
Making the Point

Sébastien Tixeuil
Univ. Pierre & Marie Curie - Paris 6

Sebastien.Tixeuil@lip6.fr

Studying Networks

Abstraction Realism

Math Simulation Emulation Live System

Models: Systems,
Applications,

Platforms,
Conditions

Key System Mechanisms:
Algorithms

Application Kernels
Virtual Platforms

Synthetic conditions

Real Systems
Real Applications
"In-lab" Platforms

Synthetic conditions

Real Systems
Real Applications

Real Platforms
Real Conditions

Studying Networks

Math Simulation Emulation Live System

Model,
Protocol Proof

NS
Sinalgo

OPNET++
Peersim

WANinLab
Emulab

Grid5000
PlanetLab

log(cost & complexity)

log(realism)

1/log(control)

Agenda

Model Experimental
Data

Prove
Math
Logic

Measure
Simulation
Experiment

Confirms
Contradicts

Agenda

• Writing Proofs

• Managing Experimental Data

• Classical vs. Exploratory

• Practicalities

How to Write a Proof

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Proof

• Begining: things we assume to be true,
including the definitions of the things we
talk about

• Middle: statements, each following
logically from the things before it

• End: the thing we’re trying to prove

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Kinds of things to
try and prove

x = y

x) y

x () y

x is purple
8x, p(x) is true

9x such that p(x) is true
How to write proofs: a quick guide. Eugenia Cheng.

http://www.math.uchcago.edu/~eugenia

3 What sort of things do we try and prove?

Here is a classification of the sorts of things we prove (this list is not exhaustive, and
it’s also not clear cut – there is some overlap, depending on how you look at it):

1. x = y i.e. “something equals something else”

2. x =⇒ y

3. x ⇐⇒ y

4. x is purple (or has some other interesting and relevant property)

5. ∀x p(x) is true i.e. “all animals of a certain kind x behave in a certain way p(x)”

6. ∃x s.t. p(x) is true i.e. “there is an animal that behaves in a certain way p(x)”

7. Suppose that a, b, c and d are true. Then e is true. [Note that this is just a version
of 2 in disguise.]

4 The general shape of a proof

Let’s now have a look at the general shape of a proof, before taking a closer look at
what it might look like for each of the cases above. We must always remember that
there is a beginning, a middle and an end.

Example 1. Using the field axioms, prove that a(b− c) = ab−ac for any real
numbers a, b, c. You may use the fact that x.0 = 0 for any real number x.

beginning field axioms
definition x − y = x + (−y)
given x.0 = 0

middle a(b − c) = a(b + (−c)) definition
= ab + a(−c) distributive law

ac + a(−c) = a(c + (−c)) distributive law
= a.0 additive inverse
= 0 given

∴ a(−c) = −(ac) definition of additive inverse

∴ ab + a(−c) = ab − ac

end ∴ by line 2, a(b − c) = ab − ac as required "

4

3 What sort of things do we try and prove?

Here is a classification of the sorts of things we prove (this list is not exhaustive, and
it’s also not clear cut – there is some overlap, depending on how you look at it):

1. x = y i.e. “something equals something else”

2. x =⇒ y

3. x ⇐⇒ y

4. x is purple (or has some other interesting and relevant property)

5. ∀x p(x) is true i.e. “all animals of a certain kind x behave in a certain way p(x)”

6. ∃x s.t. p(x) is true i.e. “there is an animal that behaves in a certain way p(x)”

7. Suppose that a, b, c and d are true. Then e is true. [Note that this is just a version
of 2 in disguise.]

4 The general shape of a proof

Let’s now have a look at the general shape of a proof, before taking a closer look at
what it might look like for each of the cases above. We must always remember that
there is a beginning, a middle and an end.

Example 1. Using the field axioms, prove that a(b− c) = ab−ac for any real
numbers a, b, c. You may use the fact that x.0 = 0 for any real number x.

beginning field axioms
definition x − y = x + (−y)
given x.0 = 0

middle a(b − c) = a(b + (−c)) definition
= ab + a(−c) distributive law

ac + a(−c) = a(c + (−c)) distributive law
= a.0 additive inverse
= 0 given

∴ a(−c) = −(ac) definition of additive inverse

∴ ab + a(−c) = ab − ac

end ∴ by line 2, a(b − c) = ab − ac as required "

4

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Example 2. Let f and g be functions A
f−→ B

g−→ C.
Show that if f and g are injective then g ◦ f is injective

beginning definition of injective
definition (g ◦ f)(a) = g(f(a))
assumption that f and g are injective i.e.

∀a, a′ ∈ A f(a) = f(a′) =⇒ a = a′

∀b, b′ ∈ B g(b) = g(b′) =⇒ b = b′

middle (g ◦ f)(a) = (g ◦ f)(a′) =⇒ g(f(a)) = g(f(a′)) by definition
=⇒ f(a) = f(a′) since g is injective
=⇒ a = a′ since f is injective

∴ (g ◦ f)(a) = (g ◦ f)(a′) =⇒ a = a′

end i.e. g ◦ f is injective, as required "

Example 3. Prove by induction that ∀n ∈ N, 1 + · · · + n =
n(n + 1)

2

beginning Principle of Induction

middle for n = 1, LHS = 1

RHS =
1(1 + 1)

2
= 1

∴ result is true for n = 1

If result is true for n = k then

1 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
i.e. result true for n = k + 1

∴ result true for k =⇒ result true for k + 1

end ∴ by the Principle of Induction, the result is true for all n ∈ N "

5

Example 2. Let f and g be functions A
f−→ B

g−→ C.
Show that if f and g are injective then g ◦ f is injective

beginning definition of injective
definition (g ◦ f)(a) = g(f(a))
assumption that f and g are injective i.e.

∀a, a′ ∈ A f(a) = f(a′) =⇒ a = a′

∀b, b′ ∈ B g(b) = g(b′) =⇒ b = b′

middle (g ◦ f)(a) = (g ◦ f)(a′) =⇒ g(f(a)) = g(f(a′)) by definition
=⇒ f(a) = f(a′) since g is injective
=⇒ a = a′ since f is injective

∴ (g ◦ f)(a) = (g ◦ f)(a′) =⇒ a = a′

end i.e. g ◦ f is injective, as required "

Example 3. Prove by induction that ∀n ∈ N, 1 + · · · + n =
n(n + 1)

2

beginning Principle of Induction

middle for n = 1, LHS = 1

RHS =
1(1 + 1)

2
= 1

∴ result is true for n = 1

If result is true for n = k then

1 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
i.e. result true for n = k + 1

∴ result true for k =⇒ result true for k + 1

end ∴ by the Principle of Induction, the result is true for all n ∈ N "

5

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Example 2. Let f and g be functions A
f−→ B

g−→ C.
Show that if f and g are injective then g ◦ f is injective

beginning definition of injective
definition (g ◦ f)(a) = g(f(a))
assumption that f and g are injective i.e.

∀a, a′ ∈ A f(a) = f(a′) =⇒ a = a′

∀b, b′ ∈ B g(b) = g(b′) =⇒ b = b′

middle (g ◦ f)(a) = (g ◦ f)(a′) =⇒ g(f(a)) = g(f(a′)) by definition
=⇒ f(a) = f(a′) since g is injective
=⇒ a = a′ since f is injective

∴ (g ◦ f)(a) = (g ◦ f)(a′) =⇒ a = a′

end i.e. g ◦ f is injective, as required "

Example 3. Prove by induction that ∀n ∈ N, 1 + · · · + n =
n(n + 1)

2

beginning Principle of Induction

middle for n = 1, LHS = 1

RHS =
1(1 + 1)

2
= 1

∴ result is true for n = 1

If result is true for n = k then

1 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
i.e. result true for n = k + 1

∴ result true for k =⇒ result true for k + 1

end ∴ by the Principle of Induction, the result is true for all n ∈ N "

5

Example 2. Let f and g be functions A
f−→ B

g−→ C.
Show that if f and g are injective then g ◦ f is injective

beginning definition of injective
definition (g ◦ f)(a) = g(f(a))
assumption that f and g are injective i.e.

∀a, a′ ∈ A f(a) = f(a′) =⇒ a = a′

∀b, b′ ∈ B g(b) = g(b′) =⇒ b = b′

middle (g ◦ f)(a) = (g ◦ f)(a′) =⇒ g(f(a)) = g(f(a′)) by definition
=⇒ f(a) = f(a′) since g is injective
=⇒ a = a′ since f is injective

∴ (g ◦ f)(a) = (g ◦ f)(a′) =⇒ a = a′

end i.e. g ◦ f is injective, as required "

Example 3. Prove by induction that ∀n ∈ N, 1 + · · · + n =
n(n + 1)

2

beginning Principle of Induction

middle for n = 1, LHS = 1

RHS =
1(1 + 1)

2
= 1

∴ result is true for n = 1

If result is true for n = k then

1 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
i.e. result true for n = k + 1

∴ result true for k =⇒ result true for k + 1

end ∴ by the Principle of Induction, the result is true for all n ∈ N "

5

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Traps and Pitfalls

What is Wrong ?

Of course, when we write a good story, we don’t actually label the beginning, the
middle and the end with BEGINNING, MIDDLE, and END – it’s supposed to be sort
of obvious where they are. The same is true of a proof. So here’s the thing I keep going
on about but which is apparently not as obvious as it might sound:

The end of a proof should come at the end, not at the beginning.

Of course, I’ve deliberately made it sound really obvious there. But here’s a more
illuminating way of putting it:

The proof should end with the thing you’re trying to prove. The
proof should not begin with the thing you’re trying to prove.

This is not to be confused with the fact that we often begin by announcing what the
end is going to be. This is a bit like a story that starts at the end and then the entire
story is a flashback. Like The Go-Between or Brideshead Revisited or Rebecca. Or, it’s
like taking someone on a journey – you might well tell them where you’re going right at
the start. But once you’ve told them what the destination is you still start the journey
from the beginning. The same is true of proofs. Even if we begin by announcing what
the end is going to be, we then have to start at the beginning and work our way to the
pre-announced end.

5 What doesn’t a proof look like?

There are more plastic flamingoes in America than real ones.

There are more bad novels in the world than good ones, and there are more bad proofs
in the world than good ones. Here are some of the most popular ways to write a bad
proof.

1. Begin at the end and end at the beginning

This is a really, really terrible thing to do. This might be even worse than leaving out
gaps in the middle. Because if you begin at the end and end at the beginning you
monumentally haven’t got where you’re trying to go. Here’s an example of this for
Example 1 from Section 4:

a(b − c) = ab − ac
ab + a(−c) = ab − ac

a(−c) = −ac
ac + a(−c) = 0
a(c + (−c)) = 0

a.0 = 0
0 = 0 !

Try comparing this with the good proof given in Section 4 – you’ll see that all the correct
steps are there, but they’re all in the wrong order.

6

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

What is Wrong ?

Sense any make doesn’t it backwards but things right the write you if.

This is a terrible thing to do but not a terminal catastrophe – if you have all the right
ideas but in the wrong order, all you need to do is work out how to put them in the
right order. . .

2. Take flying leaps instead of earthbound steps.

This category includes leaping from one statement to another

• without justifying the leap

• leaving out too many steps in between

• using a profound theorem without proving it

• (worse) using a profound theorem without even mentioning it

For example, spot the flying leap in the following “proof”:

a(b − c) = ab + a(−c)
= ab− ac !

3. Take flying leaps and land flat on your face in the mud

By which I mean making steps that are actually wrong. The end may well justify the
means in some worlds, but in mathematics if you use the wrong means to get to the
right end, you haven’t actually got to the end at all. You just think you have. But it’s
a figment of your imagination. Here’s an example of a very imaginitive “proof” that is
definitely flat on its face in the mud:

a(b − c) = ab + a(−c)
= ab + a(−c) + a.1
= ab + a(1 − c)
= ab − ac !

Of course, it’s even worse if you do something illegal and thereby reach a conclusion
that isn’t even true. Like

x2 = y2 =⇒ x = y

or
x2 < y2 =⇒ x < y.

What is wrong with these two “deductions”?

7

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

What is Wrong ?

