
PROGRES - Mini-Project 1
Sébastien Tixeuil - Sebastien.Tixeuil@lip6.fr

Exercise 1 - TCP Relay
We are trying to program in Python a relay mechanism between a client and a server using TCP 
protocol. A relay is a program that acts like a server towards the client, and like a client towards the 
server. It retransmits to the server all the data that the client would normally have transmitted to the 
server, and it retransmits to the client all the data that the server would normally have transmitted 
to the client.

1. From the code examples seen in PROGRES class for the TCP client and the TCP server, 
program the relay mechanism in Python using the socket library. The server's IP address and 
port number are assumed to be provided to the relay. 

2. Test the relay with client and server programs using TCP, on the same machine and on 
different machines; make sure everything is working properly. 

3. Test the relay with several clients (or several instances of the same client) that make 
simultaneous requests on the server (via the relay); make sure everything is working properly. 

Exercice 2 - HTTP Relay
We are trying to program in Python a relay that is dedicated to the HTTP protocol. It is therefore 
considered that all exchanges between the client and the server (via the proxy) use the HTTP 
protocol. The client is therefore typically a web browser, and the server is therefore typically a web 
server. 

1. Modify the TCP relay developed for exercise 1 so that it acts as an HTTP cache: the first time a 
URI is supplied as an argument to GET in an HTTP request, the relay retransmits the request 
to the server, and locally stores its response in a file; if the same URI is subsequently 
requested by the same client or another client, the relay sends the file that it has stored locally 
directly to the client without making a new request to the server. 

2. Modify the TCP relay developed in Exercise 1 to act as an HTTP logger. More precisely, all 
client GET requests are archived in a log file (including the URI that was requested to the 
client), all non-empty server responses to GET requests are archived in the log file. The log file 
must contain enough information to perform audits: given a URI (or part of a URI), we want to 
be able to find the IP addresses of clients who have obtained a non-empty response from a 
server concerning this URI. 

3. Modify the TCP relay to act as an HTTP censor. The relay now has a list of banned sites 
(supplied as an input to the proxy). If the URI requested in a client's GET request contains a 
link to a banned site, that link is replaced by a "Forbidden" message in the body of the 
response. If the URI is not banned, the client receives a page as requested.

4. Test the HTTP relays made, first individually (a relay between a client and a server), then by 
chaining them (for example, a client is connected to an HTTP cache that is connected to an 
HTTP logger, which itself is connected to the server). Check that several relays connected to 
the same other one (as clients) still operate properly. 


