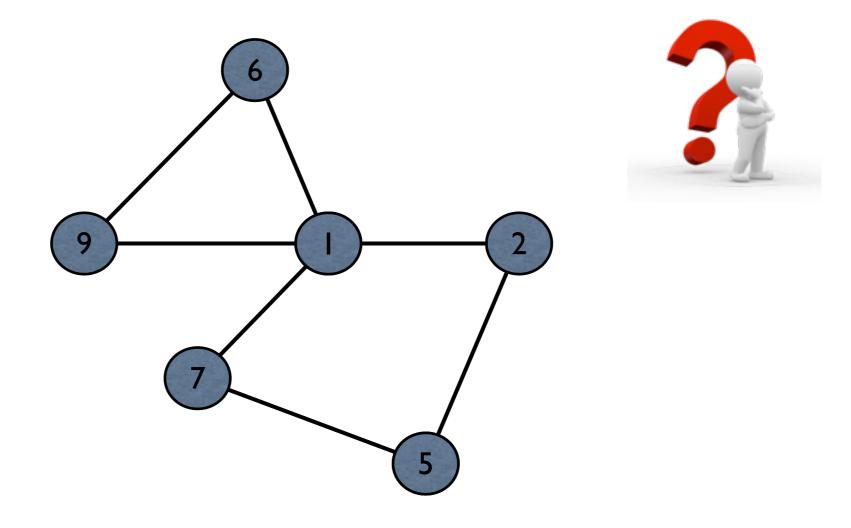
3

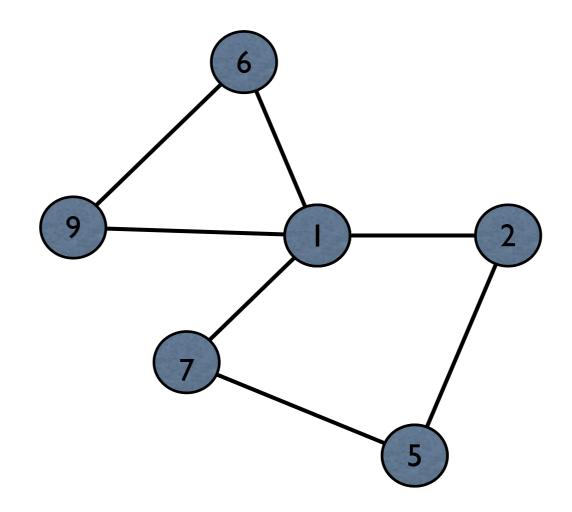
5

mercredi 11 février 2015



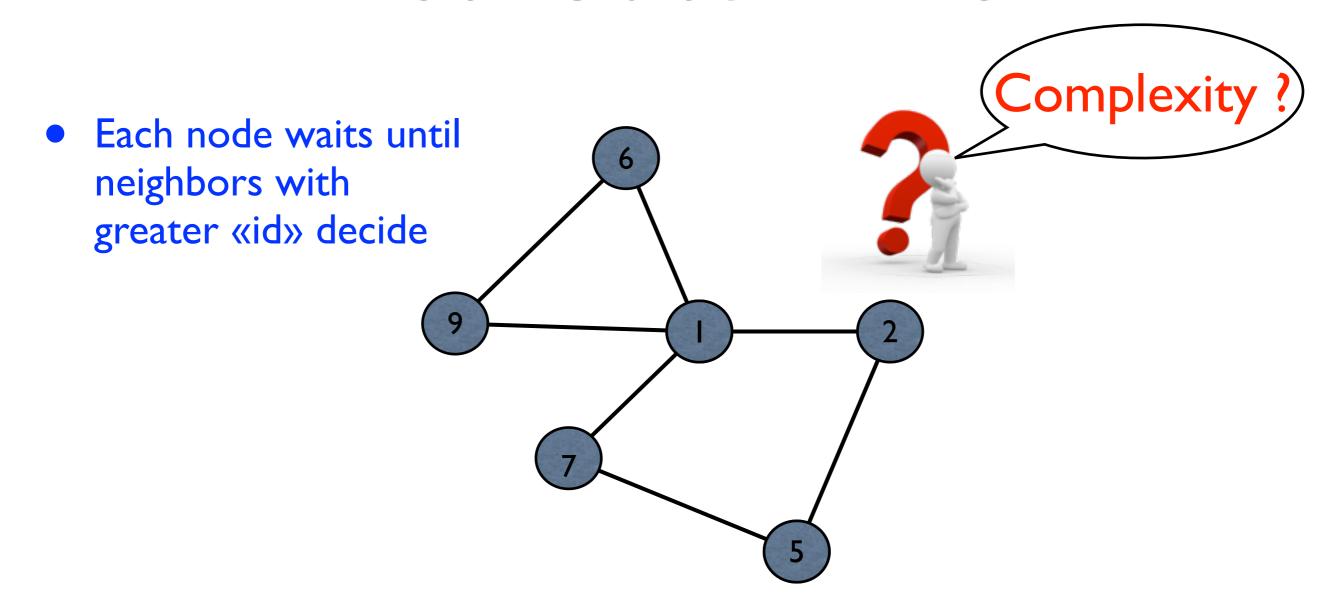






Each node waits until neighbors with greater «id» decide
9
1
2
5

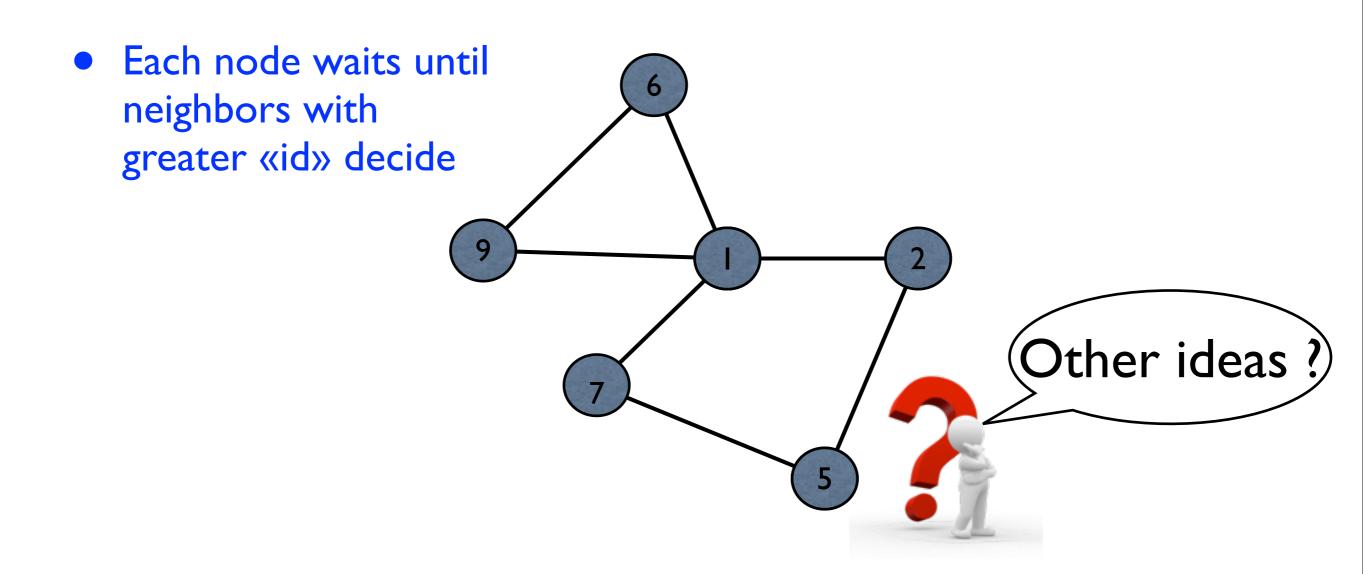
Distributed MIS



Distributed MIS

Each node waits until neighbors with greater «id» decide
9
1
2
5

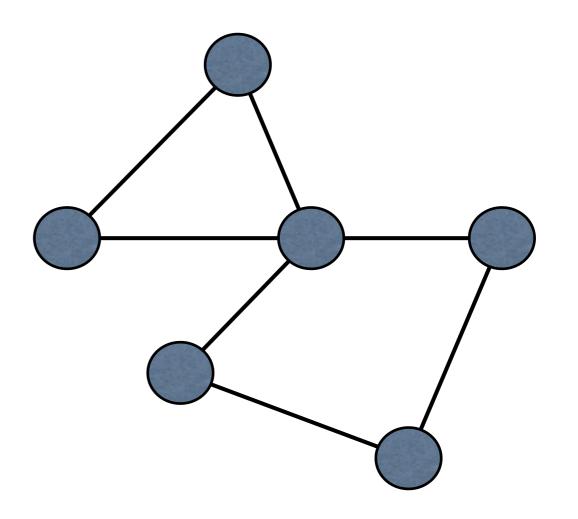
Distributed MIS



Dominating Sets

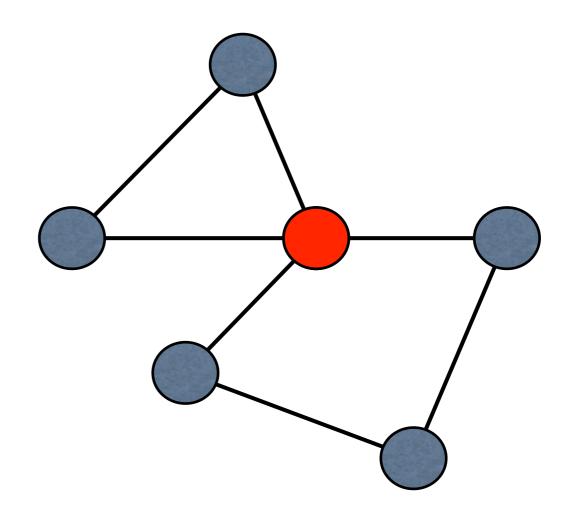
Dominating Set

Given a graph G=(V,E), a
 dominating set (DS)
 is a subset of vertices,
 U, such that each node
 in V is either in U or
 neighbor of a node in U.



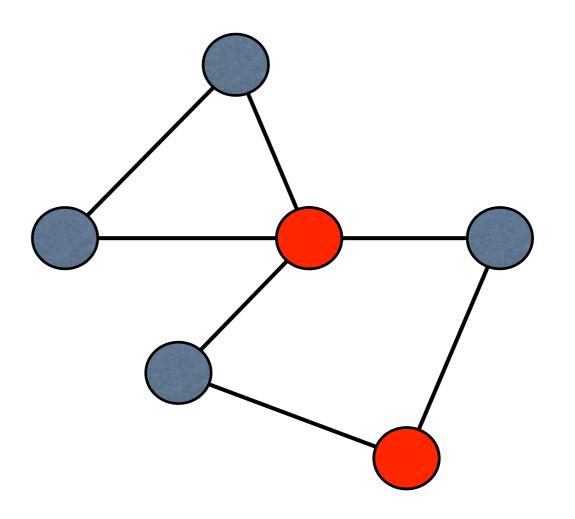
Dominating Set

Given a graph G=(V,E), a
 dominating set (DS)
 is a subset of vertices,
 U, such that each node
 in V is either in U or
 neighbor of a node in U.