Sense any make doesn’t it backwards but things right the write you if.

This is a terrible thing to do but not a terminal catastrophe – if you have all the right
ideas but in the wrong order, all you need to do is work out how to put them in the
right order. . .

2. Take flying leaps instead of earthbound steps.

This category includes leaping from one statement to another

• without justifying the leap

• leaving out too many steps in between

• using a profound theorem without proving it

• (worse) using a profound theorem without even mentioning it

For example, spot the flying leap in the following “proof”:

a(b − c) = ab + a(−c)
= ab− ac !

3. Take flying leaps and land flat on your face in the mud

By which I mean making steps that are actually wrong. The end may well justify the
means in some worlds, but in mathematics if you use the wrong means to get to the
right end, you haven’t actually got to the end at all. You just think you have. But it’s
a figment of your imagination. Here’s an example of a very imaginitive “proof” that is
definitely flat on its face in the mud:

a(b − c) = ab + a(−c)
= ab + a(−c) + a.1
= ab + a(1 − c)
= ab − ac !

Of course, it’s even worse if you do something illegal and thereby reach a conclusion
that isn’t even true. Like

x2 = y2 =⇒ x = y

or
x2 < y2 =⇒ x < y.

What is wrong with these two “deductions”?

7

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

What is Wrong ?

4. Handwaving

Handwaving is when you arrive at a statement by some not-very-mathematical means.
The step isn’t necessarily wrong, but you haven’t arrived at it in a good logical manner.
Perhaps you had to resort to writing a few sentences of prose in English rather than
Mathematics-speak. This is often a sign that you’ve got the right idea but you haven’t
worked out how to express it. Spot the handwaving here – you can see it from a mile
off:

a(b − c) = ab + a(−c)
a(−c) = −ac because if you add ac to

both sides then both sides vanish
which means they′re inverse

∴ ab + a(−c) = ab − ac "
Handwaving is bad but is not ultimately catastrophic – you just need to learn how

to translate from English into Mathematics. This is probably easier to learn than the
problem of coming up with the right idea in the first place.

5. Incorrect logic

This includes the two great classics

• negating a statement incorrectly

• proving the converse of something instead of the thing itself

What is the negation of the following statement:

∀ε > 0 ∃δ > 0 s.t. ∀x satisfying 0 < |x − a| < δ, |f(x) − l| < ε

The correct answer is at the bottom of the page1. If you get it wrong, you go directly
to Jail. Do not pass Go. Do not collect $200.

6. Incorrect assumption

You could have all your logic right, you could make a series of perfectly good and sensible
steps, but if you start in the wrong place then you’re not going to have a good proof.
Or, if you use any assumption along the way that simply isn’t true, then it’s all going
to go horribly pear-shaped. . .

7. Incorrect use of definitions – or use of incorrect definitions

This is a very, very avoidable error. Especially if it’s not a test and so you have all your
notes and all the books in the world to consult: getting the definitions wrong is a really

1∃ε > 0 s.t. ∀δ > 0 ∃x satisfying 0 < |x − a| < δ s.t. |f(x) − l| ≥ ε

8

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Beware Incorrect Logic

• Negating a statement incorrectly

• proving the converse of something instead
of the thing itself

4. Handwaving

Handwaving is when you arrive at a statement by some not-very-mathematical means.
The step isn’t necessarily wrong, but you haven’t arrived at it in a good logical manner.
Perhaps you had to resort to writing a few sentences of prose in English rather than
Mathematics-speak. This is often a sign that you’ve got the right idea but you haven’t
worked out how to express it. Spot the handwaving here – you can see it from a mile
off:

a(b − c) = ab + a(−c)
a(−c) = −ac because if you add ac to

both sides then both sides vanish
which means they′re inverse

∴ ab + a(−c) = ab − ac "
Handwaving is bad but is not ultimately catastrophic – you just need to learn how

to translate from English into Mathematics. This is probably easier to learn than the
problem of coming up with the right idea in the first place.

5. Incorrect logic

This includes the two great classics

• negating a statement incorrectly

• proving the converse of something instead of the thing itself

What is the negation of the following statement:

∀ε > 0 ∃δ > 0 s.t. ∀x satisfying 0 < |x − a| < δ, |f(x) − l| < ε

The correct answer is at the bottom of the page1. If you get it wrong, you go directly
to Jail. Do not pass Go. Do not collect $200.

6. Incorrect assumption

You could have all your logic right, you could make a series of perfectly good and sensible
steps, but if you start in the wrong place then you’re not going to have a good proof.
Or, if you use any assumption along the way that simply isn’t true, then it’s all going
to go horribly pear-shaped. . .

7. Incorrect use of definitions – or use of incorrect definitions

This is a very, very avoidable error. Especially if it’s not a test and so you have all your
notes and all the books in the world to consult: getting the definitions wrong is a really

1∃ε > 0 s.t. ∀δ > 0 ∃x satisfying 0 < |x − a| < δ s.t. |f(x) − l| ≥ ε

8

4. Handwaving

Handwaving is when you arrive at a statement by some not-very-mathematical means.
The step isn’t necessarily wrong, but you haven’t arrived at it in a good logical manner.
Perhaps you had to resort to writing a few sentences of prose in English rather than
Mathematics-speak. This is often a sign that you’ve got the right idea but you haven’t
worked out how to express it. Spot the handwaving here – you can see it from a mile
off:

a(b − c) = ab + a(−c)
a(−c) = −ac because if you add ac to

both sides then both sides vanish
which means they′re inverse

∴ ab + a(−c) = ab − ac "
Handwaving is bad but is not ultimately catastrophic – you just need to learn how

to translate from English into Mathematics. This is probably easier to learn than the
problem of coming up with the right idea in the first place.

5. Incorrect logic

This includes the two great classics

• negating a statement incorrectly

• proving the converse of something instead of the thing itself

What is the negation of the following statement:

∀ε > 0 ∃δ > 0 s.t. ∀x satisfying 0 < |x − a| < δ, |f(x) − l| < ε

The correct answer is at the bottom of the page1. If you get it wrong, you go directly
to Jail. Do not pass Go. Do not collect $200.

6. Incorrect assumption

You could have all your logic right, you could make a series of perfectly good and sensible
steps, but if you start in the wrong place then you’re not going to have a good proof.
Or, if you use any assumption along the way that simply isn’t true, then it’s all going
to go horribly pear-shaped. . .

7. Incorrect use of definitions – or use of incorrect definitions

This is a very, very avoidable error. Especially if it’s not a test and so you have all your
notes and all the books in the world to consult: getting the definitions wrong is a really

1∃ε > 0 s.t. ∀δ > 0 ∃x satisfying 0 < |x − a| < δ s.t. |f(x) − l| ≥ ε

8

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Additional Pitfalls

• Incorrect assumptions

• Incorrect use of definitions, or use of
incorrect definitions

pointless way of going wrong. What’s wrong with the following “proof” for the second
example from Section 4?

f(a) = f(a′) =⇒ a = a′

g(a) = g(a′) =⇒ a = a′

(g ◦ f)(a) = (g ◦ f)(a′) =⇒ g(a) ◦ f(a) = g(a′) ◦ f(a′)
=⇒ a = a′

∴ g ◦ f is injective. "

8. Assuming too much

This is a tricky one, especially when you’re a student at the beginning of a course. What
are you allowed to assume? How much do you have to justify each step? A good rule
of thumb is:

You need to justify everything enough for your peers to understand it.

This is not a hard and fast rule, but it’s a guideline that will always remain true however
far you progress in mathematics, even if you become an internationally acclaimed Fields-
medal-winning mathematician. The point is that as you become more advanced your
peers do too, so you are eventually going to be taking bigger steps in your proofs than
you do now. i.e. don’t worry, you won’t be required to write down every use of the
distributive law forever!

If in doubt, justify things more rather than less.

Very few people give too much explanation of things. In fact, I have only ever encoun-
tered one student who consistently explained things too much.

6 Practicalities: how to think up a proof

The harsh reality is that when you sit down to prove something you usually have to start
by just staring at it really hard and hoping for some inspiration to hit you. However,
you can put yourself in the best possible place to find that inspiration by doing some of
the following things, probably on a piece of rough paper.

• Write out the beginning very carefully. Write down the definitions very explicitly,
write down the things you are allowed to assume, and write it all down in careful
mathematical language.

• Write out the end very carefully. That is, write down the thing you’re trying to
prove, in careful mathematical language.

9

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Assumptions

• You need to justify everything enough for
your peers to understand it

• If in doubt, justify things more rather than
less

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Practicalities

Practicalities

• Write the begining very carefully

• Write the end very carefully

• Try and manipulate both ends to meet in
the middle, from big leaps to smaller ones

• Pretend to be more stupid (or sceptical, or
untrusting) that you are

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

• Try and manipulate both the beginning and the end to try and make them look
like one another. This is like building from both ends of the bridge until they
meet in the middle, and it’s okay as long as you write the whole thing out properly
in the right order afterwards.

• Take big leaps to see what happens, and then make the big leaps into smaller
leaps afterwards.

• See if the situation reminds you of any situations you’ve ever seen before. If so,
perhaps you can copy the method.

You should always read over your proof after you’ve written it to make sure every
single step makes sense. When you’re writing a proof the first time through, you might
get carried away in a frenzy of inspiration and become blind to the world around you –
by which I mean that you might do something wrong without noticing it. It’s important
to go back in a calm state and pretend to be more stupid than you are. Or more sceptical.
Or untrusting. When you finish a proof you should feel like you understand what’s going
on, but you should go back over it pretending that you don’t understand, and see if your
proof explains it to you.

7 Some more specific shapes of proofs

Now let’s look at the various types of things that we try to prove (as listed in Section 3),
and think about how we can prove them.

1. x = y or “something equals something else”

The proof might take the following general shape:

x = a
= b
= c
= d
= y !

Or:

x = a
= b
= c

y = e
= d
= c

∴ x = y !

10

• Try and manipulate both the beginning and the end to try and make them look
like one another. This is like building from both ends of the bridge until they
meet in the middle, and it’s okay as long as you write the whole thing out properly
in the right order afterwards.

• Take big leaps to see what happens, and then make the big leaps into smaller
leaps afterwards.

• See if the situation reminds you of any situations you’ve ever seen before. If so,
perhaps you can copy the method.

You should always read over your proof after you’ve written it to make sure every
single step makes sense. When you’re writing a proof the first time through, you might
get carried away in a frenzy of inspiration and become blind to the world around you –
by which I mean that you might do something wrong without noticing it. It’s important
to go back in a calm state and pretend to be more stupid than you are. Or more sceptical.
Or untrusting. When you finish a proof you should feel like you understand what’s going
on, but you should go back over it pretending that you don’t understand, and see if your
proof explains it to you.

7 Some more specific shapes of proofs

Now let’s look at the various types of things that we try to prove (as listed in Section 3),
and think about how we can prove them.

1. x = y or “something equals something else”

The proof might take the following general shape:

x = a
= b
= c
= d
= y !

Or:

x = a
= b
= c

y = e
= d
= c

∴ x = y !

10

• Try and manipulate both the beginning and the end to try and make them look
like one another. This is like building from both ends of the bridge until they
meet in the middle, and it’s okay as long as you write the whole thing out properly
in the right order afterwards.

• Take big leaps to see what happens, and then make the big leaps into smaller
leaps afterwards.

• See if the situation reminds you of any situations you’ve ever seen before. If so,
perhaps you can copy the method.

You should always read over your proof after you’ve written it to make sure every
single step makes sense. When you’re writing a proof the first time through, you might
get carried away in a frenzy of inspiration and become blind to the world around you –
by which I mean that you might do something wrong without noticing it. It’s important
to go back in a calm state and pretend to be more stupid than you are. Or more sceptical.
Or untrusting. When you finish a proof you should feel like you understand what’s going
on, but you should go back over it pretending that you don’t understand, and see if your
proof explains it to you.

7 Some more specific shapes of proofs

Now let’s look at the various types of things that we try to prove (as listed in Section 3),
and think about how we can prove them.

1. x = y or “something equals something else”

The proof might take the following general shape:

x = a
= b
= c
= d
= y !

