Self-stabilization and Sensor Networks

Franck Petit / Sébastien Tixeuil

UPMC
Firstname.Lastname@lip6.fr
Outline

Sensor Networks and Self-stabilization
 Model(s)
 Cached Sensornet
 Self-stabilizing Unison

TDMA
 Motivation
 Algorithm stack

Clustering
 Density
 Self-stabilizing Clustering

Conclusion
Sensor Networks

- processor + sensors + radio
- 2 AA batteries, on/off switch
- 3 LEDs for debugging
Sensor Networks

While (batteries supply power)

- Collect, aggregate and reduce data
- log into memory

In spite of numerous fault modes

- Permanent sensor failures, node failures
- restarts, radio failures
- transient faults, reconfigurations
Distributed Systems

Definition (Classical System, *a.k.a.* Non-stabilizing)

Starting from a *particular* initial configuration, the system *immediately* exhibits correct behavior.

Definition (Self-stabilizing System)

Starting from *any* initial configuration, the system *eventually* reaches a configuration from with its behavior is correct.
Distributed Systems

Definition (Classical System, a.k.a. Non-stabilizing)
Starting from a particular initial configuration, the system immediately exhibits correct behavior.

Definition (Self-stabilizing System)
Starting from any initial configuration, the system eventually reaches a configuration from with its behavior is correct.

- Self-stabilization permits to recover from transient failures
Self-stabilization

Configurations

“Correct”

Stabilization Time
Complexity Criteria

Maximize useful lifetime of system

- “maximise useful”: correct quickly from illegitimate state
 - Self-stabilization, scalability
- “maximise lifetime”: use minimal energy to preserve batteries
 - local vs. global preserving
System Specifics

- only one radio frequency
- no collision detect
- access technique: CSMA/CA
- use CRC to detect collision
- no directional send/receive
- msg. are small (30 bytes)
- radio range about 1 meter
- number of neighbors < 10
- could be large number of nodes (perhaps > 100000)
- unique node IDs (probably)
- cost a few ¥ (someday)
- slow processor (4 MHz)
- limited memory (4 KB RAM)
- item nodes have real-time clocks \(\equiv\) drift between 1 msec and 100 msec per second
- several power modes available
The Model(s)
The Model(s)
The Model(s)
The Model(s)
The Model(s)

Self-stabilizing model
- Read neighborhood state,
- compute and update local state

Sensor Network model
- Read local state,
- compute and broadcast to neighborhood
- Collisions may appear
Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- Pros: reuse existing SS algorithms
- Cons: potentially inefficient, overhead

Design self-stabilizing algorithms for the sensor networks model

- Pros: potentially efficient
- Cons: ignore previous SS work
Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- Pros: reuse existing SS algorithms
- Cons: potentially inefficient, overhead
- [Herman 03] Cached Sensornet Transform

Design self-stabilizing algorithms for the sensor networks model

- Pros: potentially efficient
- Cons: ignore previous SS work
Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- Pros: reuse existing SS algorithms
- Cons: potentially inefficient, overhead
- \[\text{Cached Sensornet Transform} \]

Design self-stabilizing algorithms for the sensor networks model

- Pros: potentially efficient
- Cons: ignore previous SS work
- \[\text{Unison with collisions} \]
Cached Sensornet Transform

Basic Algorithm

- Each node p has a variable v_p
- Each neighbor q of p has a variable c_qv_p
 - c_qv_p is the cached value of v_p at q
- Whenever p assigns v_p, p also broadcasts the new value to the neighborhood
- Whenever a neighbor q of p receives v_p, q updates c_qv_p accordingly
Cached Sensornet Transform

Definition (Cache coherence)
For all neighbors p and q, $c_q v_p = v_p$

Lemma (Closure)
If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p
Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p
Example

Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p.
Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p.
Cached Sensornet Transform

Periodic retransmit

- Each node p periodically broadcasts v_p to its neighborhood

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached
Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached
Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached.
Example

Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached.
Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached.
Lemma (Convergence)

If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached.
Cached Sensornet Transform

Message Corruption

- Each neighbor q of p has a Boolean variable $b_{q}v_{p}$
- If q receives v_{p} correctly, $b_{q}v_{p}$ becomes true
- $G \rightarrow A$ becomes
 for all neighbors q of p, $b_{p}v_{q}$ and $G \rightarrow A$; for all neighbors q of p, $b_{p}v_{q}$ becomes false
Example