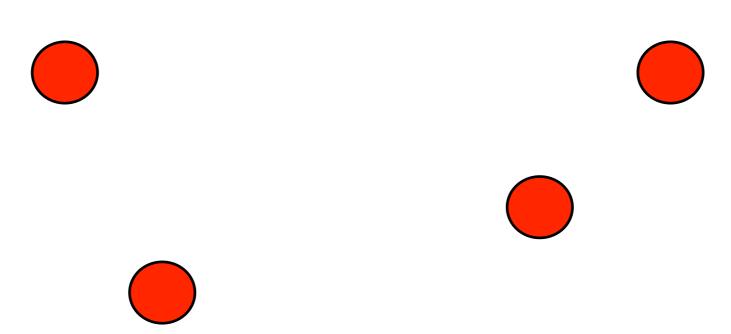


Dominating Set

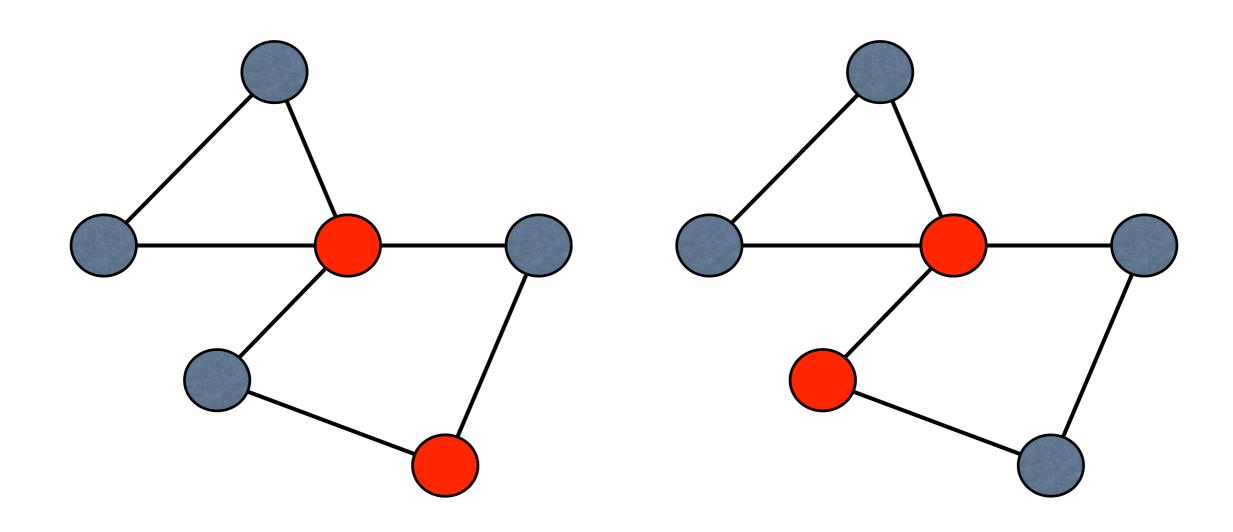
Given a graph G=(V,E), a
 dominating set (DS)
 is a subset of vertices,
 U, such that each node
 in V is either in U or
 neighbor of a node in U.



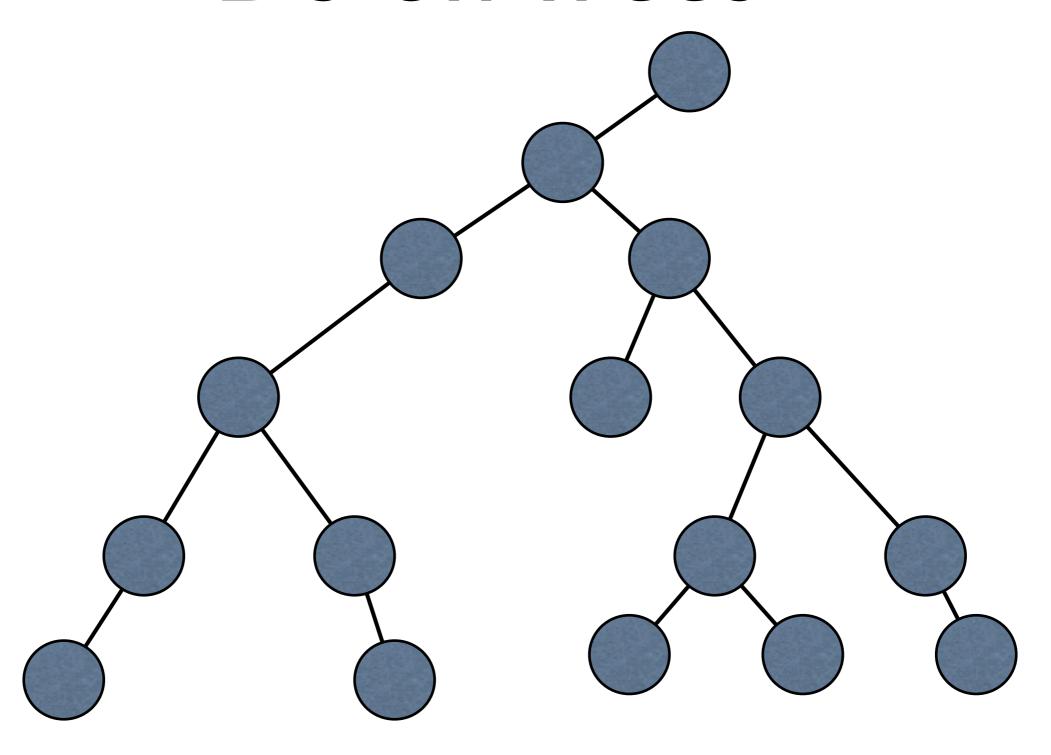
Dominating Sets?

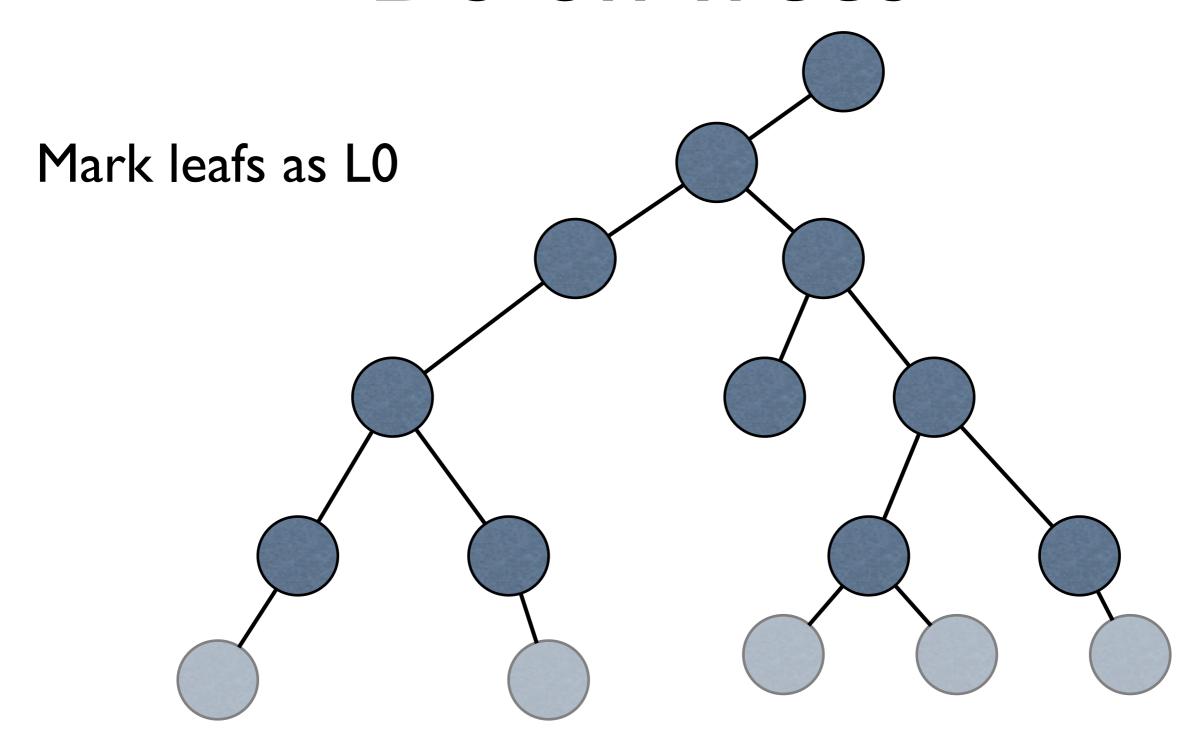


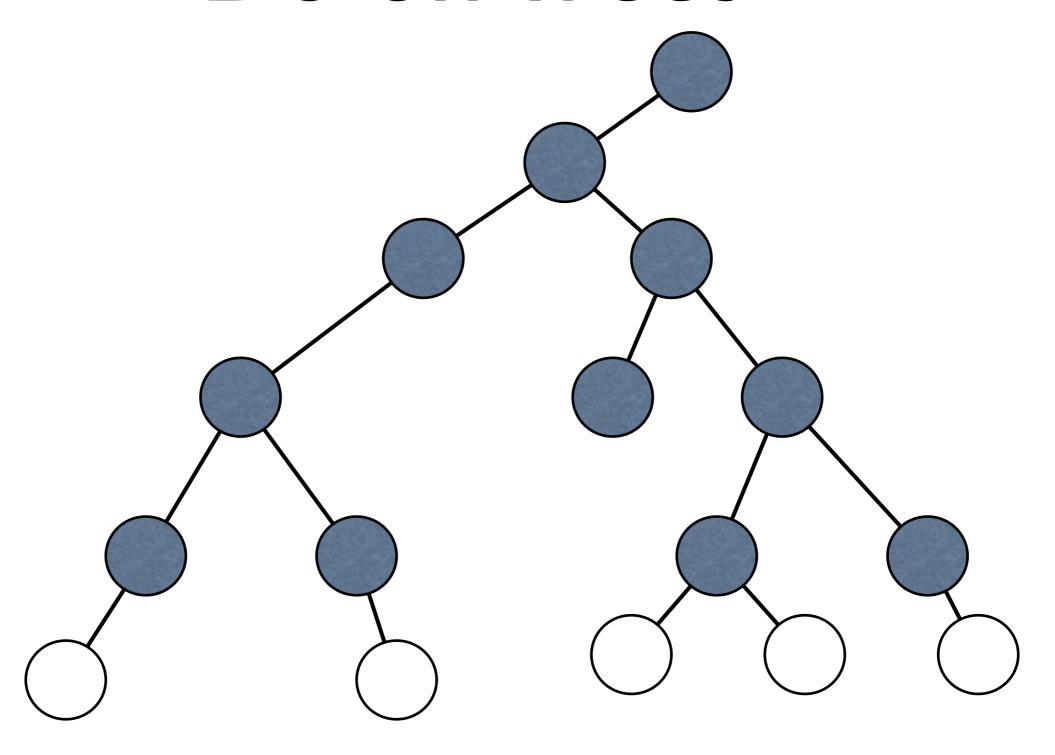
Dominating Sets?