Or:

x = a
= b
= c

y = e
= d
= c

∴ x = y !

10

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Note that this is very different from:

x = y
a = e
b = d
c = c !

2. x =⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y !

Or:

We know that a =⇒ b

Also a ⇐⇒ x
and b ⇐⇒ y

∴ x =⇒ y !

3. x ⇐⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y

Conversely y =⇒ p
=⇒ q
=⇒ r
=⇒ x

Hence x ⇐⇒ y !

11

Note that this is very different from:

x = y
a = e
b = d
c = c !

2. x =⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y !

Or:

We know that a =⇒ b

Also a ⇐⇒ x
and b ⇐⇒ y

∴ x =⇒ y !

3. x ⇐⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y

Conversely y =⇒ p
=⇒ q
=⇒ r
=⇒ x

Hence x ⇐⇒ y !

11

Note that this is very different from:

x = y
a = e
b = d
c = c !

2. x =⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y !

Or:

We know that a =⇒ b

Also a ⇐⇒ x
and b ⇐⇒ y

∴ x =⇒ y !

3. x ⇐⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y

Conversely y =⇒ p
=⇒ q
=⇒ r
=⇒ x

Hence x ⇐⇒ y !

11

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Note that this is very different from:

x = y
a = e
b = d
c = c !

2. x =⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y !

Or:

We know that a =⇒ b

Also a ⇐⇒ x
and b ⇐⇒ y

∴ x =⇒ y !

3. x ⇐⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y

Conversely y =⇒ p
=⇒ q
=⇒ r
=⇒ x

Hence x ⇐⇒ y !

11

Note that this is very different from:

x = y
a = e
b = d
c = c !

2. x =⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y !

Or:

We know that a =⇒ b

Also a ⇐⇒ x
and b ⇐⇒ y

∴ x =⇒ y !

3. x ⇐⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y

Conversely y =⇒ p
=⇒ q
=⇒ r
=⇒ x

Hence x ⇐⇒ y !

11

Or

x ⇐⇒ a
⇐⇒ b
⇐⇒ c
⇐⇒ d
⇐⇒ y !

However, beware that this can be a dangerous way of taking a short cut – you might
find that you’re going the wrong way up a one way street. Do those implications really
work backwards? It’s always safer to do the forwards and the backwards separately, and
write “conversely” at the point where you’re about to start doing the converse direction.

4. x is purple

A good way to start is to write down the definition. What does it mean for x to be
purple?

“x is purple” means y

We know a and

a =⇒ b
=⇒ c
=⇒ d
=⇒ y

∴ x is purple as required !

5. ∀x, p(x) is true

In practice this will usually be “∀x of a certain kind”, like “for any rational number
x” or “for any continuous function f” or “for any braided monoidal category C”. Then
the point is probably to use the assumed properties of x to prove p(x). So a good
way to start is to write down the definition of those assumed properties, carefully, in
mathematical language. e.g.

Prove that any rational number can be expressed as m
n where m and n are

integers that are not both even.

So we start by saying:

Let x be a rational number. So x can be expressed as
p

q
where p and q are

integers and q $= 0.

12

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Or

x ⇐⇒ a
⇐⇒ b
⇐⇒ c
⇐⇒ d
⇐⇒ y !

However, beware that this can be a dangerous way of taking a short cut – you might
find that you’re going the wrong way up a one way street. Do those implications really
work backwards? It’s always safer to do the forwards and the backwards separately, and
write “conversely” at the point where you’re about to start doing the converse direction.

4. x is purple

A good way to start is to write down the definition. What does it mean for x to be
purple?

“x is purple” means y

We know a and

a =⇒ b
=⇒ c
=⇒ d
=⇒ y

∴ x is purple as required !

5. ∀x, p(x) is true

In practice this will usually be “∀x of a certain kind”, like “for any rational number
x” or “for any continuous function f” or “for any braided monoidal category C”. Then
the point is probably to use the assumed properties of x to prove p(x). So a good
way to start is to write down the definition of those assumed properties, carefully, in
mathematical language. e.g.

Prove that any rational number can be expressed as m
n where m and n are

integers that are not both even.

So we start by saying:

Let x be a rational number. So x can be expressed as
p

q
where p and q are

integers and q $= 0.

12

Or

x ⇐⇒ a
⇐⇒ b
⇐⇒ c
⇐⇒ d
⇐⇒ y !

However, beware that this can be a dangerous way of taking a short cut – you might
find that you’re going the wrong way up a one way street. Do those implications really
work backwards? It’s always safer to do the forwards and the backwards separately, and
write “conversely” at the point where you’re about to start doing the converse direction.

4. x is purple

A good way to start is to write down the definition. What does it mean for x to be
purple?

“x is purple” means y

We know a and

a =⇒ b
=⇒ c
=⇒ d
=⇒ y

∴ x is purple as required !

5. ∀x, p(x) is true

In practice this will usually be “∀x of a certain kind”, like “for any rational number
x” or “for any continuous function f” or “for any braided monoidal category C”. Then
the point is probably to use the assumed properties of x to prove p(x). So a good
way to start is to write down the definition of those assumed properties, carefully, in
mathematical language. e.g.

Prove that any rational number can be expressed as m
n where m and n are

integers that are not both even.

So we start by saying:

Let x be a rational number. So x can be expressed as
p

q
where p and q are

integers and q $= 0.

12

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Or

x ⇐⇒ a
⇐⇒ b
⇐⇒ c
⇐⇒ d
⇐⇒ y !

However, beware that this can be a dangerous way of taking a short cut – you might
find that you’re going the wrong way up a one way street. Do those implications really
work backwards? It’s always safer to do the forwards and the backwards separately, and
write “conversely” at the point where you’re about to start doing the converse direction.

4. x is purple

A good way to start is to write down the definition. What does it mean for x to be
purple?

“x is purple” means y

We know a and

a =⇒ b
=⇒ c
=⇒ d
=⇒ y

∴ x is purple as required !

5. ∀x, p(x) is true

In practice this will usually be “∀x of a certain kind”, like “for any rational number
x” or “for any continuous function f” or “for any braided monoidal category C”. Then
the point is probably to use the assumed properties of x to prove p(x). So a good
way to start is to write down the definition of those assumed properties, carefully, in
mathematical language. e.g.

Prove that any rational number can be expressed as m
n where m and n are

integers that are not both even.

So we start by saying:

Let x be a rational number. So x can be expressed as
p

q
where p and q are

integers and q $= 0.

12

Or

x ⇐⇒ a
⇐⇒ b
⇐⇒ c
⇐⇒ d
⇐⇒ y !

However, beware that this can be a dangerous way of taking a short cut – you might
find that you’re going the wrong way up a one way street. Do those implications really
work backwards? It’s always safer to do the forwards and the backwards separately, and
write “conversely” at the point where you’re about to start doing the converse direction.

4. x is purple

A good way to start is to write down the definition. What does it mean for x to be
purple?

“x is purple” means y

We know a and

a =⇒ b
=⇒ c
=⇒ d
=⇒ y

∴ x is purple as required !

5. ∀x, p(x) is true

In practice this will usually be “∀x of a certain kind”, like “for any rational number
x” or “for any continuous function f” or “for any braided monoidal category C”. Then
the point is probably to use the assumed properties of x to prove p(x). So a good
way to start is to write down the definition of those assumed properties, carefully, in
mathematical language. e.g.

Prove that any rational number can be expressed as m
n where m and n are

integers that are not both even.

So we start by saying:

Let x be a rational number. So x can be expressed as
p

q
where p and q are

integers and q $= 0.

12

Or

x ⇐⇒ a
⇐⇒ b
⇐⇒ c
⇐⇒ d
⇐⇒ y !

However, beware that this can be a dangerous way of taking a short cut – you might
find that you’re going the wrong way up a one way street. Do those implications really
work backwards? It’s always safer to do the forwards and the backwards separately, and
write “conversely” at the point where you’re about to start doing the converse direction.

4. x is purple

A good way to start is to write down the definition. What does it mean for x to be
purple?

“x is purple” means y

We know a and

a =⇒ b
=⇒ c
=⇒ d
=⇒ y

∴ x is purple as required !

5. ∀x, p(x) is true

In practice this will usually be “∀x of a certain kind”, like “for any rational number
x” or “for any continuous function f” or “for any braided monoidal category C”. Then
the point is probably to use the assumed properties of x to prove p(x). So a good
way to start is to write down the definition of those assumed properties, carefully, in
mathematical language. e.g.

Prove that any rational number can be expressed as m
n where m and n are

integers that are not both even.

So we start by saying:

Let x be a rational number. So x can be expressed as
p

q
where p and q are

integers and q $= 0.

12

...

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Note that we have picked an arbitrary x, and then we just can just prove that this x
has the desired property, and we’re done. You might say, “But we’ve only proved it
for this x, and not every x”. But the point is that this is a random x not one specific
one, it’s a sort of generic x that shows the proof will work for any specific one that we
substituted in. It’s not like proving the result for one particular number, say, 23.

6. ∃x s.t. p(x) is true

Here, all we have to do is find one x for which p(x) is true. So we can just say “let
x = 23” and then show that 23 has the desired property p. For example, prove that:

∃ δ > 0 s.t. |x| < δ =⇒ |x2| <
1

100
Put δ = 1

10 . Now |x2| = |x|2 so we have

|x| <
1

10
=⇒ |x2| <

1

100
!

This is fine; of course we could also have picked

δ =
1

1000

or
δ =

1

476002

The latter especially would be a little eccentric but would still be a perfectly valid (if
violent) choice of δ to finish the problem off.

Of course, sometimes it’s a bit hard to just pluck a valid x out of thin air. It’s a bit
like pulling a rabbit out of a hat – it looks like magic, but of course you are the one
who put the rabbit there in the first place. So if it’s a complicated example we probably
work out (on a rough piece of paper) which x is going to do the trick, and once we have
it all worked out we can pull it out of the hat.

7. If a, b, c, d are true then e is true

When you have a whole lot of things (a, b, c, d, . . .) you’re allowed to assume, it gets
more complicated. You might have to develop several parts of it sort of at the same
time before proceeding to the end, like a novel where there are several strands of plot
happening at the same time before they all come together at the end for the final
dénouement. The proof might look like this:

a =⇒ z
b and z =⇒ y

c =⇒ x
x and d =⇒ w
y and w =⇒ e !

13

Note that we have picked an arbitrary x, and then we just can just prove that this x
has the desired property, and we’re done. You might say, “But we’ve only proved it
for this x, and not every x”. But the point is that this is a random x not one specific
one, it’s a sort of generic x that shows the proof will work for any specific one that we
substituted in. It’s not like proving the result for one particular number, say, 23.

6. ∃x s.t. p(x) is true

Here, all we have to do is find one x for which p(x) is true. So we can just say “let
x = 23” and then show that 23 has the desired property p. For example, prove that:

∃ δ > 0 s.t. |x| < δ =⇒ |x2| <
1

100
Put δ = 1

10 . Now |x2| = |x|2 so we have

|x| <
1

10
=⇒ |x2| <

1

100
!

This is fine; of course we could also have picked

δ =
1

1000

or
δ =

1

476002

The latter especially would be a little eccentric but would still be a perfectly valid (if
violent) choice of δ to finish the problem off.

Of course, sometimes it’s a bit hard to just pluck a valid x out of thin air. It’s a bit
like pulling a rabbit out of a hat – it looks like magic, but of course you are the one
who put the rabbit there in the first place. So if it’s a complicated example we probably
work out (on a rough piece of paper) which x is going to do the trick, and once we have
it all worked out we can pull it out of the hat.

7. If a, b, c, d are true then e is true

When you have a whole lot of things (a, b, c, d, . . .) you’re allowed to assume, it gets
more complicated. You might have to develop several parts of it sort of at the same
time before proceeding to the end, like a novel where there are several strands of plot
happening at the same time before they all come together at the end for the final
dénouement. The proof might look like this:

a =⇒ z
b and z =⇒ y

c =⇒ x
x and d =⇒ w
y and w =⇒ e !