- If \(q \) receives \(v_p \) correctly, \(b_q v_p \) becomes true
- \(G \rightarrow A \) becomes
 for all neighbors \(q \) of \(p \), \(b_p v_q \) and \(G \rightarrow A \); for all neighbors \(q \) of \(p \), \(b_p v_q \) becomes false
Example

- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes for all neighbors q of p, $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p, $b_p v_q$ becomes false
Example

- If \(q \) receives \(v_p \) correctly, \(b_q v_p \) becomes true
- \(G \rightarrow A \) becomes

 for all neighbors \(q \) of \(p \), \(b_p v_q \) and \(G \rightarrow A \); for all neighbors \(q \) of \(p \), \(b_p v_q \) becomes false
Example

- If \(q \) receives \(v_p \) correctly, \(b_q v_p \) becomes true
- \(G \rightarrow A \) becomes for all neighbors \(q \) of \(p \), \(b_p v_q \) and \(G \rightarrow A \); for all neighbors \(q \) of \(p \), \(b_p v_q \) becomes false
Example

- If \(q \) receives \(v_p \) correctly, \(b_q v_p \) becomes true
- \(G \rightarrow A \) becomes
 for all neighbors \(q \) of \(p \), \(b_p v_q \) and \(G \rightarrow A \); for all neighbors \(q \) of \(p \), \(b_p v_q \) becomes false
Example

- If q receives v_p correctly, $b_q v_p$ becomes true.
- $G \rightarrow A$ becomes
 for all neighbors q of p, $b_p v_q$ and $G \rightarrow A$;
 for all neighbors q of p, $b_p v_q$ becomes false.
Example

- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
 for all neighbors q of p, $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p, $b_p v_q$ becomes false
Example

- If \(q \) receives \(v_p \) correctly, \(b_q v_p \) becomes true
- \(G \rightarrow A \) becomes
 for all neighbors \(q \) of \(p \), \(b_p v_q \) and \(G \rightarrow A \); for all neighbors \(q \) of \(p \), \(b_p v_q \) becomes false
Cached Sensornet Transform

Periodic Retransmit

Message Corruption

Lemma (Self-stabilization)
If started from an arbitrary state, the self-stabilizing model is eventually simulated
Self-stabilizing Unison

Specification

- Each node p has a clock variable v_p
- For every neighbors p and q, $|v_p - v_q| \leq 1$
Self-stabilizing Unison

Specification

- Each node p has a clock variable v_p
- For every neighbors p and q, $|v_p - v_q| \leq 1$

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor \(q \), \(v_q \geq v_p \rightarrow v_p := v_p + 1 \)
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$

Nodes:
- Grey: non activatable
- Pink: activatable
- Green: legitimate
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor \(q \), \(v_q \geq v_p \rightarrow v_p := v_p + 1 \)
Self-stabilizing Unison

- For every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Example

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Unison with Collisions

Specification

- Each node p has a clock variable v_p
- For every neighbors p and q, $|v_p - v_q| \leq 1$

Self-stabilizing Unison

- for every neighbor q, $v_q \geq v_p \rightarrow v_p := v_p + 1$
Unison with Collisions

Specification

- Each node p has a clock variable v_p
- For every neighbors p and q, $|v_p - v_q| \leq 1$

Self-stabilizing Unison with Collisions

- for every neighbor q, $c_p v_q \geq v_p \rightarrow v_p := v_p + 1$
Unison with Collisions

Specification

► Each node p has a clock variable v_p
► For every neighbors p and q, $|v_p - v_q| \leq 1$

Self-stabilizing Unison with Collisions

► for every neighbor q, $c_p v_q \geq v_p \rightarrow v_p := v_p + 1$
► Only correctly received messages update cached variables
Example

- **non activatable**
- **activatable**
- **legitimate**

- **lower than value**
- **strictly greater**

Diagram:

1 2 0 2 4 1 2
Example

- non activatable
- activatable
- legitimate
- lower than value
- strictly greater