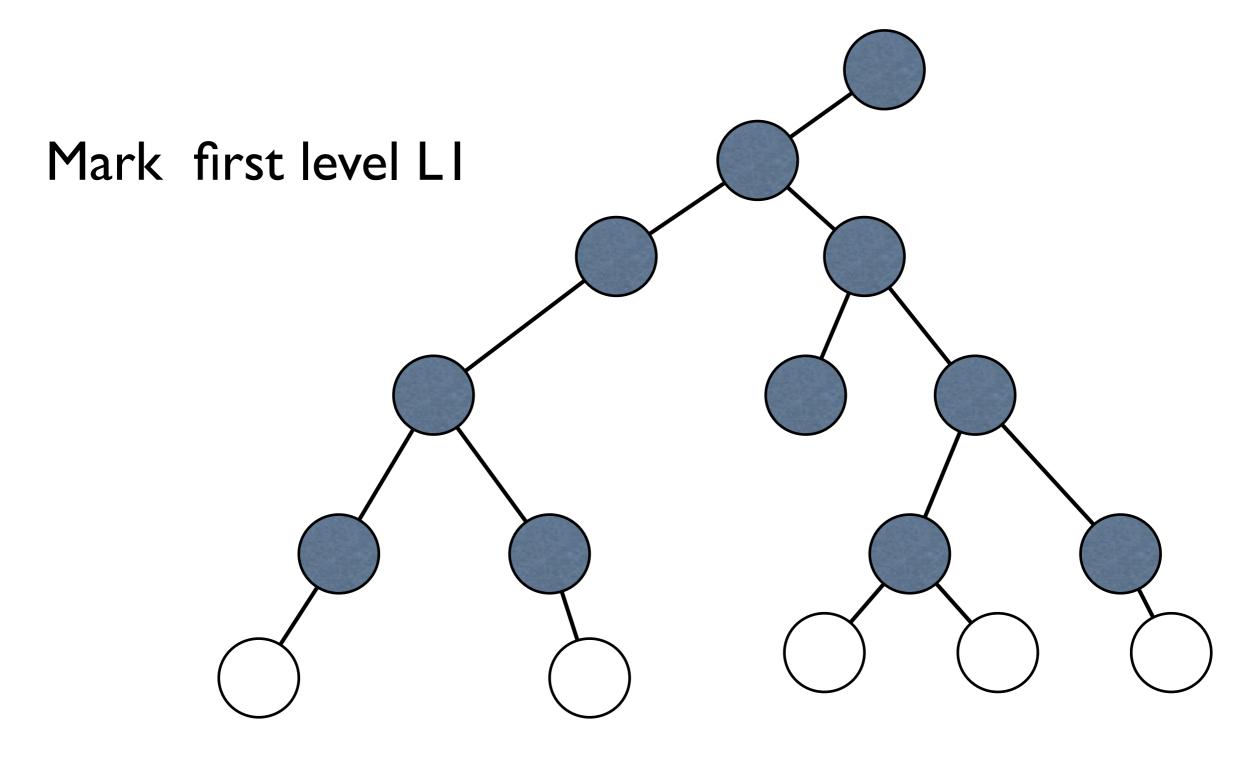


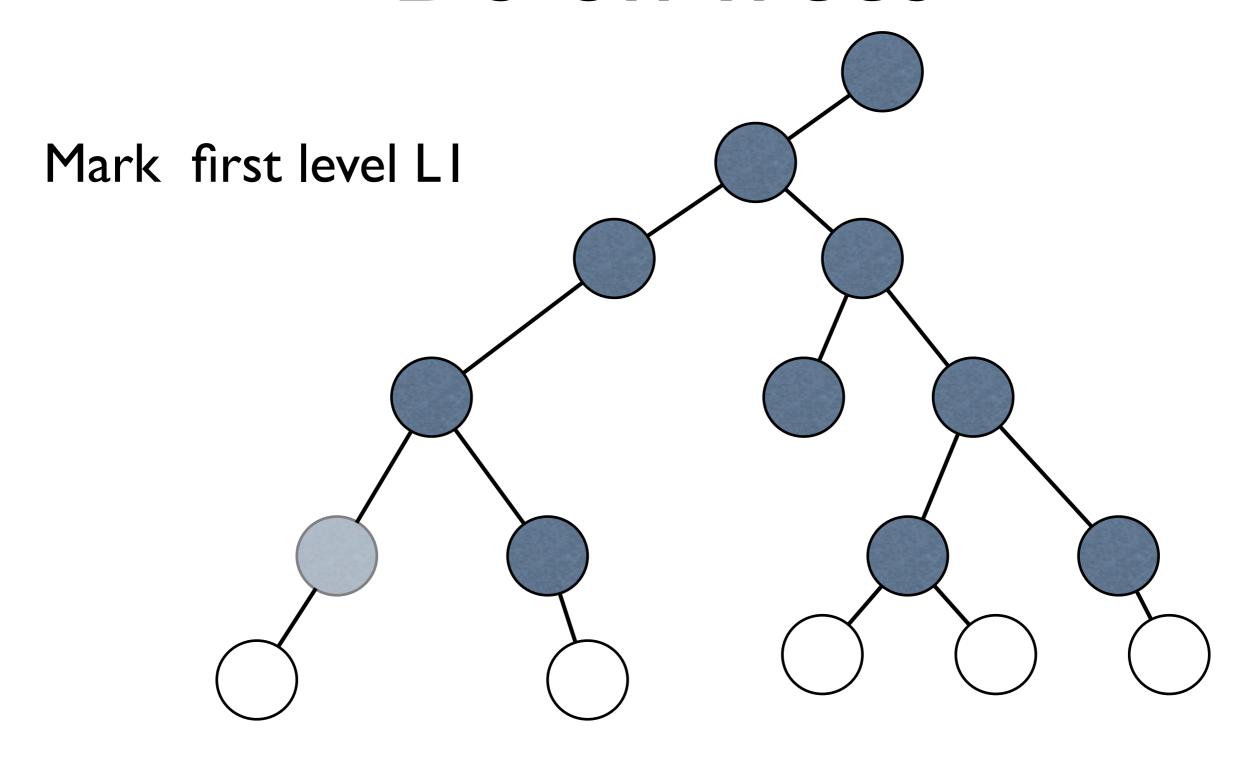
DS Implementation

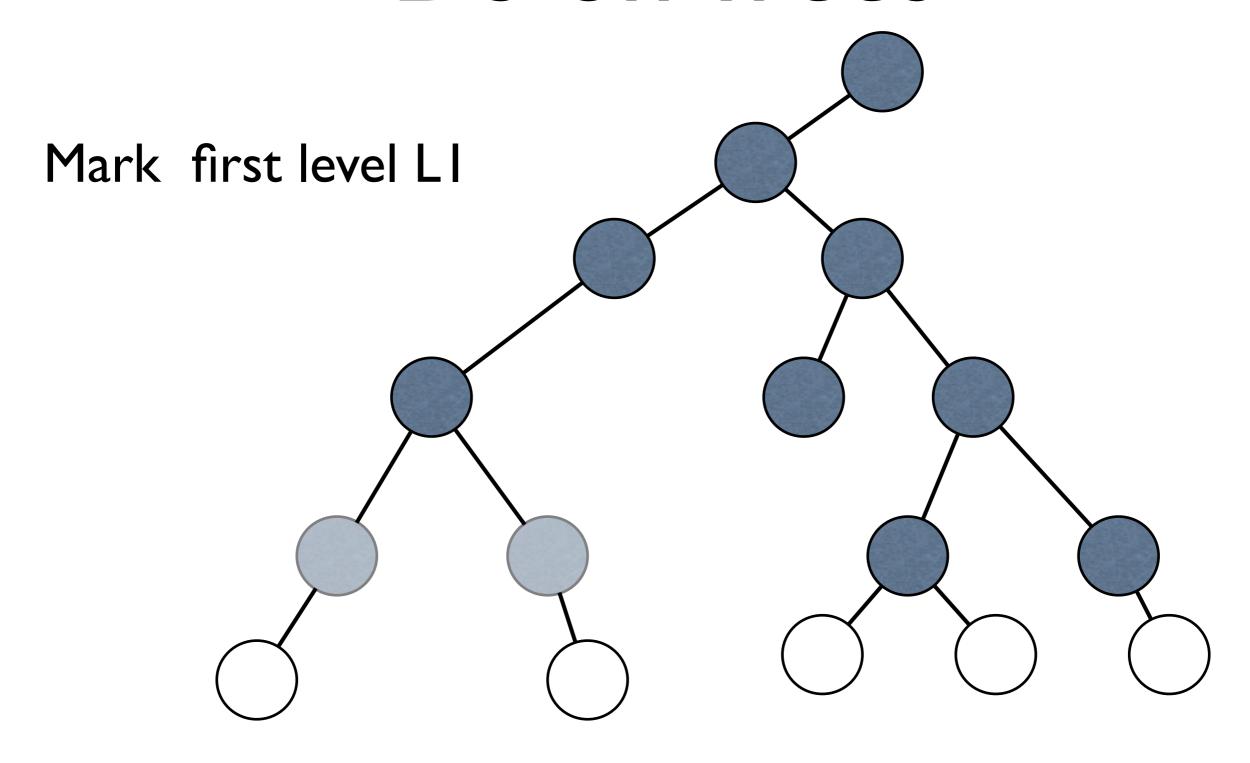


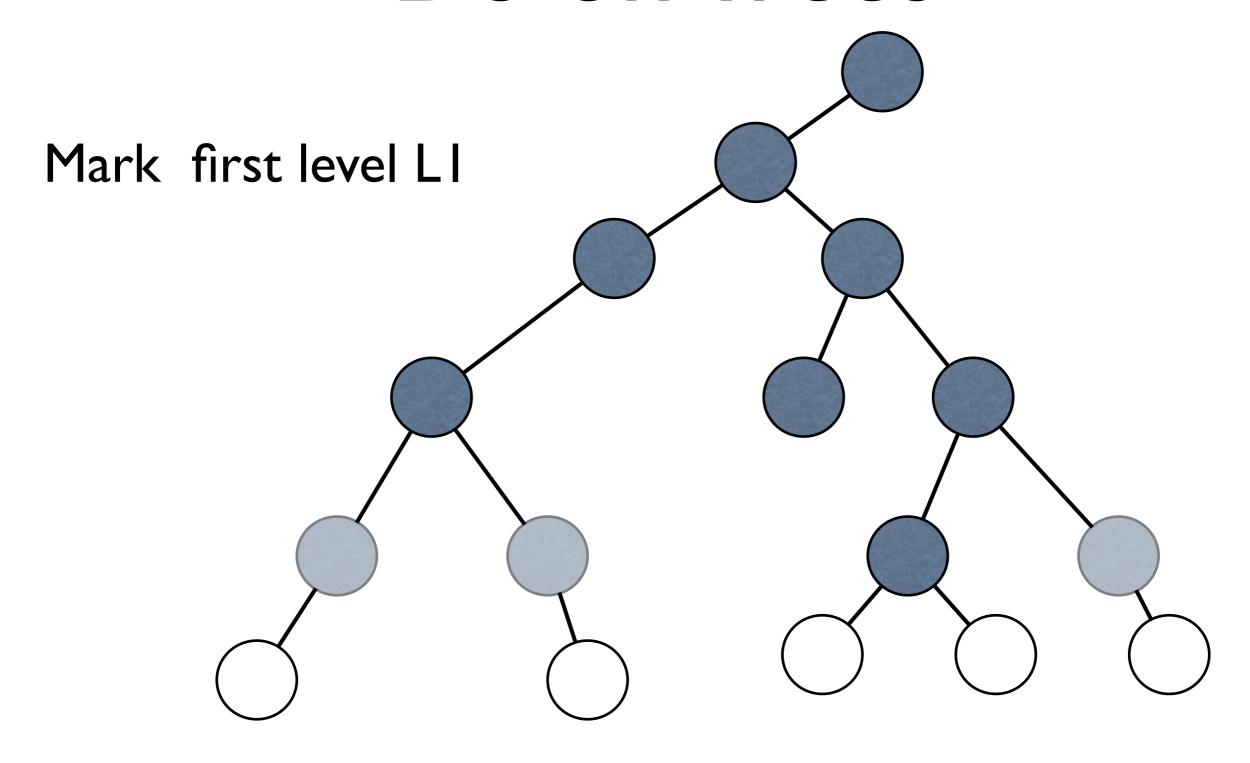


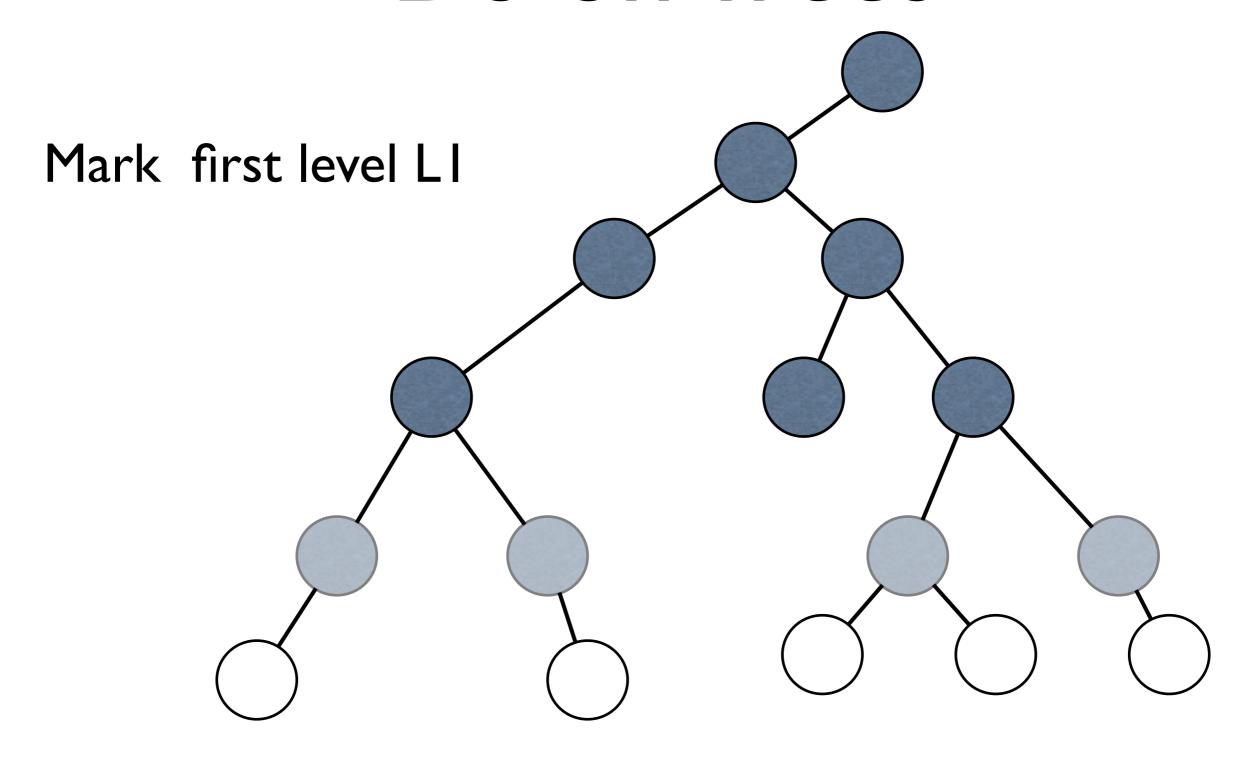


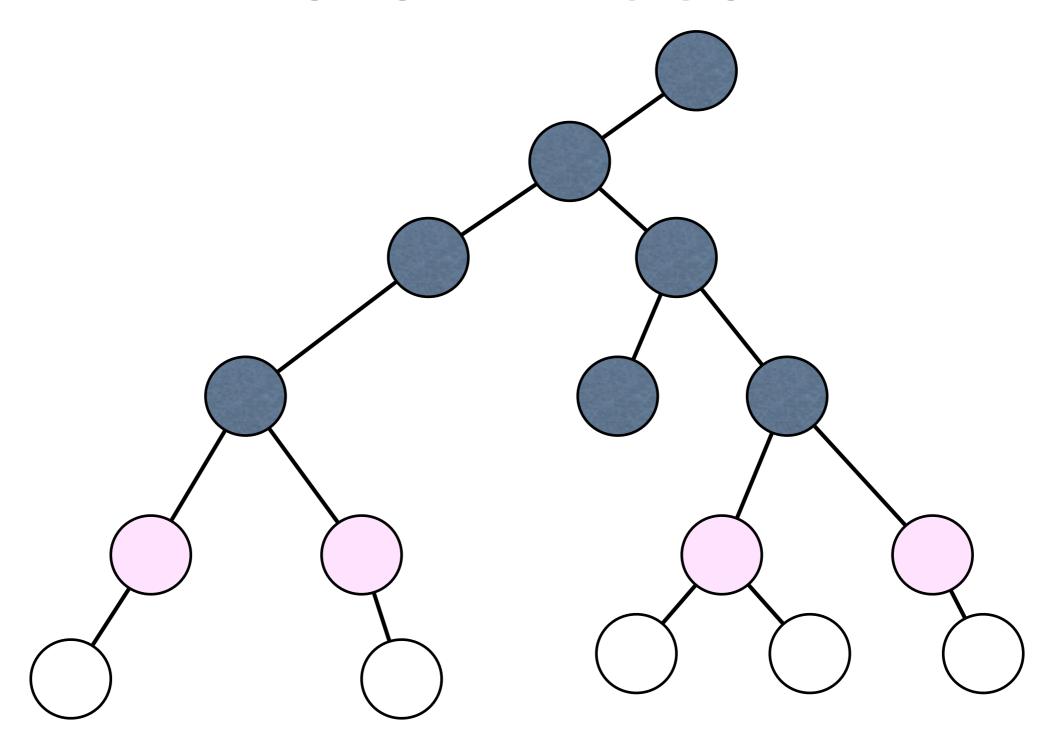


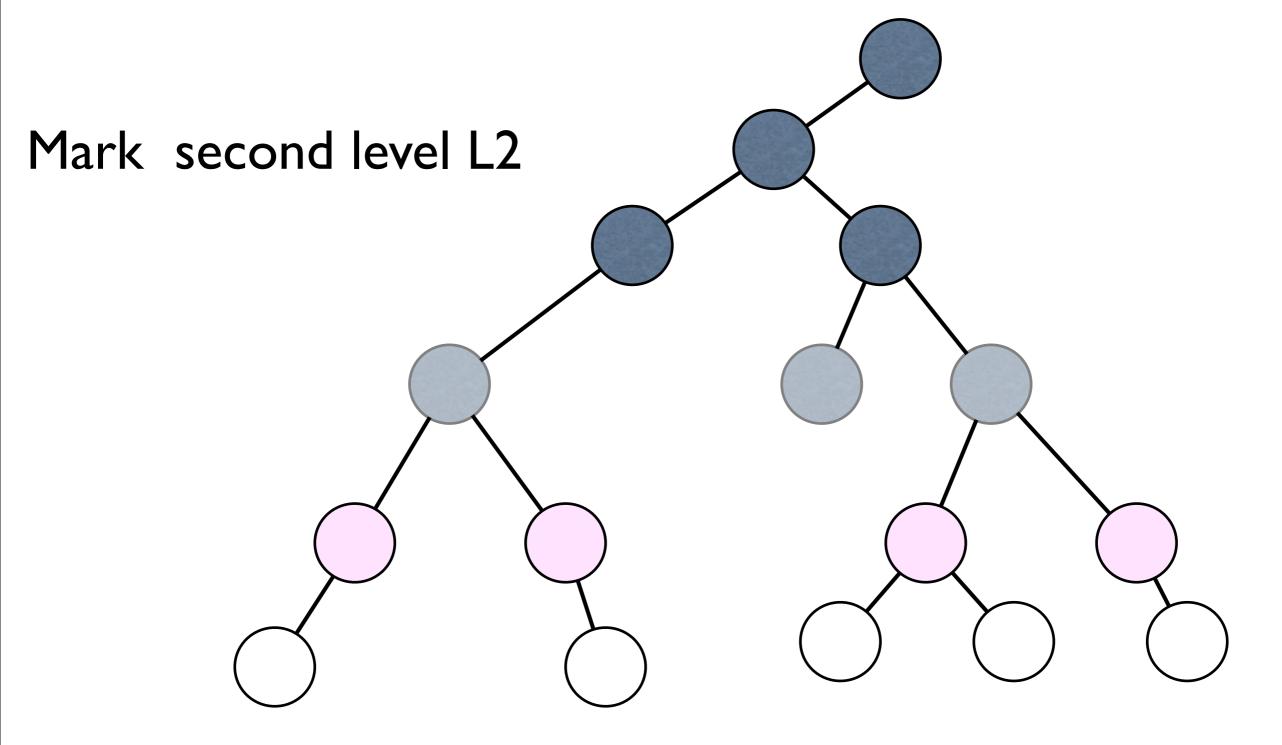