13

Note that we have picked an arbitrary x, and then we just can just prove that this x
has the desired property, and we’re done. You might say, “But we’ve only proved it
for this x, and not every x”. But the point is that this is a random x not one specific
one, it’s a sort of generic x that shows the proof will work for any specific one that we
substituted in. It’s not like proving the result for one particular number, say, 23.

6. ∃x s.t. p(x) is true

Here, all we have to do is find one x for which p(x) is true. So we can just say “let
x = 23” and then show that 23 has the desired property p. For example, prove that:

∃ δ > 0 s.t. |x| < δ =⇒ |x2| <
1

100
Put δ = 1

10 . Now |x2| = |x|2 so we have

|x| <
1

10
=⇒ |x2| <

1

100
!

This is fine; of course we could also have picked

δ =
1

1000

or
δ =

1

476002

The latter especially would be a little eccentric but would still be a perfectly valid (if
violent) choice of δ to finish the problem off.

Of course, sometimes it’s a bit hard to just pluck a valid x out of thin air. It’s a bit
like pulling a rabbit out of a hat – it looks like magic, but of course you are the one
who put the rabbit there in the first place. So if it’s a complicated example we probably
work out (on a rough piece of paper) which x is going to do the trick, and once we have
it all worked out we can pull it out of the hat.

7. If a, b, c, d are true then e is true

When you have a whole lot of things (a, b, c, d, . . .) you’re allowed to assume, it gets
more complicated. You might have to develop several parts of it sort of at the same
time before proceeding to the end, like a novel where there are several strands of plot
happening at the same time before they all come together at the end for the final
dénouement. The proof might look like this:

a =⇒ z
b and z =⇒ y

c =⇒ x
x and d =⇒ w
y and w =⇒ e !

13

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Note that we have picked an arbitrary x, and then we just can just prove that this x
has the desired property, and we’re done. You might say, “But we’ve only proved it
for this x, and not every x”. But the point is that this is a random x not one specific
one, it’s a sort of generic x that shows the proof will work for any specific one that we
substituted in. It’s not like proving the result for one particular number, say, 23.

6. ∃x s.t. p(x) is true

Here, all we have to do is find one x for which p(x) is true. So we can just say “let
x = 23” and then show that 23 has the desired property p. For example, prove that:

∃ δ > 0 s.t. |x| < δ =⇒ |x2| <
1

100
Put δ = 1

10 . Now |x2| = |x|2 so we have

|x| <
1

10
=⇒ |x2| <

1

100
!

This is fine; of course we could also have picked

δ =
1

1000

or
δ =

1

476002

The latter especially would be a little eccentric but would still be a perfectly valid (if
violent) choice of δ to finish the problem off.

Of course, sometimes it’s a bit hard to just pluck a valid x out of thin air. It’s a bit
like pulling a rabbit out of a hat – it looks like magic, but of course you are the one
who put the rabbit there in the first place. So if it’s a complicated example we probably
work out (on a rough piece of paper) which x is going to do the trick, and once we have
it all worked out we can pull it out of the hat.

7. If a, b, c, d are true then e is true

When you have a whole lot of things (a, b, c, d, . . .) you’re allowed to assume, it gets
more complicated. You might have to develop several parts of it sort of at the same
time before proceeding to the end, like a novel where there are several strands of plot
happening at the same time before they all come together at the end for the final
dénouement. The proof might look like this:

a =⇒ z
b and z =⇒ y

c =⇒ x
x and d =⇒ w
y and w =⇒ e !

13

Note that we have picked an arbitrary x, and then we just can just prove that this x
has the desired property, and we’re done. You might say, “But we’ve only proved it
for this x, and not every x”. But the point is that this is a random x not one specific
one, it’s a sort of generic x that shows the proof will work for any specific one that we
substituted in. It’s not like proving the result for one particular number, say, 23.

6. ∃x s.t. p(x) is true

Here, all we have to do is find one x for which p(x) is true. So we can just say “let
x = 23” and then show that 23 has the desired property p. For example, prove that:

∃ δ > 0 s.t. |x| < δ =⇒ |x2| <
1

100
Put δ = 1

10 . Now |x2| = |x|2 so we have

|x| <
1

10
=⇒ |x2| <

1

100
!

This is fine; of course we could also have picked

δ =
1

1000

or
δ =

1

476002

The latter especially would be a little eccentric but would still be a perfectly valid (if
violent) choice of δ to finish the problem off.

Of course, sometimes it’s a bit hard to just pluck a valid x out of thin air. It’s a bit
like pulling a rabbit out of a hat – it looks like magic, but of course you are the one
who put the rabbit there in the first place. So if it’s a complicated example we probably
work out (on a rough piece of paper) which x is going to do the trick, and once we have
it all worked out we can pull it out of the hat.

7. If a, b, c, d are true then e is true

When you have a whole lot of things (a, b, c, d, . . .) you’re allowed to assume, it gets
more complicated. You might have to develop several parts of it sort of at the same
time before proceeding to the end, like a novel where there are several strands of plot
happening at the same time before they all come together at the end for the final
dénouement. The proof might look like this:

a =⇒ z
b and z =⇒ y

c =⇒ x
x and d =⇒ w
y and w =⇒ e !

13

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

In fact if we draw a little picture of what happened, it’s much easier to see what’s going
on (and see where the beginning, the middle and the end have got to):

a b c d

z x

y w

e

!

!

!

!

!

Here’s an example of this phenomenon at work:

Prove that if a > 0 ∈ R then a2 > 0. You may assume that
for all x, y ∈ R, (−x)(y) = −(xy) and −(−x) = x.

Now a < 0 means
0 − a ∈ P

i.e.
−a ∈ P.

Therefore
(−a)(−a) ∈ P

by closure of P under multiplication. Now

(−a)(−a) = −a(−a) by the first given assumption
= −((−a)(a)) commutativity of multiplication
= −(−(a2)) first given
= a2 second given

∴ (−a)(−a) > 0 =⇒ a2 > 0 as required "

14

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Proof by Contradiction

• We are trying to prove that some
statement P is true

• We say «suppose P were not true» and find
a contradiction

• Since P being false gives a contradiction, we
deduce that P must be true

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Exploratory Data
Analysis

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Approach
• Exploratory Data Analysis employs a

variety of (mostly graphical) techniques to:

• maximize insight into a data set

• uncover underlying structure

• extract important variables

• detect outliers and anomalies

• test underlying assumptions

• develop parsimonious models

• determine optimal factor settings
NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Graphical techniques

• Plotting the raw data (data traces,
histograms, bihistograms, probability plots,
lag plots, block plots, and Youden plots)

• Plotting simple statistics such as mean plots,
standard deviation plots, box plots, and
main effect plots of the raw data

• Positioning such plots so as to maximize our
natural pattern recognition abilities

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Classical vs. Exploratory

Classical Data Analysis

1. Problem

2. Data

3. Model

4. Analysis

5. Conclusion

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Exploratory Data
Analysis

1. Problem

2. Data

3. Analysis

4. Model

5. Conclusion

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Classical vs.
Exploratory

• Models

• Focus

• Techniques

• Rigor

• Data Treatment

• Assumptions

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Model

• Classical

• imposes models (both deterministic and
probabilistic). e.g. regression models,
analysis of variance. The most common
probabilistic model assumes that the
errors are normally distributed.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Model

• Exploratory

• does not impose deterministic or
probabilistic models on the data. In fact,
EDA allows the data to suggest
admissible models that best fit the data.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Focus

• Classical

• On the Model. Estimate model
parameters, generate predicted values
from the model.

• Exploratory

• On the Data. Structure, outliers, and
models suggested by the data.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Techniques

• Classical

• Quantitative. Mean, Variance, ANOVA, T-
test, chi^2 tests, F-Test.

• Exploratory

• Graphical. Scatter plots, Character plots,
box plots, histograms, bihistograms,
probability plots, residual plots, mean
plots.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Rigor

• Classical

• Probabilistic foundation of Science.
Rigorous, formal, objective.

• Exploratory

• Suggestive, indicative, insightful.
Subjective, depend on interpretation.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Data Treatment

• Classical

• Maps all data into few numbers. Loss of
information.

• Exploratory

• Shows all data. No loss of information.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Assumptions

• Classical

• Tests based on classical techniques are
very sensitive. Yet they depend on
underlying assumptions. that could be
unkown or untested.

• Exploratory

• Makes no assumptions.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Quantitative Techniques

• Hypothesis testing

• Analysis of variance

• Point estimate and confidence intervals

• Least squares regression

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Graphical Techniques

• Testing assumptions

• Model Validation

• Estimator Selection

• Relationship identification

• Factor Effect determination

• Outlier Detection

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

EDA Example

EDA Example

1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.6. An EDA/Graphics Example

Anscombe
Example

A simple, classic (Anscombe) example of the central role
that graphics play in terms of providing insight into a data
set starts with the following data set:

Data X Y
10.00 8.04
 8.00 6.95
13.00 7.58
 9.00 8.81
11.00 8.33
14.00 9.96
 6.00 7.24
 4.00 4.26
12.00 10.84
 7.00 4.82
 5.00 5.68

Summary
Statistics

If the goal of the analysis is to compute summary statistics
plus determine the best linear fit for Y as a function of X, the
results might be given as:

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

The above quantitative analysis, although valuable, gives us
only limited insight into the data.

Scatter Plot In contrast, the following simple scatter plot of the data

1.1.6. An EDA/Graphics Example http://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm

1 sur 5 12/10/09 17:24

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

EDA Example (DS1)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.237

• Correlation = 0.816
NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

EDA Example

 4

 5

 6

 7

 8

 9

 10

 11

 4 6 8 10 12 14

"ex1"

EDA Example

 4

 5

 6

 7

 8

 9

 10

 11

 4 6 8 10 12 14

"ex1"
3+.5*x

EDA Example

suggests the following:

The data set "behaves like" a linear curve with some
scatter;

1.

there is no justification for a more complicated model
(e.g., quadratic);

2.

there are no outliers;3.
the vertical spread of the data appears to be of equal
height irrespective of the X-value; this indicates that
the data are equally-precise throughout and so a
"regular" (that is, equi-weighted) fit is appropriate.

4.

Three
Additional
Data Sets

This kind of characterization for the data serves as the core
for getting insight/feel for the data. Such insight/feel does
not come from the quantitative statistics; on the contrary,
calculations of quantitative statistics such as intercept and
slope should be subsequent to the characterization and will
make sense only if the characterization is true. To illustrate
the loss of information that results when the graphics insight
step is skipped, consider the following three data sets
[Anscombe data sets 2, 3, and 4]:

 X2 Y2 X3 Y3 X4 Y4
10.00 9.14 10.00 7.46 8.00 6.58
 8.00 8.14 8.00 6.77 8.00 5.76
13.00 8.74 13.00 12.74 8.00 7.71
 9.00 8.77 9.00 7.11 8.00 8.84
11.00 9.26 11.00 7.81 8.00 8.47
14.00 8.10 14.00 8.84 8.00 7.04
 6.00 6.13 6.00 6.08 8.00 5.25
 4.00 3.10 4.00 5.39 19.00 12.50
12.00 9.13 12.00 8.15 8.00 5.56
 7.00 7.26 7.00 6.42 8.00 7.91

1.1.6. An EDA/Graphics Example http://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm

2 sur 5 12/10/09 17:24

 5.00 4.74 5.00 5.73 8.00 6.89

Quantitative
Statistics for
Data Set 2

A quantitative analysis on data set 2 yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

which is identical to the analysis for data set 1. One might
naively assume that the two data sets are "equivalent" since
that is what the statistics tell us; but what do the statistics not
tell us?

Quantitative
Statistics for
Data Sets 3
and 4

Remarkably, a quantitative analysis on data sets 3 and 4 also
yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.236
Correlation = 0.816 (0.817 for data set 4)

which implies that in some quantitative sense, all four of the
data sets are "equivalent". In fact, the four data sets are far
from "equivalent" and a scatter plot of each data set, which
would be step 1 of any EDA approach, would tell us that
immediately.