3 2 0 2 1 4

Sensor Networks and Self-stabilization
TDMA
Clustering
Conclusion
Example

- non activatable
- activatable
- legitimate
- lower than value
- strictly greater

```
3  2  0  2  4  4
```

- 3
- 2
- 0
- 2
- 4
- 4
Example

- gray: non activatable
- pink: activatable
- green: legitimate
- □: lower than value
- □: strictly greater

Diagram:

- Node 3: 2
- Node 2: 0
- Node 4: 2
- Node 4: 4

Connections:
- 3 → 2
- 2 → 4
- 4 ← 2
Example

- non activatable
- activatable
- legitimate
- lower than value
- strictly greater

![Diagram](image)
Example

- **Non activatable**
- **Activatable**
- **Legitimate**
- **Lower than value**
- **Strictly greater**

Diagram with nodes labeled 3, 3, 3, 4, 4, connected with arrows and colored symbols.
Example

- non activatable
- activatable
- legitimate
- lower than value
- strictly greater
Unison with Collisions

Cache coherence weakening

- For every neighbors p and q, $c_p v_q \leq v_q$

Self-stabilizing Unison with collisions

- Unison and Weak cache coherence are preserved by program executions
- Unison and Weak cache coherence eventually hold
- Some extra work is expected to get bounded clock values
Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- [Herman 03] Cached Sensornet Transform
- Overhead is not upper bounded

Design self-stabilizing algorithms for the sensor networks model

- [Herman 03] Unison with collisions
- Proof in the model is specific to the problem
Outline

Sensor Networks and Self-stabilization
- Model(s)
- Cached Sensornet
- Self-stabilizing Unison

TDMA
- Motivation
- Algorithm stack

Clustering
- Density
- Self-stabilizing Clustering

Conclusion
Towards an Intermediate Model

An atomic step at a node

- Compute new state, write new state at all neighbors (no collision)

Hypothesis

- Global clock, unique IDs

Solution

- TDMA to avoid collisions
Towards an Intermediate Model

Solution

- TDMA to avoid collisions
- assume synchronised, real-time clocks (to enable TDMA slotted time)
- but TDMA implemented using CSMA/CA as basic, underlying model
TDMA Scheduling

- Algorithm messages are transmitted during the "overhead" periods
- TDMA slot assignment is the output of our algorithm
Self-stabilizing TDMA for Sensors

- [Kulkarni, Arumugam 03] 2-D Grids
 - nodes are aware of their positions
 - Not suitable for dynamic/faulty networks
- [Herman, Tixeuil 04] General graphs of bounded degree
 - Randomized algorithm, self-stabilizing in expected $O(1)$ time, to assign TDMA slots
 - Solution is a protocol stack based on variable propagation, minimal coloring of N^2, MIS construction, and mapping colors \leftrightarrow TDMA slots
Self-stabilizing TDMA for Sensors

- ▶ both are minimal,
- ▶ but second solution is better for time-slot assignment
Self-stabilizing TDMA for Sensors

- both are minimal,
- but second solution is better for time-slot assignment
Overview

N^2 minimal coloring \rightarrow TDMA schedule

N^3 coloring + MIS \rightarrow N^2 minimal coloring

N^3 coloring \rightarrow MIS

Variables propagation \rightarrow N^3 coloring

CSMA/CA \rightarrow Variables propagation
CSMA/CA → Variables propagation

- Wait fixed delay
 - to process received messages, and update local variables
- Wait random delay
 - to allow Aloha-style analysis for probability of collisions among neighbors
- “Age” information to remove invalid data
Shared variables $\rightarrow N^3$ coloring

\[
\exists j \in N_i^3, \text{color}_j = \text{color}_i \rightarrow \text{color}_i := \text{random}(\Delta \setminus \{\text{color}_j | j \in N_i^3\})
\]

- Stabilizes in expected $O(1)$
- Output an ID-based DAG of constant height
N^3 coloring \rightarrow MIS

[Ikeda, Kamei, Kakugawa 02]

No parent in MIS \rightarrow join MIS
N^3 coloring \rightarrow MIS

[Ikeda, Kamei, Kakugawa 02]

No parent in MIS \rightarrow join MIS
N^3 coloring → MIS

[Ikeda, Kamei, Kakugawa 02]

No parent in MIS → join MIS
N^3 coloring → MIS

[Ikeda, Kamei, Kakugawa 02]