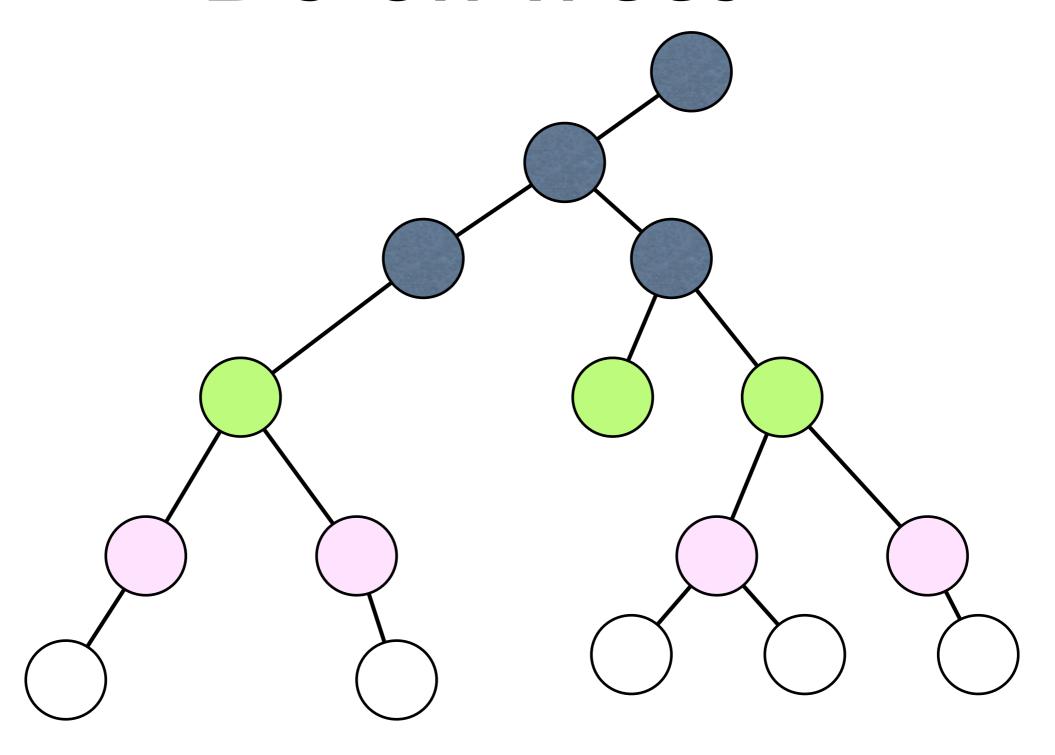


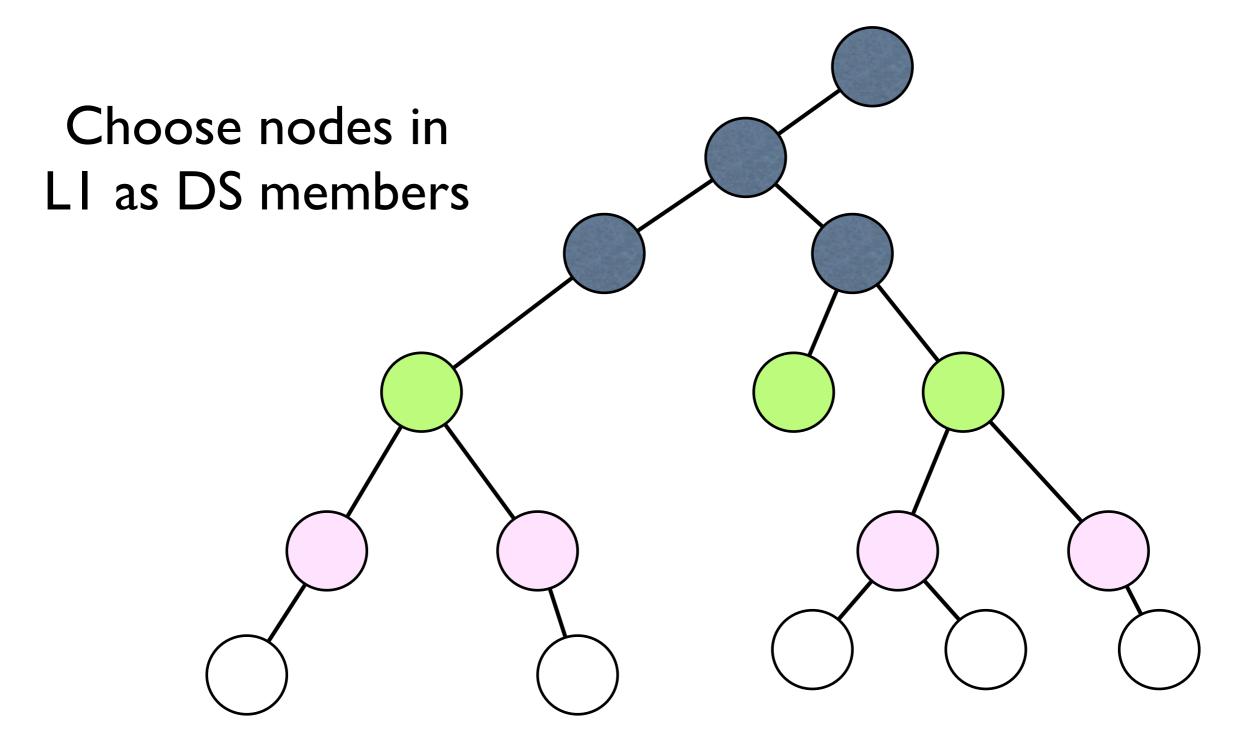


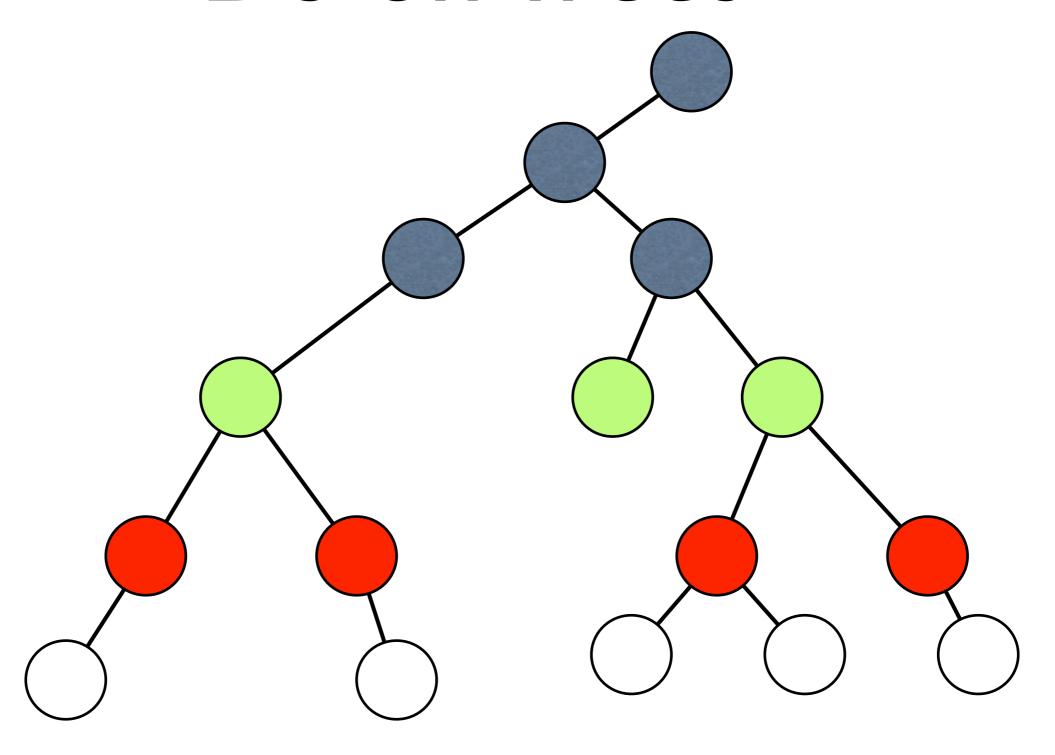


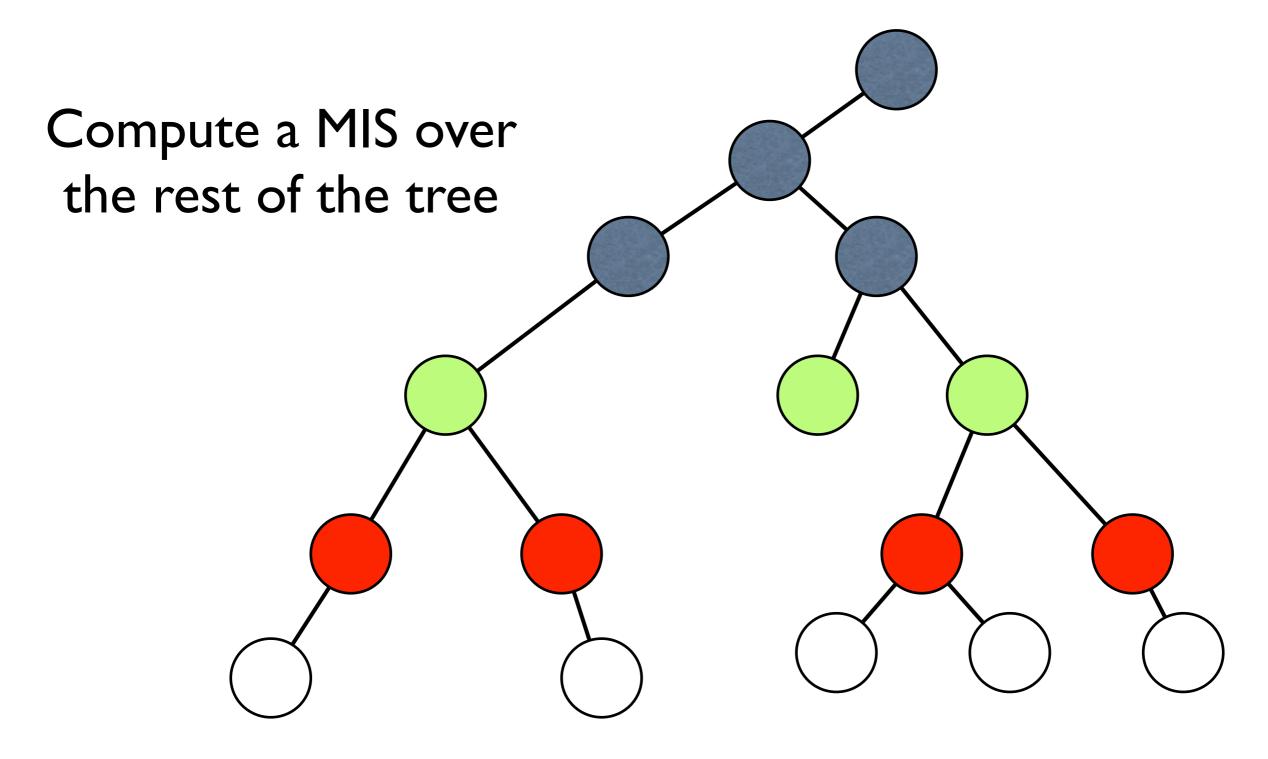


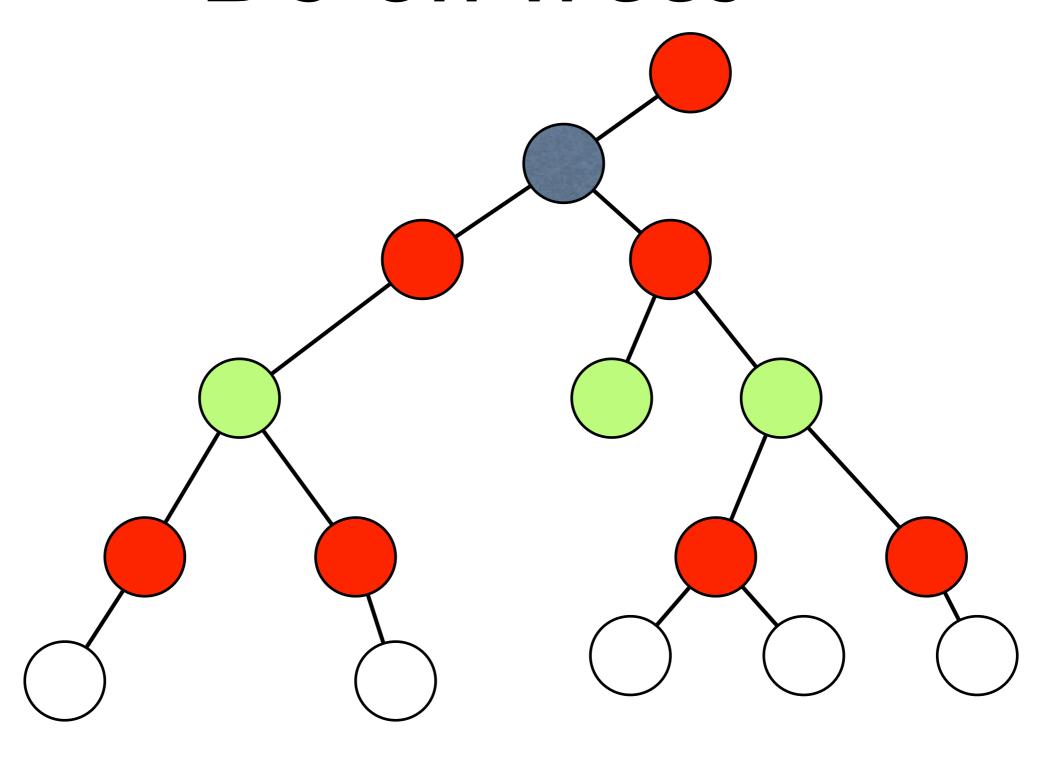


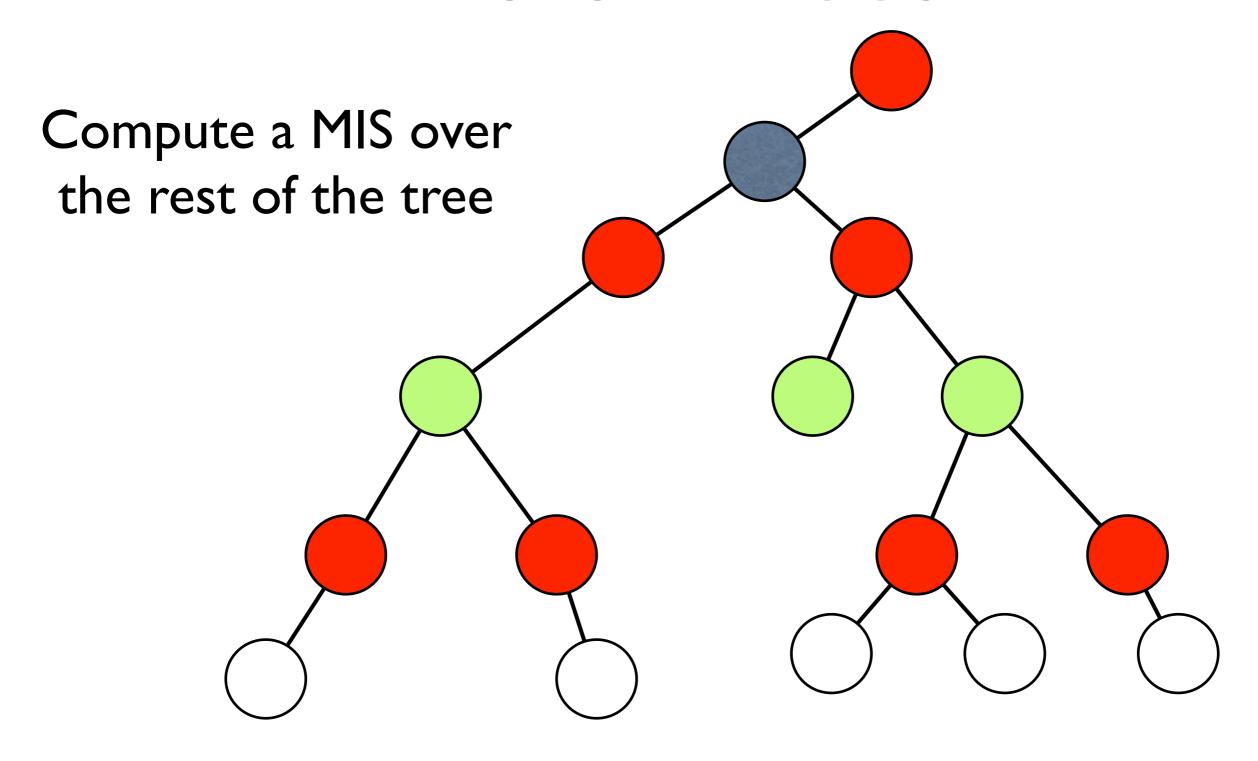


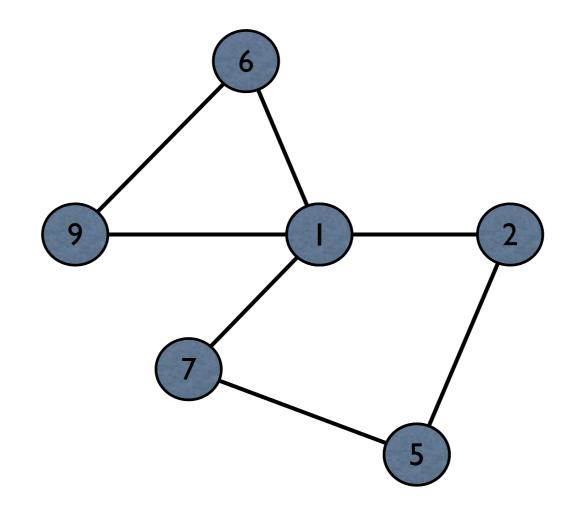