1.1.6. An EDA/Graphics Example http://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm

3 sur 5 12/10/09 17:24

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

EDA Example (DS2)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.237

• Correlation = 0.816
NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

EDA Example (DS3)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.236

• Correlation = 0.816
NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

EDA Example (DS4)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.236

• Correlation = 0.817
NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

EDA Example (DS2)

 3

 4

 5

 6

 7

 8

 9

 10

 4 6 8 10 12 14

"ex2"
3+.5*x

EDA Example (DS3)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 4 6 8 10 12 14

"ex3"
3+.5*x

EDA Example (DS4)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 8 10 12 14 16 18 20

"ex4"
3+.5*x

Four Basic Tools

Univariate Data

• Most basic tools operate on univariate data,
i.e. a list of single responses

Data Sets

• Flow DS: This data set was collected by
Bob Zarr of NIST in January 1990 from a
heat flow meter calibration and stability
analysis. The response variable is a
calibration factor.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Data Sets

• Walk DS: A random walk can be
generated from a set of uniform random
numbers by the formula :

• where U is a set of uniform random
numbers

Ri =
iX

j=1

(Uj � 0.5)

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Data Sets

• Beam DS: This data set was collected by
H.S. Lew of NIST in 1969 to measure steel-
concrete deflections. The response variable
is the deflection of a beam from center
point.

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Run-sequence Plot

• Considers Univariate Data

• Vertical axis: response variable Y(i)

• Horizontal Axis: Index i (i=1,2,3,...)

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Run-sequence Plot

• Used to answer the questions

• Are there any shifts in location ?

• Are there any shifts in variation ?

• Are there any outliers ?

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Run-sequence Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

 0 20 40 60 80 100 120 140 160 180 200

"flowmeter1"

Run-sequence Walk DS

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 50 100 150 200 250 300 350 400 450 500

"walk1"

Run-sequence Beam DS

-600

-500

-400

-300

-200

-100

 0

 100

 200

 300

 0 20 40 60 80 100 120 140 160 180 200

"beam1"

Lag Plot

• Considers univariate data

• Vertical Axis: Y(i) for all i

• Horizontal Axis: Y(i-1) for all i

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Lag Plot

• Are the data random ?

• Is there serial correlation in the data ?

• What is a suitable model for the data ?

• Are there outliers in the data ?

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Lag Plot Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter2"

Lag Plot Walk DS

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-2 -1 0 1 2 3 4 5 6 7 8

"walk2"

Lag plot Beam DS

-600

-500

-400

-300

-200

-100

 0

 100

 200

 300

-600 -500 -400 -300 -200 -100 0 100 200 300

"beam2"

Histogram

• Considers univariate data

• Split the range of the data into equal-sized
bins, then for each bin the number of points
from the data for each bin are counted

• Vertical axis: Frequency

• Horizontal axis: Response variable

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Histogram

• Used to answer the following questions

• What kind of population do the data
come from ?

• Where are the data located ?

• How spread out are the data ?

• Are the data symmetric or skewed ?

• Are there outliers in the data ?
NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Histogram Flow DS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 9.14 9.16 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter1" using (bin($1,0.01)):(1./(0.01*195))

Histogram Walk DS

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

-2 -1 0 1 2 3 4 5 6 7 8

"walk1" using (bin($1,0.5)):(1./(0.5*500))

Histogram Beam DS

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

-600 -500 -400 -300 -200 -100 0 100 200 300 400

"beam1" using (bin($1,10.)):(1./(10.*200))

Beyond Histograms :
Jitter Plots

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter1" using 1:(rand(0))

Beyond Histograms :
(Normal) Cumulative

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter1" using 1:(1./195.)

(Normal) Probability
Plot

• Considers univariate data

• Vertical axis: Ordered Response values

• Horizontal axis: Normal order statistics
median

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

(Normal) Probability
Plot

• Used to answer the following questions:

• Are the data normally distributed ?

• What is the nature of the departure from
normality (data skewed, shorted than
expected tail, longer than expected tails,
etc.) ?

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

(Normal) Probability
Plot Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

-3 -2 -1 0 1 2 3

"flowmeter_cdf" using (invnorm($2)):1

(Normal) Probability
Plot Walk DS

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 8

-3 -2 -1 0 1 2 3

"walk_cdf" using (invnorm($2)):1

(Normal) Probability
Plot Beam DS

-600

-500

-400

-300

-200

-100

 0

 100

 200

 300

-3 -2 -1 0 1 2 3

"beam_cdf" using (invnorm($2)):1

Investigating
Relationships

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Scatter plots

• Assumes Bivariate data, i.e. lists of 2-tuples
of responses

• The point is to check the nature of the
relationship between the two responses

• Take care of outliers

Example 1:
Weight vs. Cost

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
ur

b
W

ei
gh

t (
in

 p
ou

nd
s)

Cost (in 1985 dollars) Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Example 2:
The 1970 Draft Lotery

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350
Gnuplot in action: Understanding data with graphs.

Philipp K. Janert. Manning.
http://www.manning.com/janert/

Example 2:
The 1970 Draft Lotery

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350
Gnuplot in action: Understanding data with graphs.

Philipp K. Janert. Manning.
http://www.manning.com/janert/

Logarithmic Scale

• Serve three main purposes:

• Rein in large variation of the data

• Turn multiplicative deviations into additive
ones

• Reveal exponential and power law behavior

Example 1: Traffic
Pattern at Website

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70 80 90
Gnuplot in action: Understanding data with graphs.

Philipp K. Janert. Manning.
http://www.manning.com/janert/

Example 1: Traffic
Pattern at Website

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

Figure 13.6 The same data as in figure 13.5, but on a semi-logarithmic scale. Note
Gnuplot in action: Understanding data with graphs.

Philipp K. Janert. Manning.
http://www.manning.com/janert/

Example 1: Traffic
Pattern at Website

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80 90

0k
50k

100k
150k
200k
250k
300k
350k
400k
450k

 0 10 20 30 40 50 60 70 80 90
Gnuplot in action: Understanding data with graphs.

Philipp K. Janert. Manning.
http://www.manning.com/janert/

Example 2: Mammals

 0.1

 1

 0.01 0.1 1 10 100 1000 10000 100000 1e+06

P
ul

se
 D

ur
at

io
n

[s
ec

]

Weight [kg]

Human

Cat

Dog

Hamster

Chicken

Monkey

Horse

CowPig

Rabbit

Elephant

LargeWhale

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

The Core Principle

• Plot exactly what you want to see

Iterate & Transform

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
ile

ag
e

[m
pg

]

Price [1985 Dollars]

City
HighWay

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Iterate & Transform

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 15 20 25 30 35 40 45 50

M
ile

ag
e,

 H
ig

hW
ay

 [m
pg

]

Mileage, City [mpg] Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Iterate & Transform

-2

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

R
es

id
ua

l [
m

pg
]

Mileage, City [mpg] Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

What’s Wrong ?

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

Productivity (Units per Hour)
Completion Time (Minutes)

Defect Rate (Defects per Thousand)

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Normalized Metrics

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140 160

Productivity (normalized)
Completion Time (normalized)

Defect Rate (normalized)

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Truncation &
Responsiveness

 120

 140

 160

 180

 200

 1900 1920 1940 1960 1980 2000

Men

Women

Men
Women

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Truncation &
Responsiveness

• Outlier removal

• Sampling bias

• Edge effects

Truncating &
Responsiveness

 120

 140

 160

 180

 200

 1900 1920 1940 1960 1980 2000

1990

Men
Women

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception 285Changing the appearance to improve perception

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

-10 -5 0 5 10

-6

-4

-2

 0

 2

 4

 6

-10 -5 0 5 10

Figure 14.8 Banking: two plots of the function 1/x. In the bottom panel, the vertical plot range
has been constrained so that the average angle of line segments is approximately 45 degrees.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception:
Banking

285Changing the appearance to improve perception

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

-10 -5 0 5 10

-6

-4

-2

 0

 2

 4

 6

-10 -5 0 5 10

Figure 14.8 Banking: two plots of the function 1/x. In the bottom panel, the vertical plot range
has been constrained so that the average angle of line segments is approximately 45 degrees.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception:
Banking

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1700 1750 1800 1850 1900 1950 2000

A
nn

ua
l S

un
sp

ot
 N

um
be

r

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception:
Banking

0

100

0

100

0

100

0 20 40 60 80 100

A
nn

ua
l S

un
sp

ot
 N

um
be

r

Year in Century

1700

1800

1900

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Judging Lengths and
Distances

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

F
lo

w
 R

at
e

Time

Outflow
Inflow

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Judging Lengths and
Distances

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

N
et

 F
lo

w
 R

at
e

Time Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Enhancing Quantitative
Perception

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Enhancing Quantitative
Perception

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Plot Ranges ?
292 CHAPTER 14 Techniques of graphical analysis

14.3.5 A tough problem: the display of changing compositions

A hard problem without a single, good solution concerns the graphical representation
of how the breakdown of some aggregate number into its constituent parts changes
over time (or with some other control variable). Examples of this type are often found

 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 0 2 4 6 8 10

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

Figure 14.17 The effect of plot ranges. The data in both panels is the same, but the vertical plot range
is different. The top panel shows only the variation above a baseline; the bottom panel shows the global
structure of the data. Either plot is good, depending on what you want to see.

292 CHAPTER 14 Techniques of graphical analysis

14.3.5 A tough problem: the display of changing compositions

A hard problem without a single, good solution concerns the graphical representation
of how the breakdown of some aggregate number into its constituent parts changes
over time (or with some other control variable). Examples of this type are often found

 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 0 2 4 6 8 10

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

Figure 14.17 The effect of plot ranges. The data in both panels is the same, but the vertical plot range
is different. The top panel shows only the variation above a baseline; the bottom panel shows the global
structure of the data. Either plot is good, depending on what you want to see.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

The Core Principle

• Plot exactly what you want to see

GNUPLOT 101

http://www.gnuplot.info

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

GNUPLOT

• Free software for plotting data

• NOT «push-button-limited-capacities»
type of software

• Multiplatform

• Integrates well with LaTeX

GNUPLOT Invocation
Mac-Pro:metho tixeuil$ gnuplot

 G N U P L O T
 Version 4.3 patchlevel 0
 last modified March 2009
 System: Darwin 9.8.0

 Copyright (C) 1986-1993, 1998, 2004, 2007-2009
 Thomas Williams, Colin Kelley and many others

 Type `help` to access the on-line reference manual.
 The gnuplot FAQ is available from
 http://www.gnuplot.info/faq/

 Send comments and help requests to <gnuplot-beta@lists.sourceforge.net>
 Send bug reports and suggestions to <gnuplot-beta@lists.sourceforge.net>

Terminal type set to 'x11'
gnuplot>

First plots18 CHAPTER 2 Essential gnuplot

This will plot the sine together with the linear function x and the third-order polyno-
mial x - 1/6 x3, which are the first few terms in the Taylor expansion of the sine.1 (Gnu-
plot’s syntax for mathematical expressions is straightforward and similar to the one
found in almost any other programming language. Note the ** exponentiation opera-
tor, familiar from Fortran or Perl. Appendix B has a table of all available operators
and their precedences.) The resulting plot (see figure 2.2) is probably not what we
expected.

 The range of y values is far too large, compared to the previous graph. We can’t
even see the wiggles of the original function (the sine wave) at all anymore. Gnuplot
adjusts the y range to fit in all function values, but for our plot, we’re only interested
in points with small y values. So, we recall the last command again (using the up-arrow
key) and define the plot range that we are interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

The range is given in square brackets immediately after the plot command. The first
pair of brackets defines the range of x values (we leave it empty, since we’re happy
with the defaults in this case); the second restricts the range of y values shown. This
results in the graph shown in figure 2.3.

1 A Taylor expansion is a local approximation of an arbitrary, possibly quite complicated, function in terms of
powers of x. We won’t need this concept in the rest of this book. Check your favorite calculus book if you want
to know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure 2.1 Our first plot: plot sin(x)

gnuplot>
plot sin(x)

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

17Simple plots

sin(x)) and data (typically from a file). The plot command has a variety of options
and subcommands, through which we can control the appearance of the graph as well
as the interpretation of the data in the file. The plot command can even perform
arbitrary transformations on the data as we plot it.

