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® Writing Proofs
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® Practicalities

How to Write a Proof

How to write proofs: a quick guide. Eugenia Cheng.
http://www.math.uchcago.edu/~eugenia

Proof

® Begining: things we assume to be true,
including the definitions of the things we
talk about

® Middle: statements, each following
logically from the things before it

® End: the thing we’re trying to prove

Kinds of things to
try and prove

z=y

=1y

T o=y

x is purple

Va,p(x) is true

dz such that p(z) is true

fow t write proofs-a quick guide. Eugenia Cheng.



Exzample 1. Using the field axioms, prove that a(b—c) = ab— ac for any real
numbers a,b,c. You may use the fact that ©.0 =0 for any real number x.

BEGINNING field axioms
definition x —y = x + (—y)

given x.0 =0
MIDDLE a(b—c) a(b+ (—c)) definition
= ab+a(—c) distributive law
ac+a(—c) = a(c+(—c)) distributive law
= a0l additive inverse
=0 given
. a(—c) —(ac) definition of additive inverse
. ab+a(—c) ab—ac
END . byline2, a(b—c) ab —ac as required d

Example 2. Let f and g be functions A J.B 4.
Show that if f and g are injective then g o f is injective

BEGINNING  definition of injective
definition (gof)(a) = g(f(a))
assumption that f and g are injective i.e.
Va,a’ € A f(a) =f(a') = a=2a’
vb,b' € B g(b) =g(b')=b=1"

MIDDLE (gof)a)=(gof)(@) = g(f(a)) =g(f(a))) by definition
= f(a) =f(a) since g is injective
= a=2a since f is injective
s (gof)@) =(gof)@) = a=2
END i.e. g of is injective, as required |

Example 3. Prove by induction that Yn € N1+ ---+n =

BEGINNING  Principle of Induction

MIDDLE forn=1,LHS = 1
RHS — 1(1+41)
2
=1

. result is true forn =1

If result is true for n = k then

k(k +1
1ot kt(k+1) = (2+>+<k+1)
k(k+1)+2(k+1)
2
= (k+1)2<k+2) i.e. result true forn =k +1

*. result true for k = result true for k + 1

END .. by the Principle of Induction, the result is true for all n € N O

Herwta write proofia quick guide. Eugenia Cheng.
hecp: / /e math uchcago. eda/~eugenia

Traps and Pitfalls




What is Wrong ? What is Wrong ?
alb—c) = ab-—ac
ab +a E C; = ab-—ac a(b—c) = ab+a(—c)
C = —acC
ac+a(—c) = 0 = ab-—ac =
alc+(—¢)) = 0
a.0 = 0
0 =0 []
What is Wrong ! What is Wrong !
a(b—c) = ab+a(—c) alb—c) = ab+a(—c)
a(—c) = -—ac because if you add ac to
— ab -+ a(_C) + a.]. = bot.h sides thyen both .sidZs vanish
_ ab _|_ a(]_ . C) which means they’re inverse
— ab — ac D c.ab+a(—c) = ab-—ac O




Beware Incorrect Logic

® Negating a statement incorrectly

® proving the converse of something
instead of the thing itself

Ve >0 35 > 0 s.t. Vo satisfying 0 < |z —a| <6, |f(z)—I|<e

Je > 0s.t. Vo >0 Jzxsatisfying 0 < [z —a| <§ st. |f(zx)—1]>¢

Additional Pitfalls

® Incorrect assumptions

® |ncorrect use of definitions, or use of
incorrect definitions

)y = a=4d
a) = a=2a

(gof)(a)=(gof)(a") = gla)of(a) =g(a") of(a)
— a=2a

. g o fis injective. 0

Assumptions

® You need to justify everything enough for
your peers to understand it

® [f in doubt, justify things more rather than
less

Practicalities




xr =y or “something equals something else”

Practicalities

X = a
Write the begining very carefully _ b
Write the end very carefully X = 4 = c

= b
Try and manipulate both ends to meet in
the middle, from big leaps to smaller ones = ¢ y = €
Pretend to be more stupid (or sceptical, = d ;
or untrusting) that you are =Y

X =Y

I

- >y T = vy
X = a
— b
= cC
a We know that a = b — X <= a
b - —
c Also a << X b
y and b ; y Conversely y = p < c
z ? ~— d
y X = y = X — Yy
Hence x <« vy




x is purple
“x is purple” meansy

We know a and

Ly

X is purple as required

Vx,p(z) is true

Prove that any rational number can be expressed as 7+ where m and n are
integers that are not both even.

Let x be a rational number. So x can be expressed as P where p and q are
q

integers and q # 0.

dz s.t. p(x) is true

36>0 st. |z|] <6 = |2?%] <

Put § = ;5. Now |x?| = |x|? so we have

1 2
K <15 = b

1
100

If a,b,c,d are true then e is true

a
b and z
C

x and d
y and w

LELE




Proof by Contradiction

® We are trying to prove that some
statement P is true

® We say «suppose P were not truey and
find a contradiction

® Since P being false gives a contradiction,
we deduce that P must be true

Exploratory Data
Analysis

NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook/

Approach

® Exploratory Data Analysis employs a
variety of (mostly graphical) techniques to:

® maximize insight into a data set
® uncover underlying structure

® extract important variables

® detect outliers and anomalies

® test underlying assumptions

® develop parsimonious models

® determine optimal factor settings




Graphical techniques

® Plotting the raw data (data traces,
histograms, bihistograms, probability
plots, lag plots, block plots, and Youden
plots)

® Plotting simple statistics such as mean plots,
standard deviation plots, box plots, and
main effect plots of the raw data

® Positioning such plots so as to maximize

Classical vs. Exploratory

Classical Data Analysis

I .Problem
2.Data
3.Model
4.Analysis

5 .Conclusion

Exploratory Data
Analysis

| .Problem
2.Data

3 «Analysis
4 Model

5.Conc|usion




Classical vs.