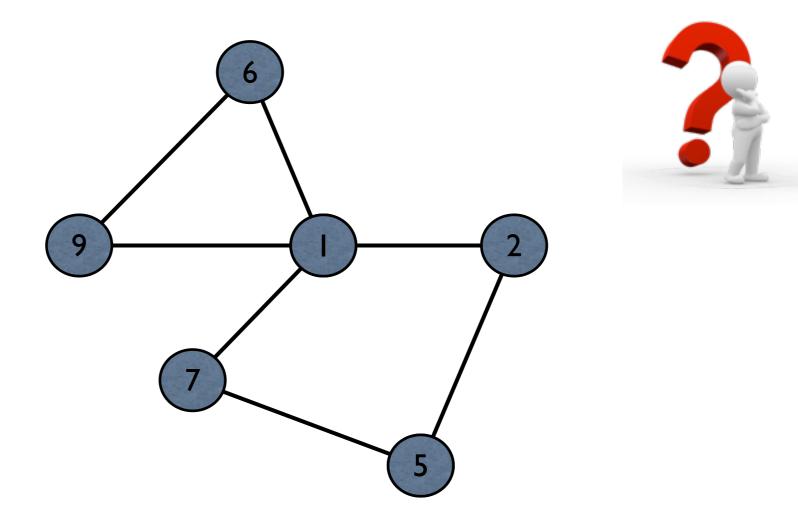


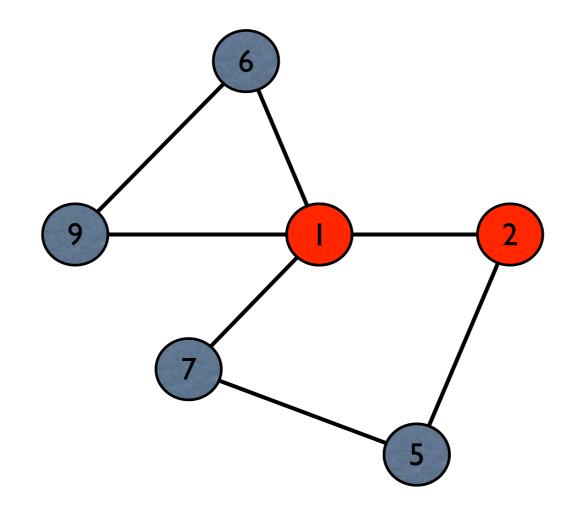


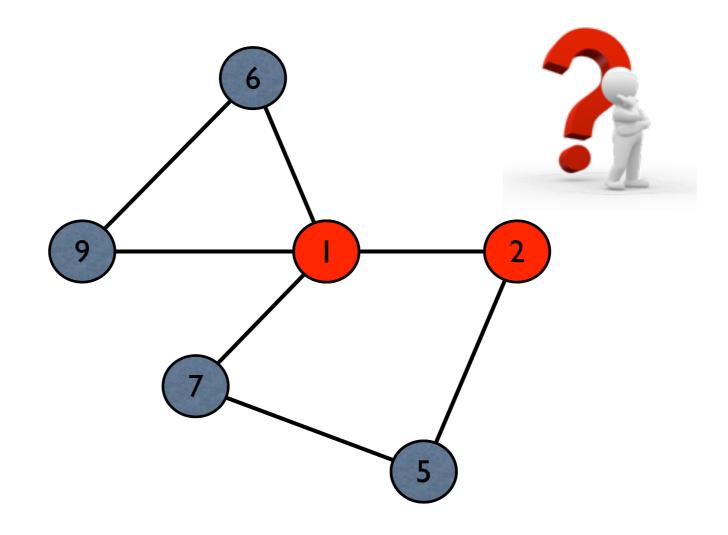


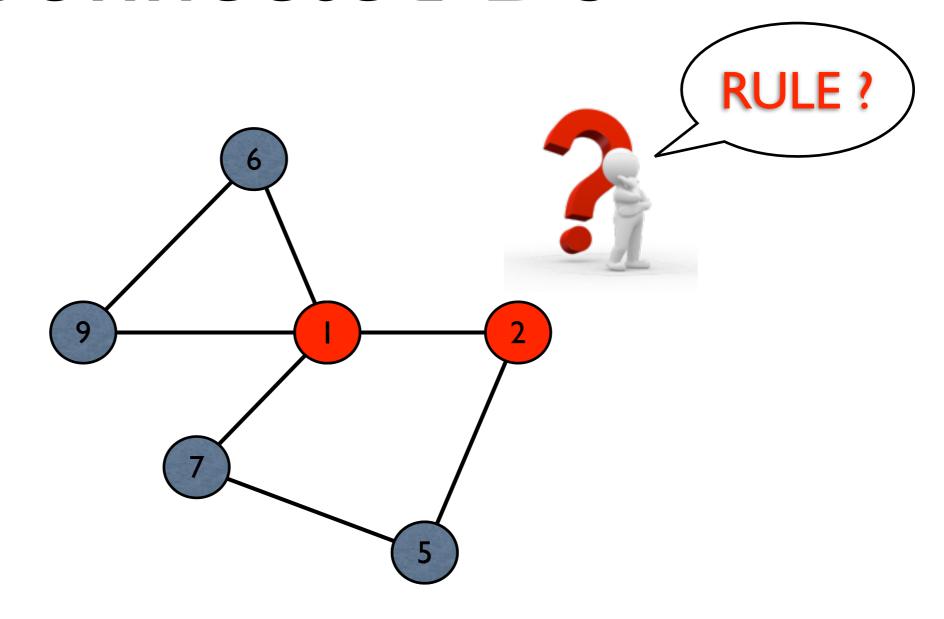








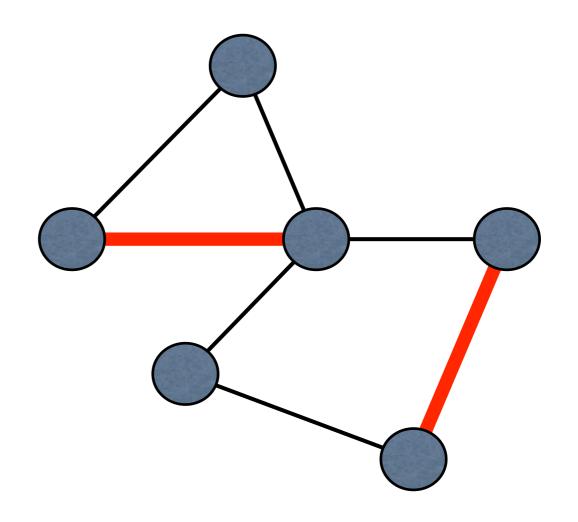




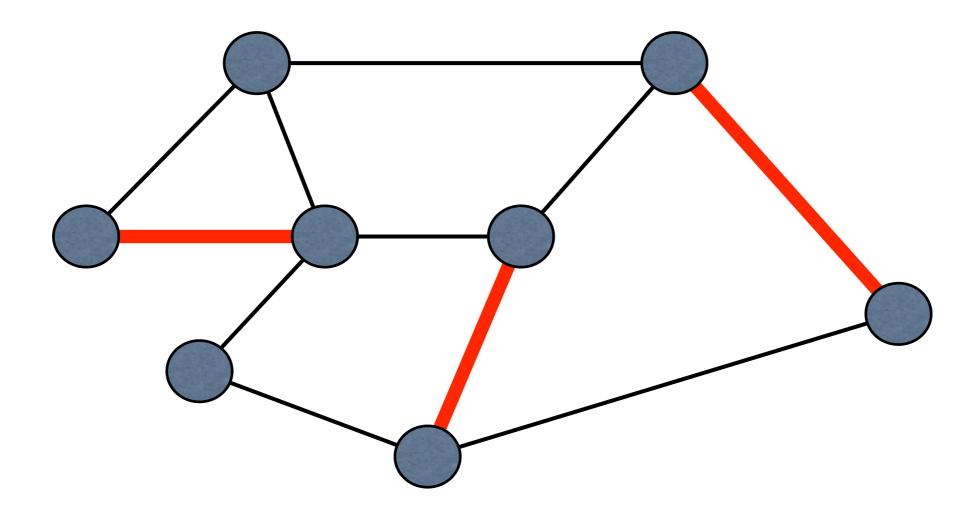
Matching