2.1.1 Invoking gnuplot and first plots

Gnuplot is a text-based plotting program: we interact with it through command-line-like
syntax, as opposed to manipulating graphs using the mouse in a WYSIWYG fashion.
Gnuplot is also interactive: it provides a prompt at which we type our commands. When
we enter a complete command, the resulting graph immediately pops up in a separate
window. This is in contrast to a graphics programming language (such as PIC), where
writing the command, generating the graph, and viewing the result are separate activ-
ities, requiring separate tools. Gnuplot has a history feature, making it easy to recall,
modify, and reissue previous commands. The entire setup encourages you to play with
the data: making a simple plot, changing some parameters to hone in on the interest-
ing sections, eventually adding decorations and labels for final presentation, and in
the end exporting the finished graph in a standard graphics format.

 If gnuplot is installed on your system, it can usually be invoked by issuing the
command:

gnuplot

at the shell prompt. (Check appendix A for instructions on obtaining and installing
gnuplot, if your system doesn’t have it already.) Once launched, gnuplot displays a
welcome message and then replaces the shell prompt with a gnuplot> prompt. Any-
thing entered at this prompt will be interpreted as gnuplot commands until you issue
an exit or quit command, or type an end-of-file (EOF) character, usually by hitting
Control-D.

 Probably the simplest plotting command we can issue is

plot sin(x)

(Here and in the following, the gnuplot> prompt is suppressed to save space. Any
code shown should be understood as having been entered at the gnuplot prompt,
unless otherwise stated.)

 On Unix running a graphical user interface (X11), this command opens a new
window with the resulting graph, looking something like figure 2.1.

 Please note how gnuplot has selected a “reasonable” range for the x values auto-
matically (by default from -10 to +10) and adjusted the y range according to the values
of the function.

 Let’s say we want to add some more functions to plot together with the sine. We
recall the last command (using the up-arrow key or Control-P for “previous”) and edit
it to give

plot sin(x), x, x-(x**3)/6

19Simple plots

We can play much longer with function plots, zoning in on different regions of inter-
est and trying out different functions (check the reference section in appendix B for a
full list of available functions and operators), but instead let’s move on and discuss
what gnuplot is most useful for: plotting data from a file.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

18 CHAPTER 2 Essential gnuplot

This will plot the sine together with the linear function x and the third-order polyno-
mial x - 1/6 x3, which are the first few terms in the Taylor expansion of the sine.1 (Gnu-
plot’s syntax for mathematical expressions is straightforward and similar to the one
found in almost any other programming language. Note the ** exponentiation opera-
tor, familiar from Fortran or Perl. Appendix B has a table of all available operators
and their precedences.) The resulting plot (see figure 2.2) is probably not what we
expected.

 The range of y values is far too large, compared to the previous graph. We can’t
even see the wiggles of the original function (the sine wave) at all anymore. Gnuplot
adjusts the y range to fit in all function values, but for our plot, we’re only interested
in points with small y values. So, we recall the last command again (using the up-arrow
key) and define the plot range that we are interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

The range is given in square brackets immediately after the plot command. The first
pair of brackets defines the range of x values (we leave it empty, since we’re happy
with the defaults in this case); the second restricts the range of y values shown. This
results in the graph shown in figure 2.3.

1 A Taylor expansion is a local approximation of an arbitrary, possibly quite complicated, function in terms of
powers of x. We won’t need this concept in the rest of this book. Check your favorite calculus book if you want
to know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure 2.1 Our first plot: plot sin(x)

19Simple plots

We can play much longer with function plots, zoning in on different regions of inter-
est and trying out different functions (check the reference section in appendix B for a
full list of available functions and operators), but instead let’s move on and discuss
what gnuplot is most useful for: plotting data from a file.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Plotting From Data

20 CHAPTER 2 Essential gnuplot

2.1.2 Plotting data from a file

Gnuplot reads data from text files. The data is expected to be numerical and to be
stored in the file in whitespace-separated columns. Lines beginning with a hashmark (#)
are considered to be comment lines and are ignored. Listing 2.1 shows a typical data
file containing the share prices of two fictitious companies, with the equally fictitious
ticker symbols PQR and XYZ, over a number of years.

Average PQR and XYZ stock price (in dollars per share) per calendar year
1975 49 162
1976 52 144
1977 67 140
1978 53 122
1979 67 125
1980 46 117
1981 60 116
1982 50 113
1983 66 96
1984 70 101
1985 91 93
1986 133 92
1987 127 95
1988 136 79
1989 154 78
1990 127 85
1991 147 71
1992 146 54
1993 133 51
1994 144 49
1995 158 43

The canonical way to think about this is that the x value is in column 1 and the y value
is in column 2. If there are additional y values corresponding to each x value, they are
listed in subsequent columns. (We’ll see later that there’s nothing special about the
first column. In fact, any column can be plotted along either the x or the y axis.)

 This format, simple as it is, has proven to be extremely useful—so much so that
long-time gnuplot users usually generate data in this way to begin with. In particular,
the ability to keep related data sets in the same file is a big help (so that we don’t
need to keep PQR’s stock price in a separate file from XYZ’s, although we could if we
wanted to).

 While whitespace-separated numerical data is what gnuplot expects natively,
recent versions of gnuplot can parse and interpret significant deviations from this
norm, including text columns (with embedded whitespace if enclosed in double
quotes), missing data, and a variety of textual representations for calendar dates, as
well as binary data (see chapter 4 for a more detailed discussion of input file formats,
and chapter 7 for the special case when one of the columns represents date/time
information).

Listing 2.1 A typical data file: stock prices over time

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

21Simple plots

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is
called prices, we can simply type

plot "prices"

Since data files typically contain many different data sets, we’ll usually want to select
the columns to be used as x and y values. This is done through the using directive to
the plot command:

plot "prices" using 1:2

This will plot the price of PQR shares as a function of time: the first argument to the
using directive specifies the column in the input file to be plotted along the horizon-
tal (x) axis, while the second argument specifies the column for the vertical (y) axis. If
we want to plot the price of XYZ shares in the same plot, we can do so easily (as in fig-
ure 2.4):

plot "prices" using 1:2, "prices" using 1:3

By default, data points from a file are plotted using unconnected symbols. Often this
isn’t what we want, so we need to tell gnuplot what style to use for the data. This is
done using the with directive. Many different styles are available. Among the most
useful ones are with linespoints, which plots each data point as a symbol and also
connects subsequent points, and with lines, which just plots the connecting lines,
omitting the individual symbols.

plot "prices" using 1:2 with lines,
! "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

"prices" u 1:2
"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

21Simple plots

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is
called prices, we can simply type

plot "prices"

Since data files typically contain many different data sets, we’ll usually want to select
the columns to be used as x and y values. This is done through the using directive to
the plot command:

plot "prices" using 1:2

This will plot the price of PQR shares as a function of time: the first argument to the
using directive specifies the column in the input file to be plotted along the horizon-
tal (x) axis, while the second argument specifies the column for the vertical (y) axis. If
we want to plot the price of XYZ shares in the same plot, we can do so easily (as in fig-
ure 2.4):

plot "prices" using 1:2, "prices" using 1:3

By default, data points from a file are plotted using unconnected symbols. Often this
isn’t what we want, so we need to tell gnuplot what style to use for the data. This is
done using the with directive. Many different styles are available. Among the most
useful ones are with linespoints, which plots each data point as a symbol and also
connects subsequent points, and with lines, which just plots the connecting lines,
omitting the individual symbols.

plot "prices" using 1:2 with lines,
! "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

"prices" u 1:2
"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

22 CHAPTER 2 Essential gnuplot

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-
matically provides a key, which shows a sample of the line or symbol type used for each
data set together with a text description, but the default description isn’t very mean-
ingful in our case. We can do much better by including a title for each data set as
part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,
! "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (figure 2.5). The title
has to come after the using directive in the plot command. A good way to memorize
this order is to remember that we must specify the data set to plot first and provide the
description second: define it first, then describe what you defined.

 Want to see how PQR’s price correlates with XYZ’s? No problem; just plot one
against the other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

We see here that there’s nothing special about the first column. Any column can be
plotted against either the x or the y axis; we just pick whichever combination we need
through the using directive. Since it makes no sense to connect the data points in the
last plot, we’ve chosen the style with points, which just plots a symbol for each data
point, but no connecting lines (figure 2.6).

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

PQR
XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using
1:2 title "PQR" with lines, "prices" using 1:3 title "XYZ" with
linespoints

22 CHAPTER 2 Essential gnuplot

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-
matically provides a key, which shows a sample of the line or symbol type used for each
data set together with a text description, but the default description isn’t very mean-
ingful in our case. We can do much better by including a title for each data set as
part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,
! "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (figure 2.5). The title
has to come after the using directive in the plot command. A good way to memorize
this order is to remember that we must specify the data set to plot first and provide the
description second: define it first, then describe what you defined.

 Want to see how PQR’s price correlates with XYZ’s? No problem; just plot one
against the other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

We see here that there’s nothing special about the first column. Any column can be
plotted against either the x or the y axis; we just pick whichever combination we need
through the using directive. Since it makes no sense to connect the data points in the
last plot, we’ve chosen the style with points, which just plots a symbol for each data
point, but no connecting lines (figure 2.6).

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

PQR
XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using
1:2 title "PQR" with lines, "prices" using 1:3 title "XYZ" with
linespoints

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Data Transformation

41Data transformations

Gnuplot can perform simple arithmetic on complex numbers, such as { 1, 1 } + { -1, 0 }.
Furthermore, many of the built-in mathematical functions (such as sin(x), exp(x), and
so forth) can accept complex arguments and return complex numbers as results. We
can use the special functions real(x) and imag(x) to pick out the real and imaginary
parts, respectively.

 One important limitation of gnuplot’s complex numbers is that both parts must be
numeric constants—not variables, not expressions! We can always work around this
limitation, though, by using a complex constant as part of a more general expression.
For example, the following command will plot real and imaginary parts of the expo-
nential function, evaluated for imaginary argument:

plot real(exp(x*{0,1})), imag(exp(x*{0,1}))

Complex numbers are of fundamental importance in mathematics and theoretical
physics, and have important applications in signal processing and control theory.
Gnuplot’s ability to handle them makes it particularly suitable for such applications.

 Now that we’ve seen what mathematical operations we can perform, let’s see how
we can apply them to data.

3.4 Data transformations
As stated before, gnuplot is first and foremost a plotting tool: a program that allows us
to generate straightforward plots of raw data in a simple and efficient manner. Specif-
ically, it’s not a statistics package or a workbench for numerical analysis. Large-scale
data transformations are not what gnuplot is designed for. Properly understood, this is
one of gnuplot’s main strengths: it does a simple task and does it well, and does not
require learning an entire toolset or programming language to use.

 Nevertheless, gnuplot has the ability to perform arbitrary transformations on the
data as part of the plot command. This allows us to apply filters to the data from within
gnuplot, without having to take recourse to external tools or programming languages.

3.4.1 Simple data transformations

An arbitrary function can be applied to each data point as part of the using directive
in the plot command. If an argument to using is enclosed in parentheses, it’s not
treated as a column number, but as an expression to be evaluated. Inside the paren-
theses, you can access the values of the column values for the current record by pre-
ceding the column number with a dollar sign ($) (as in shell or awk programming).
Some examples will help to clarify.

 To plot the square root of the values found in the second column versus the values
in the first column, use

plot "data" using 1:(sqrt($2)) with lines

To plot the average of the second and third columns, use

plot "data" using 1:(($2+$3)/2) with lines

41Data transformations

Gnuplot can perform simple arithmetic on complex numbers, such as { 1, 1 } + { -1, 0 }.
Furthermore, many of the built-in mathematical functions (such as sin(x), exp(x), and
so forth) can accept complex arguments and return complex numbers as results. We
can use the special functions real(x) and imag(x) to pick out the real and imaginary
parts, respectively.