No parent in MIS → join MIS
N^3 coloring \rightarrow MIS

[Ikeda, Kamei, Kakugawa 02]

No parent in MIS \rightarrow join MIS
N^3 coloring \rightarrow MIS

[Ikeda, Kamei, Kakugawa 02]

No parent in MIS \rightarrow join MIS
N^3 coloring + MIS → Minimal N^2 coloring

MIS → send colors to dominated nodes
N^3 coloring + MIS \rightarrow Minimal N^2 coloring

MIS \rightarrow send colors to dominated nodes
\(N^3\) coloring + MIS \rightarrow Minimal \(N^2\) coloring

MIS \rightarrow send colors to dominated nodes
N^3 coloring + MIS \rightarrow Minimal N^2 coloring

MIS \rightarrow send colors to dominated nodes
N^3 coloring $+$ MIS \rightarrow Minimal N^2 coloring

MIS \rightarrow send colors to dominated nodes
Minimal N^2 coloring → TDMA Schedule
Minimal N^2 coloring \rightarrow TDMA Schedule
Minimal N^2 coloring → TDMA Schedule
Minimal N^2 coloring $→$ TDMA Schedule
Outline

Sensor Networks and Self-stabilization
 Model(s)
 Cached Sensornet
 Self-stabilizing Unison

TDMA
 Motivation
 Algorithm stack

Clustering
 Density
 Self-stabilizing Clustering

Conclusion
Motivation

Clusters for routing
MANET routing protocols are flat, thus not scalable
Cluster-heads have extra responsibility for the routing of message

Cluster-heads should be stable
Handle departures and removals Handle node mobility
Density

\[\rho(u) = \frac{\{e = (v, w) \in E \mid w \in \{u\} \cup N_u \text{ and } v \in N_u\}}{|N_u|} \]
Density

\[\rho(u) = \frac{|\{e = (v, w) \in E \mid w \in \{u\} \cup N_u \text{ and } v \in N_u\}|}{|N_u|} \]
Density

$$\rho(u) = \frac{|\{e = (v, w) \in E \mid w \in \{u\} \cup N_u \text{ and } v \in N_u\}|}{|N_u|}$$
Cluster Head Heuristics
Cluster Head Heuristics

- $a = 1.33$
- $b = 1.75$
- $c = 1$
- $d = 1.75$
- $e = 1.8$
- $f = 1.33$
- $g = 1.5$
- $h = 1$
- $i = 1$

Cluster Head Heuristics Diagram
Cluster Head Heuristics

- $a_{1.33}$
- $b_{1.75}$
- c_{1}
- $d_{1.75}$
- $e_{1.8}$
- $f_{1.33}$
- $g_{1.5}$
- h_{1}
- i_{1}
- $j_{1.5}$
Self-stabilizing Clustering

Basic Idea

- Identify N and N^2
- Compute and broadcast density
- Attach to neighbor with higher density
- use identifiers to break ties
Self-stabilizing Clustering

Basic Idea

- Identify N and N^2
- Compute and broadcast density
- Attach to neighbor with higher density
- use identifiers to break ties
- Can be $O(\text{Diameter})$ if graph is regular
Faster Self-stabilizing Clustering

Basic Idea

- Identify N and N^2
- Compute and broadcast density
- Random $L(1,1)$ coloring with δ^2 colors
 - This can be done in expected $O(1)$ time
- Attach to neighbor with higher density
- Use colors to break ties
Faster Self-stabilizing Clustering

Basic Idea

- Identify N and N^2
- Compute and broadcast density
- Random $L(1,1)$ coloring with δ^2 colors
 - This can be done in expected $O(1)$ time
- Attach to neighbor with higher density
- use colors to break ties
- Expected constant stabilization time
- Use lexicographic order (density, color)
Conclusion

- Self-stabilization is interesting for sensor networks
 - Known SS solutions should be implemented in sensor networks
- Sensor networks are interesting for self-stabilization
 - Simple devices
 - Small operating system
Conclusion

- Self-stabilization is interesting for sensor networks
 - Known SS solutions should be implemented in sensor networks
- Sensor networks are interesting for self-stabilization
 - Simple devices
 - Small operating system
- Energy constraints and collisions make things complicated