Matching

Given a graph G=(V,E), a matching is a subset of edges, M, such that no two edges in M are adjacent in G.

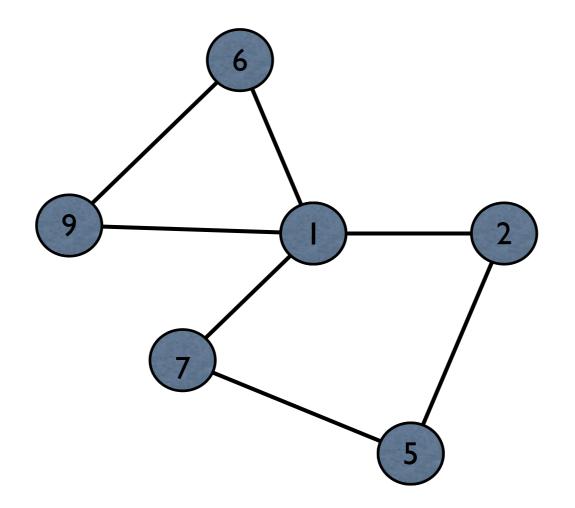


Maximal Matching

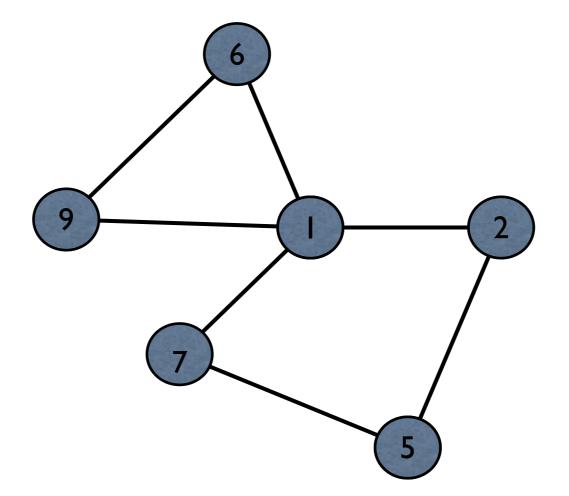


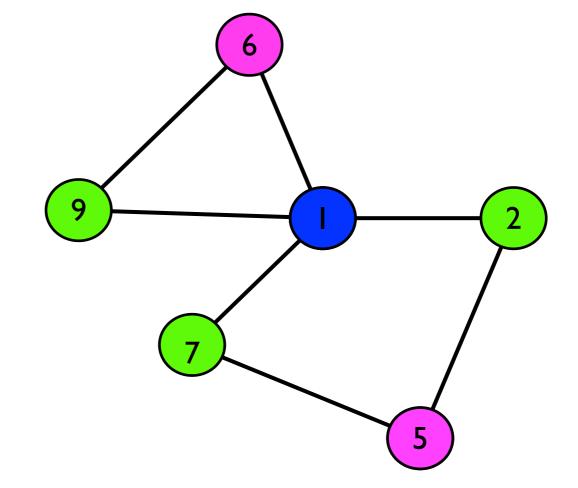
Reductions

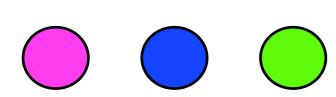