 One important limitation of gnuplot’s complex numbers is that both parts must be
numeric constants—not variables, not expressions! We can always work around this
limitation, though, by using a complex constant as part of a more general expression.
For example, the following command will plot real and imaginary parts of the expo-
nential function, evaluated for imaginary argument:

plot real(exp(x*{0,1})), imag(exp(x*{0,1}))

Complex numbers are of fundamental importance in mathematics and theoretical
physics, and have important applications in signal processing and control theory.
Gnuplot’s ability to handle them makes it particularly suitable for such applications.

 Now that we’ve seen what mathematical operations we can perform, let’s see how
we can apply them to data.

3.4 Data transformations
As stated before, gnuplot is first and foremost a plotting tool: a program that allows us
to generate straightforward plots of raw data in a simple and efficient manner. Specif-
ically, it’s not a statistics package or a workbench for numerical analysis. Large-scale
data transformations are not what gnuplot is designed for. Properly understood, this is
one of gnuplot’s main strengths: it does a simple task and does it well, and does not
require learning an entire toolset or programming language to use.

 Nevertheless, gnuplot has the ability to perform arbitrary transformations on the
data as part of the plot command. This allows us to apply filters to the data from within
gnuplot, without having to take recourse to external tools or programming languages.

3.4.1 Simple data transformations

An arbitrary function can be applied to each data point as part of the using directive
in the plot command. If an argument to using is enclosed in parentheses, it’s not
treated as a column number, but as an expression to be evaluated. Inside the paren-
theses, you can access the values of the column values for the current record by pre-
ceding the column number with a dollar sign ($) (as in shell or awk programming).
Some examples will help to clarify.

 To plot the square root of the values found in the second column versus the values
in the first column, use

plot "data" using 1:(sqrt($2)) with lines

To plot the average of the second and third columns, use

plot "data" using 1:(($2+$3)/2) with lines

42 CHAPTER 3 Working with data

To generate a log/log plot, we can use the following command (although the logscale
option, discussed in section 3.6, is the preferred way to achieve the same effect):

plot "data" using (log($1)):(log($2)) with lines

Here are some more creative uses. To plot two data sets of different magnitude on a
similar scale, use this (assuming that the data in column three is typically greater by a
factor of 100 than the data in column two):

plot "data" using 1:2 with lines, "" using 1:($3/100) with lines

If the data file contains the x value in the first column, the mean in the second, and
the variance in the third, we can plot the band in which we expect 68 percent of all
data to fall as

plot "data" using 1:($2+sqrt($3)) with lines,
! "" using 1:($2-sqrt($3)) with lines

All expressions involving operators or functions can be part of using expressions,
including the conditional operator:

plot "data" using 1:($2 > 0 ? log($2) : 0) with lines

Finally, it should be kept in mind that the expression supplied in parentheses can be a
constant. The following command uses the frequency directive to count the number
of times each of the values in the first column (assumed to be integers) has occurred.
The resulting plot is a histogram of the values in the first column (remember that
smooth frequency sums up the values supplied as y values and plots the sum):

plot "data" using 1:(1) smooth frequency with lines

A fundamental limitation to all these transforms is that they can only be applied to a
single record at a time. If you need aggregate functions over several records (sums or
averages, for example), or across different data sets, you’ll have to perform them
externally to gnuplot. Nevertheless, the ability to apply an arbitrary filter to each data
point, and to combine different data points for the same x value, is often tremen-
dously useful.

3.4.2 Pseudocolumns and the column function

Gnuplot defines two pseudocolumns that can be used together with data transforma-
tions. The column 0 contains the line number in the current data set; the column -2
contains the index of the current data set within the data file. When a double blank
line is encountered in the file, the line number resets to zero and the index is incre-
mented. We could use these pseudocolumns, for instance, like this:

plot "data" using 0:1 # Plot first column against line number
plot "data" using 1:-2 # Plot data set index against first column

Another way to pick out a column is to use the column(x) function. This function eval-
uates its argument and uses the value (which should be an integer) to select a column.
For instance, we may have a variable x (possibly obtained through some complicated

42 CHAPTER 3 Working with data

To generate a log/log plot, we can use the following command (although the logscale
option, discussed in section 3.6, is the preferred way to achieve the same effect):

plot "data" using (log($1)):(log($2)) with lines

Here are some more creative uses. To plot two data sets of different magnitude on a
similar scale, use this (assuming that the data in column three is typically greater by a
factor of 100 than the data in column two):

plot "data" using 1:2 with lines, "" using 1:($3/100) with lines

If the data file contains the x value in the first column, the mean in the second, and
the variance in the third, we can plot the band in which we expect 68 percent of all
data to fall as

plot "data" using 1:($2+sqrt($3)) with lines,
! "" using 1:($2-sqrt($3)) with lines

All expressions involving operators or functions can be part of using expressions,
including the conditional operator:

plot "data" using 1:($2 > 0 ? log($2) : 0) with lines

Finally, it should be kept in mind that the expression supplied in parentheses can be a
constant. The following command uses the frequency directive to count the number
of times each of the values in the first column (assumed to be integers) has occurred.
The resulting plot is a histogram of the values in the first column (remember that
smooth frequency sums up the values supplied as y values and plots the sum):

plot "data" using 1:(1) smooth frequency with lines

A fundamental limitation to all these transforms is that they can only be applied to a
single record at a time. If you need aggregate functions over several records (sums or
averages, for example), or across different data sets, you’ll have to perform them
externally to gnuplot. Nevertheless, the ability to apply an arbitrary filter to each data
point, and to combine different data points for the same x value, is often tremen-
dously useful.

3.4.2 Pseudocolumns and the column function

Gnuplot defines two pseudocolumns that can be used together with data transforma-
tions. The column 0 contains the line number in the current data set; the column -2
contains the index of the current data set within the data file. When a double blank
line is encountered in the file, the line number resets to zero and the index is incre-
mented. We could use these pseudocolumns, for instance, like this:

plot "data" using 0:1 # Plot first column against line number
plot "data" using 1:-2 # Plot data set index against first column

Another way to pick out a column is to use the column(x) function. This function eval-
uates its argument and uses the value (which should be an integer) to select a column.
For instance, we may have a variable x (possibly obtained through some complicated

44 CHAPTER 3 Working with data

3.5.1 Tricks and warnings

Gnuplot math allows for a few tricks, which can be used to good effect in some
situations—or which may trip up the unwary.

! First, remember that integer division truncates! This means that 1/4 evaluates to 0
(zero). If you want floating-point division, you must promote at least one of the
numbers to floating point: 1/4.0 or 1.0/4 will evaluate to 0.25, as expected.

! Gnuplot tends to be pretty tolerant when encountering undefined values:
rather than failing, it just doesn’t produce any graphical output for data points
with undefined values. This can be used to suppress data points or generate
piecewise functions. For example, consider the following function:

f(x) = abs(x) < 1 ? 1 : 1/0

It’s only defined on the interval [-1:1], and a plot of it will only show data
points for this interval.

! A similar method can be used to exclude certain data points when plotting data
from a file. For example, the following command will only plot data points for
which the y value is less than 10:

plot "data" using 1:($2 < 10 ? $2 : 1/0) with linespoints

This 1/0 technique is a good trick that’s frequently useful, in particular in conjunction
with the ternary operator, as in these examples.

3.6 Logarithmic plots
Lastly, let’s see how we can generate logarithmic plots. Logarithmic plots are a cru-
cial technique in graphical analysis. In gnuplot, it’s easy to switch to and from loga-
rithmic plots:

set logscale # turn on double logarithmic plotting
set logscale x # turn on logarithmic plotting for x-axis only
set logscale y # for y-axis only

unset logscale # turn off logarithmic plotting for all axes
unset logscale x # for x-axis only
unset logscale y # for y-axis only

We can provide a base as a second argument: set logscale y 2 turns on binary loga-
rithms for the y axis. (The default is to use base 10.)

 We’ll talk some more about uses for set logscale in chapter 13.

3.6.1 How do logarithmic plots work?

Logarithmic plots are a truly indispensable tool in graphical analysis. Fortunately, it’s
possible to understand what they do even without detailed understanding of the
mathematics behind them. However, the math isn’t actually all that hard, so in this
section, I’ll try to explain how logarithmic plots work and how they’re used.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Plotting Unix
/etc/passwd

58 CHAPTER 4 Practical matters

plot "data" using 1:2:xticlabels(3) with lines

Finally, we can use the first noncomment entry in the data file as label for the data set
in the plot’s legend (the key), by giving the column number as argument to the title
option of the plot command (see listing 4.5—more details in section 6.4.4).

plot "data" using 1:2 title 2 with lines

4.3.4 Crazy example: plotting the Unix password file

As a crazy example of what is possible, let’s plot a typical Unix password file with
gnuplot!

 Here is the file (see listing 4.6). (For non-Unix users: each line in the file describes
a user. Each line consists of several fields, separated by colons. The first field is the
username, the third field is a numeric user ID, and the fifth field is a textual descrip-
tion of the user. The other fields are of no relevance to us here.)

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
games:x:12:100:Games account:/var/games:/bin/bash
ldap:x:76:70:User for OpenLDAP:/var/lib/ldap:/bin/bash
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
mysql:x:60:108:MySQL database admin:/var/lib/mysql:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash
ntp:x:74:103:NTP daemon:/var/lib/ntp:/bin/false
postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false
sshd:x:71:65:SSH daemon:/var/lib/sshd:/bin/false
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false

To plot this file, we need to set the field separator to be the colon (:) and are then
able to plot it using the with labels style (see section 5.2.5 in chapter 5).

 Just for fun, we also make the letter 'm' the comment character. Verify how the
records starting with an 'm' don’t show up in the graph!

 In the plot (see listing 4.7; the resulting graph is shown in figure 4.2), we use
the numeric user ID as the x coordinate and the line number in the file as the y
coordinate. The label, printed at the resulting position, consists of each user’s login
name, stacked (by virtue of a newline character) on top of the textual description
of the user.

Listing 4.4 Reading x axis tic labels from file using xticlabels()

Listing 4.5 Reading text for the graph’s key from the data file

Listing 4.6 A text file that can be plotted by gnuplot

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

59Generating textual output

set datafile separator ':'
set datafile commentschar "m"
plot [-20:150][:27] "/etc/passwd"
! u 3:($0+2):(stringcolumn(1) . "\n" . stringcolumn(5)) w labels

4.4 Generating textual output
Gnuplot creates graphs—after all, that’s the whole point! Nevertheless, sometimes it
can be useful to have gnuplot create textual output. For example, we may want to
export the results from gnuplot’s spline interpolation algorithm to a file, so that we
can use them in another application. Or we may have applied some inline data trans-
formation and want to get our hands on the resulting data for some reason.

 Gnuplot has two different facilities for generating text: the print command and
the set table option.

4.4.1 The print command

The print command evaluates one or more expressions (separated by commas) and
prints them to the currently active printing channel—usually the screen:

print sin(1.5*pi)
print "The value of pi is: ", pi

The device to which print will send its output can be changed through the set print
option:

Listing 4.7 Plotting a text file (the Unix password file) with gnuplot

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80

/etc/passwd

at
Batch jobs daemon

daemon
Daemon

ftp
FTP account

games
Games account

ldap
User for OpenLDAP

lp
Printing daemon

news
News system

ntp
NTP daemon

postfix
Postfix Daemon

sshd
SSH daemon

uucp
Unix-to-Unix CoPy system

wwwrun
WWW daemon apache

Figure 4.2 Demonstrating string functions and the with labels plot style

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80

/etc/passwd

at
Batch jobs daemon

daemon
Daemon

ftp
FTP account

games
Games account

ldap
User for OpenLDAP

lp
Printing daemon

news
News system

ntp
NTP daemon

postfix
Postfix Daemon

sshd
SSH daemon

uucp
Unix-to-Unix CoPy system

wwwrun
WWW daemon apache

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Exporting Graphics

• «Web» graphics

• JPG, SVG, PNG, GIF

• «Print» graphics

• EPS, EPSLaTeX, PDF

Exporting EPS

211Print-quality output

We can use either PostScript Type 1 fonts or TrueType fonts. Gnuplot can handle
ASCII-encoded Type 1 fonts (file extension .pfa) directly, but for binary-encoded
Type 1 fonts (.pfb) or TrueType fonts (.ttf), gnuplot requires external helper pro-
grams. Check the standard gnuplot reference documentation or the special docu-
mentation on PostScript that’s part of the standard gnuplot distribution if this is of
relevance to you.