Exploratory
Models

Focus

Techniques

Rigor

® Data Treatment

Assumptions

Model

® Classical

® imposes models (both deterministic and
probabilistic). e.g. regression models,
analysis of variance.The most common
probabilistic model assumes that the
errors are normally distributed.

Model

® Exploratory

® does not impose deterministic or
probabilistic models on the data. In fact,
EDA allows the data to suggest
admissible models that best fit the data.

Focus

® Classical

® On the Model. Estimate model
parameters, generate predicted values
from the model.

e Exploratory

® On the Data. Structure, outliers, and
models suggested by the data.




Techniques

® Classical

® Quantitative. Mean, Variance, ANOVA, T-
test, chi*2 tests, F-Test.

® Exploratory

® Graphical. Scatter plots, Character plots,
box plots, histograms, bihistograms,
probability plots, residual plots, mean
plots.

Rigor

® Classical

® Probabilistic foundation of Science.
Rigorous, formal, objective.

® Exploratory

® Suggestive, indicative, insightful.
Subjective, depend on interpretation.

Data Treatment

® (Classical

® Maps all data into few numbers. Loss of
information.

e Exploratory

® Shows all data. No loss of information.

Assumptions

® Classical

® Tests based on classical techniques are
very sensitive.Yet they depend on
underlying assumptions. that could be
unkown or untested.

® Exploratory

® Makes no assumptions.




Quantitative Techniques

Hypothesis testing

Analysis of variance

Point estimate and confidence intervals

Least squares regression

Graphical Techniques

® Testing assumptions

Model Validation

Estimator Selection

Relationship identification

Factor Effect determination

Outlier Detection

EDA Example

EDA Example

X Y
10.00 8.04
8.00 6.95
13.00 7.58
9.00 8.81
11.00 8.33
14.00 9.96
6.00 7.24
4.00 4.26
12.00 10.84
7.00 4.82




EDA Example (DSI)

N=1I
Mean of X = 9.0
Mean of Y = 7.5

Intercept = 3
Slope = 0.5
Residual Standard Deviation = 1.237

Correlation = 0.816

EDA Example
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EDA Example (DS2)

e N=11

® Mean of X =9.0

® Mean of Y = 7.5

® Intercept = 3

® Slope = 0.5

® Residual Standard Deviation = 1.237

o Correlation =0.816

EDA Example (DS3)

e N=11
® Mean of X =9.0
® Mean ofY =75

Intercept = 3
Slope = 0.5

Residual Standard Deviation = 1.236

Correlation = 0.816

EDA Example (DS4)

e N=11

® Mean of X =9.0

® Mean ofY = 7.5

® Intercept = 3

® Slope = 0.5

® Residual Standard Deviation = 1.236

o Correlation =0.817

EDA Example (DS2)

3+5

e
S




EDA Example (DS3) EDA Example (DS4)
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6 | 6 |
5 5
4 6 8 10 12 14 8 10 12 14 16 18

Univariate Data

Four Basic Tools

® Most basic tools operate on univariate
data, i.e. a list of single responses




Data Sets

® Flow DS: This data set was collected by
Bob Zarr of NIST in January 1990 from a
heat flow meter calibration and stability

analysis. The response variable is a
calibration factor.

Data Sets

® Walk DS:A random walk can be
generated from a set of uniform random
numbers by the formula :

R; =) (U; - 0.5)
j=1

® where U is a set of uniform random
numbers

Data Sets

e Beam DS:This data set was collected by
H.S. Lew of NIST in 1969 to measure
steel-concrete deflections. The response
variable is the deflection of a beam from
center point.

Run-sequence Plot

e Considers Univariate Data
® Vertical axis: response variable Y (i)

® Horizontal Axis: Index i (i=1,2,3,...)




Run-sequence Plot

® Used to answer the questions
® Are there any shifts in location ?
® Are there any shifts in variation ?

® Are there any outliers ?

Run-sequence Flow DS
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Lag Plot Lag Plot

® Are the data random ?
® Considers univariate data

® |s there serial correlation in the data ?
® Vertical Axis: Y(i) for all i

® What is a suitable model for the data ?
® Horizontal Axis: Y(i-1) for all i

® Are there outliers in the data ?
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Histogram Walk DS
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Beyond Histograms
(Normal) Cumulative
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(Normal) Probability
Plot

® Considers univariate data
® Vertical axis: Ordered Response values

® Horizontal axis: Normal order statistics
median

(Normal) Probability
Plot

® Used to answer the following questions:
® Are the data normally distributed ?

® What is the nature of the departure
from normality (data skewed, shorted
than expected tail, longer than
expected tails, etc.) ?
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(Normal) Probability

Plot Beam DS
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