From Coloring to MIS



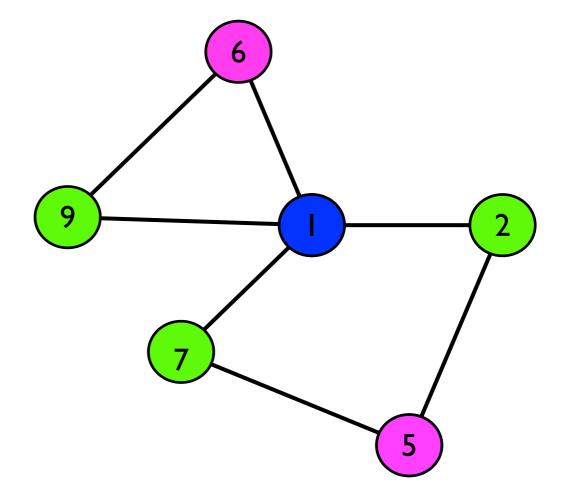
Start with a valid coloring

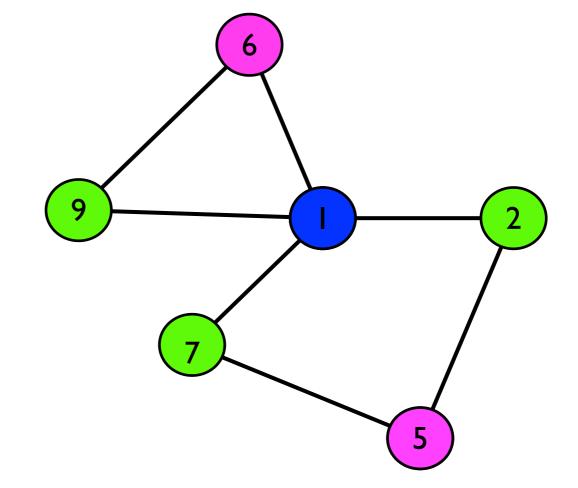


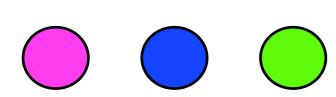




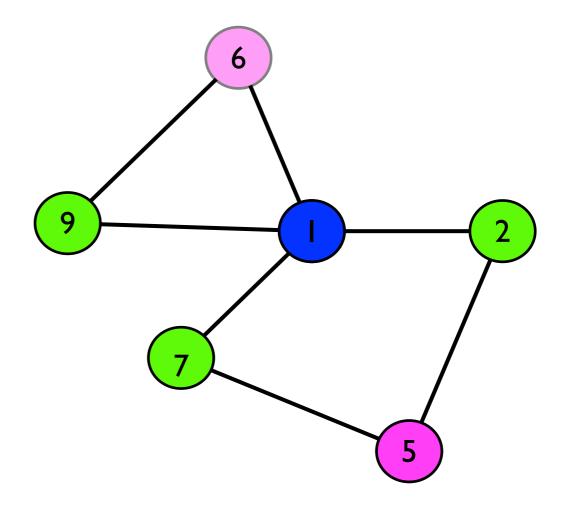
- Start with a valid coloring
- Assume a total order on colors