 The PostScript terminal includes a PostScript prologue at the beginning of each
PostScript file it generates. It expects to find a file containing the prologue in a stan-
dard location, or alternatively, in the directories specified by the environment variable
GNUPLOT_PS_DIR. By pointing this variable to a directory containing your own version
of the prologue file, it’s possible to customize the resulting PostScript files. (The com-
mand show version long will display the current search path for prologue files.)

 There’s more information regarding gnuplot’s PostScript capabilities in the gnu-
plot standard reference documentation and the psdoc directory in the gnuplot docu-
mentation tree.

11.4.2 Using PostScript plots with LaTeX

One very common use of PostScript graphs is to include them as illustrations in a
LaTeX document. In this section, I give a couple of cookbook-style recipes. First, I
describe how to include a regular PostScript file as an image in a LaTeX document.
Then we discuss gnuplot’s special epslatex terminal, which allows us to combine
PostScript graphics with LaTeX text in the same illustration, so that we can use the full
power of LaTeX for mathematical typesetting in gnuplot graphs.
INCLUDING AN EPS FILE IN A LATEX DOCUMENT

If we want to include a PostScript file in another document, it’s usually best to use an
EPS (Encapsulated PostScript) file, rather than “raw” PostScript. Encapsulated Post-
Script contains some additional information regarding the size and location of the
graph, which can be used by the embedding document to position the image properly.

 As an example, let’s assume we want to include the graph from figure 11.1 in a LaTeX
document. We’d have to export the graph to EPS, using the following commands:

... # plot commands
set terminal postscript eps enhanced
set output 'enhanced.eps'
replot

There are different ways to import this PostScript file into a LaTeX document. Here,
we use the graphicx package for this purpose. The LaTeX document is shown in list-
ing 11.5.

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\section{The First Section}

Listing 11.5 A LaTeX document that imports enhanced.eps. See figure 11.2.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Including EPS in LaTeX

211Print-quality output

We can use either PostScript Type 1 fonts or TrueType fonts. Gnuplot can handle
ASCII-encoded Type 1 fonts (file extension .pfa) directly, but for binary-encoded
Type 1 fonts (.pfb) or TrueType fonts (.ttf), gnuplot requires external helper pro-
grams. Check the standard gnuplot reference documentation or the special docu-
mentation on PostScript that’s part of the standard gnuplot distribution if this is of
relevance to you.

 The PostScript terminal includes a PostScript prologue at the beginning of each
PostScript file it generates. It expects to find a file containing the prologue in a stan-
dard location, or alternatively, in the directories specified by the environment variable
GNUPLOT_PS_DIR. By pointing this variable to a directory containing your own version
of the prologue file, it’s possible to customize the resulting PostScript files. (The com-
mand show version long will display the current search path for prologue files.)

 There’s more information regarding gnuplot’s PostScript capabilities in the gnu-
plot standard reference documentation and the psdoc directory in the gnuplot docu-
mentation tree.

11.4.2 Using PostScript plots with LaTeX

One very common use of PostScript graphs is to include them as illustrations in a
LaTeX document. In this section, I give a couple of cookbook-style recipes. First, I
describe how to include a regular PostScript file as an image in a LaTeX document.
Then we discuss gnuplot’s special epslatex terminal, which allows us to combine
PostScript graphics with LaTeX text in the same illustration, so that we can use the full
power of LaTeX for mathematical typesetting in gnuplot graphs.
INCLUDING AN EPS FILE IN A LATEX DOCUMENT

If we want to include a PostScript file in another document, it’s usually best to use an
EPS (Encapsulated PostScript) file, rather than “raw” PostScript. Encapsulated Post-
Script contains some additional information regarding the size and location of the
graph, which can be used by the embedding document to position the image properly.

 As an example, let’s assume we want to include the graph from figure 11.1 in a LaTeX
document. We’d have to export the graph to EPS, using the following commands:

... # plot commands
set terminal postscript eps enhanced
set output 'enhanced.eps'
replot

There are different ways to import this PostScript file into a LaTeX document. Here,
we use the graphicx package for this purpose. The LaTeX document is shown in list-
ing 11.5.

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\section{The First Section}

Listing 11.5 A LaTeX document that imports enhanced.eps. See figure 11.2.

212 CHAPTER 11 Terminals in depth

Here is a very short paragraph. The plot will be included
after this paragraph.

\begin{figure}[h]
\begin{center}

\includegraphics[width=10cm]{enhanced}
\end{center}
\caption{A Postscript file, included in \LaTeX}

\end{figure}

And here is a second paragraph. The graph should have
been included before.

\section{The Second Section}

The second section really contains only a very short
text.
\end{document}

The graphicx package provides the \includegraphics command, which takes the
name of the graphics file to include as mandatory parameter. (The filename exten-
sion isn’t required and it’s recommended that you omit it.) The \includegraphics
command takes a number of optional parameters as key/value pairs, which allow us to
perform some useful operations on the image as it’s included: we can trim, scale, and
rotate it. Here, we adjust its size ever so slightly (from 5 inches down to 10 cm).1 The
final appearance of the document after processing it with LaTeX is shown in
figure 11.2.
USING THE EPSLATEX TERMINAL

In the previous example, we included a PostScript file containing enhanced mode
text in a LaTeX document. This seems inconvenient, to say the least: since LaTeX has
such powerful capabilities to format text (and mathematical expressions specifically),
we should find ways to use them to lay out our text, rather than dealing with the much
more limited possibilities available through the enhanced text mode.

 The epslatex terminal does exactly that: it splits a gnuplot graph into its graphical
and its textual components. The graph is stored as EPS file, while the text is saved to a
LaTeX file. We then include this LaTeX document, which in turn imports the Post-
Script file, into our LaTeX master file.

 An example will make this more clear. Let’s re-create the graph from figure 11.1,
this time using LaTeX formatting commands instead of enhanced text mode (see list-
ing 11.6—see listing 11.2 for a version of this graph using enhanced text mode).

set label 1
! '$\phi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}$'
! at 1.2,0.25
set label 2 '$\Phi(x) = \int_{-\infty}^x \phi(t) dt$' at 1.2,0.8

set key top left Left # Interchange line sample and explanation

1 There are many more options—check your favorite LaTeX reference for details. A good place to start is Guide
To LaTeX (4th ed.) by H. Kopka and P. W. Daly, Addison-Wesley, 2004.

Listing 11.6 Combining gnuplot and LaTeX using the epslatex terminal

212 CHAPTER 11 Terminals in depth

Here is a very short paragraph. The plot will be included
after this paragraph.

\begin{figure}[h]
\begin{center}

\includegraphics[width=10cm]{enhanced}
\end{center}
\caption{A Postscript file, included in \LaTeX}

\end{figure}

And here is a second paragraph. The graph should have
been included before.

\section{The Second Section}

The second section really contains only a very short
text.
\end{document}

The graphicx package provides the \includegraphics command, which takes the
name of the graphics file to include as mandatory parameter. (The filename exten-
sion isn’t required and it’s recommended that you omit it.) The \includegraphics
command takes a number of optional parameters as key/value pairs, which allow us to
perform some useful operations on the image as it’s included: we can trim, scale, and
rotate it. Here, we adjust its size ever so slightly (from 5 inches down to 10 cm).1 The
final appearance of the document after processing it with LaTeX is shown in
figure 11.2.
USING THE EPSLATEX TERMINAL

In the previous example, we included a PostScript file containing enhanced mode
text in a LaTeX document. This seems inconvenient, to say the least: since LaTeX has
such powerful capabilities to format text (and mathematical expressions specifically),
we should find ways to use them to lay out our text, rather than dealing with the much
more limited possibilities available through the enhanced text mode.

 The epslatex terminal does exactly that: it splits a gnuplot graph into its graphical
and its textual components. The graph is stored as EPS file, while the text is saved to a
LaTeX file. We then include this LaTeX document, which in turn imports the Post-
Script file, into our LaTeX master file.

 An example will make this more clear. Let’s re-create the graph from figure 11.1,
this time using LaTeX formatting commands instead of enhanced text mode (see list-
ing 11.6—see listing 11.2 for a version of this graph using enhanced text mode).

set label 1
! '$\phi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}$'
! at 1.2,0.25
set label 2 '$\Phi(x) = \int_{-\infty}^x \phi(t) dt$' at 1.2,0.8

set key top left Left # Interchange line sample and explanation

1 There are many more options—check your favorite LaTeX reference for details. A good place to start is Guide
To LaTeX (4th ed.) by H. Kopka and P. W. Daly, Addison-Wesley, 2004.

Listing 11.6 Combining gnuplot and LaTeX using the epslatex terminal

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Including EPS in LaTeX
213Print-quality output

Figure 11.2 The final appearance of the LaTeX document shown in listing 11.5. Note the labels using enhanced
text mode in the included gnuplot graph.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Implementing EDA 4BT

• Run-sequence Plot

• Lag Plot

• Histogram

• (Normal) Probability Plot

Run-sequence Plot
set terminal postscript eps color
"Times-Roman" 16

set output "flowmeter_runseq.eps"
plot "flowmeter1" with lines

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

Run-sequence Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

 0 20 40 60 80 100 120 140 160 180 200

"flowmeter1"

Lag Plot

#!/usr/bin/perl

$previous = <>;
chomp($previous);
while ($current = <>) {
 chomp($current);
 print $current . "\t" .
$previous . "\n";
 $previous = $current;
}

Lag Plot

$> perl lag.pl < flowmeter1 > flowmeter2

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

9.299992 9.206343
9.277895 9.299992
9.305795 9.277895
9.275351 9.305795
9.288729 9.275351
9.287239 9.288729
9.260973 9.287239

...

flowmeter2

Lag Plot

set output "flowmeter_lag.eps"
plot "flowmeter2"

9.299992 9.206343
9.277895 9.299992
9.305795 9.277895
9.275351 9.305795
9.288729 9.275351
9.287239 9.288729
9.260973 9.287239

...

flowmeter2

Lag Plot Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter2"

Histogram
set output
"flowmeter_histogram.eps"
bin(x,s) = s*int(x/s)
set boxwidth 0.01
plot "flowmeter1" using
(bin($1,0.01)):(1./(0.01*195))
smooth frequency with boxes 9.206343

9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

Histogram Flow DS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 9.14 9.16 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter1" using (bin($1,0.01)):(1./(0.01*195))

(Normal) Probability
Plot

set output "flowmeter_cumulative.eps"
plot "flowmeter1" using 1:(1./195.)
smooth cumulative

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter1" using 1:(1./195.)

(Normal) Probability
Plot

set table "flowmeter_cdf"
replot
unset table

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

 9.19685 0.00512821 i
 9.20634 0.0102564 i
 9.20733 0.0153846 i
 9.21527 0.0205128 i
 9.21675 0.025641 i
 9.21881 0.0307692 i

...

flowmeter_cdf

(Normal) Probability
Plot

Set output
"flowmeter_isnormal.eps"
plot "flowmeter_cdf" using
(invnorm($2)):1 with lines

 9.19685 0.00512821 i
 9.20634 0.0102564 i
 9.20733 0.0153846 i
 9.21527 0.0205128 i
 9.21675 0.025641 i
 9.21881 0.0307692 i

...

flowmeter_cdf

(Normal) Probability
Plot Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

-3 -2 -1 0 1 2 3

"flowmeter_cdf" using (invnorm($2)):1

Homework 6

Deadline:
Tuesday 6 Nov., 17:00

• Step 1: Say something meaningful about the
data located at the METHO class web site:

• Format:

• node x, node y, begin contact, end
contact

• One page limit, One graph limit

Deadline:
Tuesday 6 Nov., 17:00
• Step 2: download some experimental data:
• http://sensorscope.epfl.ch/index.php/Environmental_Data

• http://fta.inria.fr/apache2-default/pmwiki/index.php?
n=Main.DataSets

Can you confirm/invalidate associated publications ?
Can you extract new insight on the data ?

No page limit, no graph limit, include source code

Step 1 + Step 2 = One PDF