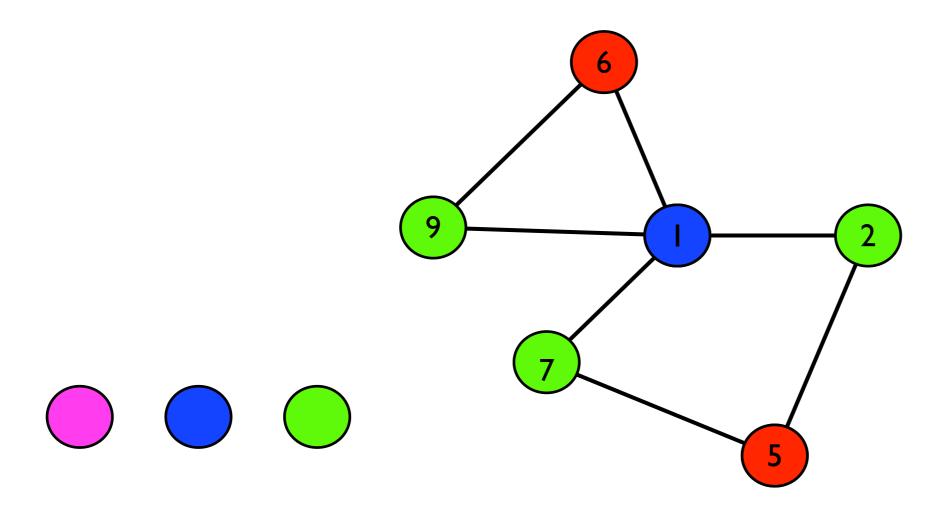




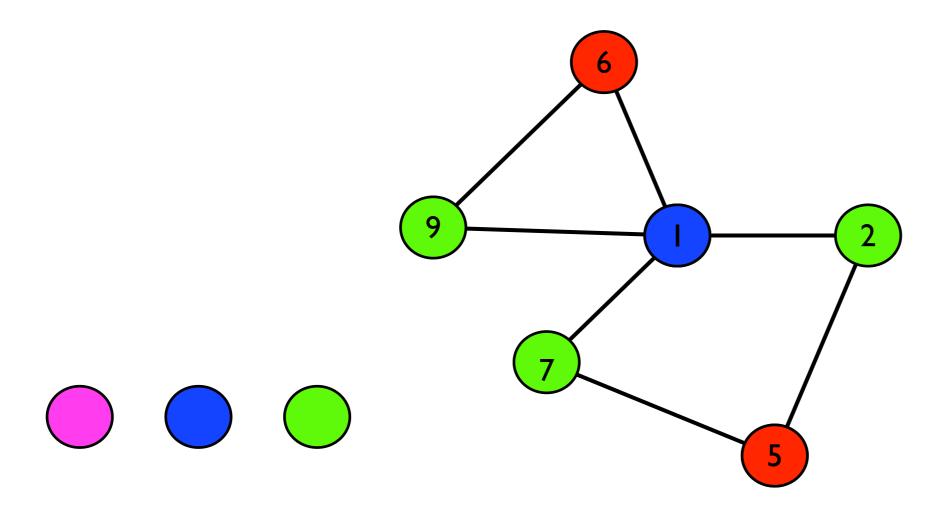


 Choose in MIS all nodes of first color





Choose in MIS all nodes of second color if they have no neighbors in MIS



• Repeat until no color left

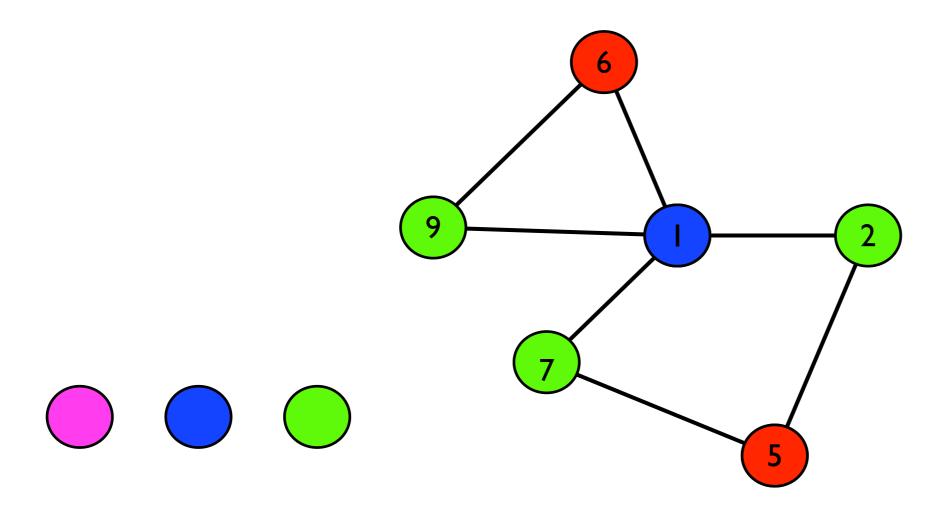
9

7

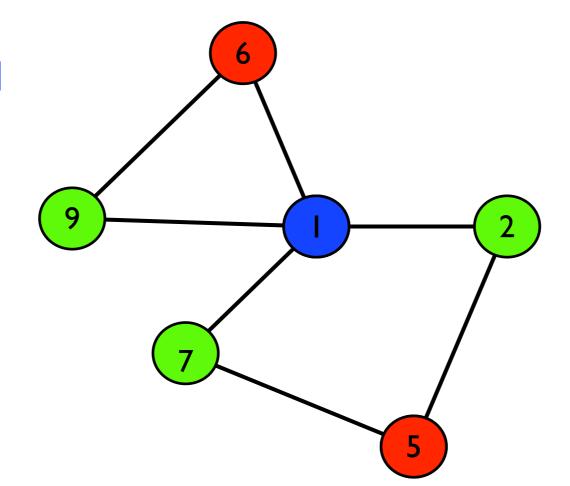
• Repeat until no color left

9

7



MIS nodes in red



Theorem

Given a graph G and a coloring of G with f(G) colors in time T(G) it is possible to construct a MIS for G in time T(G)+f(G).

Corollary

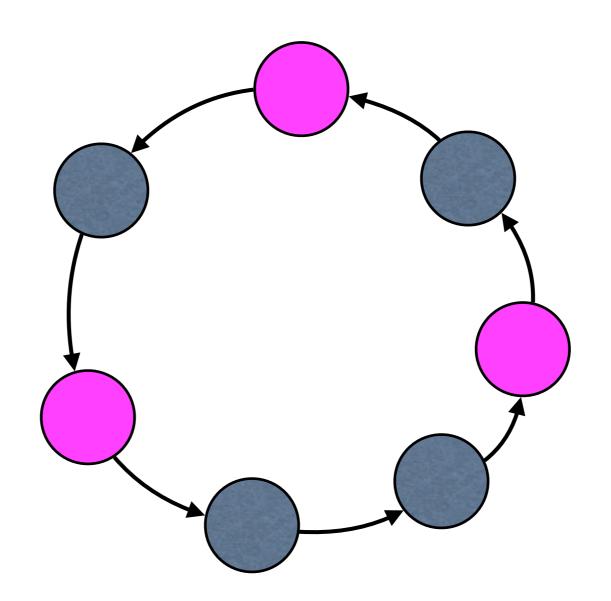
There exists a deterministic MIS algorithms for trees and bounded degree graphs with time complexity O(log*(n)).

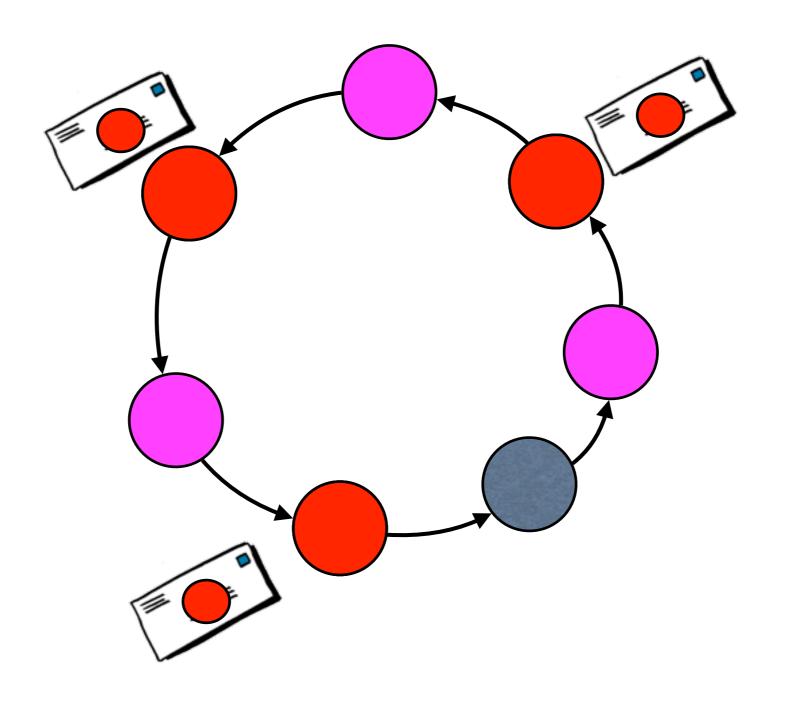
Corollary

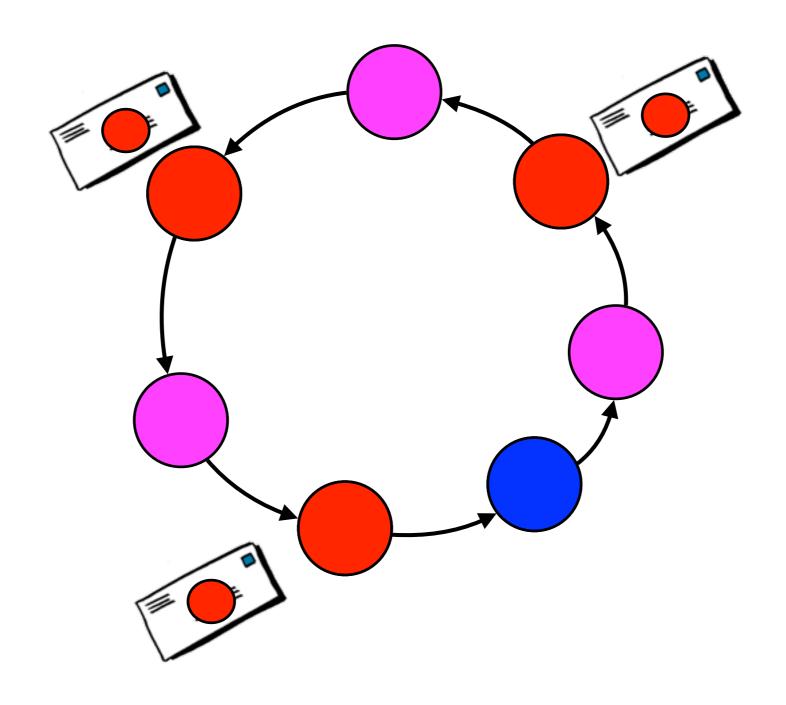
There exists a deterministic DS algorithms for trees with time complexity O(log*(n)).

Theorem

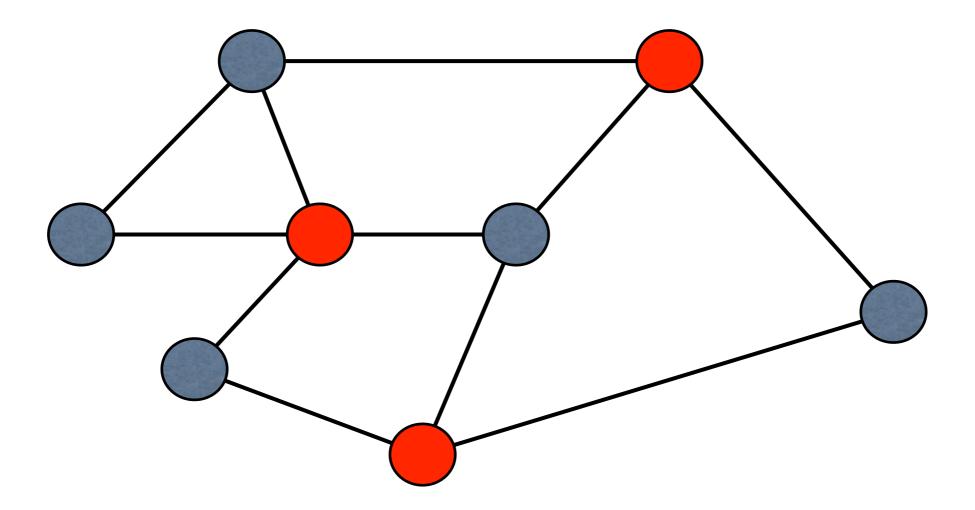
Given a MIS on an oriented ring it is possible to 3-color the ring in one round.







From MIS to Maximal Matching



From MIS to Maximal Matching

