Making the Point

Sébastien Tixeuil

Univ. Pierre \& Marie Curie - Paris 6
Sebastien.Tixeuil@lip6.fr

Studying Networks

Studying Networks

Agenda

- Writing Proofs
- Managing Experimental Data
- Classical vs. Exploratory
- Practicalities

Proof

- Begining: things we assume to be true, including the definitions of the things we talk about
- Middle: statements, each following logically from the things before it
- End: the thing we're trying to prove

How to Write a Proof

How to write proofs: a quick guide. Eugenia Cheng.

Kinds of things to try and prove

$x=y$
$x \Rightarrow y$
$x \Longleftrightarrow y$
x is purple
$\forall x, p(x)$ is true
$\exists x$ such that $p(x)$ is true

Example 1. Using the field axioms, prove that $a(b-c)=a b-a c$ for any real numbers a, b, c. You may use the fact that $x .0=0$ for any real number x.

```
BEGINNING field axioms
    definition x-y = x+(-y)
    given x.0 = 0
MIDDLE
\[
\therefore \text { by line } 2, a(b-c)=a b-a c \text { as required }
\]
```

Example 3. Prove by induction that $\forall n \in \mathbb{N}, 1+\cdots+n=\frac{n(n+1)}{2}$

$$
\left.\begin{array}{l}
\text { BEGINNING Principle of Induction } \\
\text { for } \mathrm{n}=1, \text { LHS }
\end{array}=1 \begin{array}{rl}
\text { MHS } & =\frac{1(1+1)}{2} \\
& =1 \\
\therefore \text { result is true for } n=1
\end{array} \quad \begin{array}{rl}
1+\cdots+k+(k+1) & =\frac{k(k+1)}{2}+(k+1) \\
& =\frac{k(k+1)+2(k+1)}{2} \\
& =\frac{(k+1)(k+2)}{2}
\end{array} \quad \text { i.e. result true for } n=k+1\right)
$$

Example 2. Let f and g be functions $A \xrightarrow{f} B \xrightarrow{g} C$
Show that if f and g are injective then $g \circ f$ is injective

```
BEGINNING definition of injectiv
    definition (g\circf)(a)=g(f(a))
```

 assumption that \(f\) and \(g\) are injective i.e.
 \(\forall a, a^{\prime} \in A \quad f(a)=f\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}\)
 \(\forall b, b^{\prime} \in B \quad g(b)=g\left(b^{\prime}\right) \Longrightarrow b=b^{\prime}\)
 MIDDLE

$$
\begin{aligned}
(g \circ f)(a)=(g \circ f)\left(a^{\prime}\right) & \Longrightarrow g(f(a))=g\left(f\left(a^{\prime}\right)\right) & & \text { by definition } \\
& \Longrightarrow f(a)=f\left(a^{\prime}\right) & & \text { since } g \text { is injective } \\
& \Longrightarrow a=a^{\prime} & & \text { since } f \text { is injective }
\end{aligned}
$$

$$
\cdot(g \circ f)(a)=(g \circ f)\left(a^{\prime}\right) \Longrightarrow a=a^{\prime}
$$

END
i.e. $g \circ f$ is injective, as required
\square

Traps and Pitfalls

What is Wrong ?

$$
\begin{aligned}
a(b-c) & =a b-a c \\
a b+a(-c) & =a b-a c \\
a(-c) & =-a c \\
a c+a(-c) & =0 \\
a(c+(-c)) & =0 \\
a .0 & =0 \\
0 & =0
\end{aligned}
$$

What is Wrong ?

$$
\begin{aligned}
a(b-c) & =a b+a(-c) \\
& =a b+a(-c)+a \cdot 1 \\
& =a b+a(1-c) \\
& =a b-a c
\end{aligned}
$$

What is Wrong ?

$$
\begin{aligned}
a(b-c) & =a b+a(-c) \\
& =a b-a c
\end{aligned}
$$

What is Wrong ?

```
a(b-c)=ab+a(-c)
    a(-c)=-ac because if you add ac to
        both sides then both sides vanish
        which means they're inverse
```

```
\thereforeab+a(-c)=ab-ac
```


Beware Incorrect Logic

- Negating a statement incorrectly
- proving the converse of something instead of the thing itself
$\forall \varepsilon>0 \exists \delta>0$ s.t. $\forall x$ satisfying $0<|x-a|<\delta, \quad|f(x)-l|<\varepsilon$
$\exists \varepsilon>0$ s.t. $\forall \delta>0 \quad \exists x$ satisfying $0<|x-a|<\delta$ s.t. $|f(x)-l| \geq \varepsilon$

Assumptions

- You need to justify everything enough for your peers to understand it
- If in doubt, justify things more rather than less

Additional Pitfalls

- Incorrect assumptions
- Incorrect use of definitions, or use of incorrect definitions

$$
\begin{aligned}
& f(a)=f\left(a^{\prime}\right) \Longrightarrow a=a^{\prime} \\
& g(a)=g\left(a^{\prime}\right) \Longrightarrow a=a^{\prime} \\
&(g \circ f)(a)=(g \circ f)\left(a^{\prime}\right) \Longrightarrow g(a) \circ f(a)=g\left(a^{\prime}\right) \circ f\left(a^{\prime}\right) \\
& \Longrightarrow a=a^{\prime} \\
& \therefore g \circ f \text { is injective. }
\end{aligned}
$$

Practicalities

Practicalities

- Write the begining very carefully
- Write the end very carefully
- Try and manipulate both ends to meet in the middle, from big leaps to smaller ones
- Pretend to be more stupid (or sceptical, or untrusting) that you are

$x=y$ or "something equals something else"

$$
\begin{array}{rlrl}
& & =a \\
x & =a & & =b \\
& =\mathrm{b} & =c \\
& =c & y & =e \\
& =\mathrm{d} & =\mathrm{d} \\
& =\mathrm{y} & =\mathrm{c} \\
& & &
\end{array}
$$

x is purple
" x is purple" means y
We know a and
$a \Longrightarrow b$

$\Longrightarrow \mathrm{c}$

$\Longrightarrow \mathrm{d}$
$\therefore \quad \times$ is purple as required
$\exists x$ s.t. $p(x)$ is true
$\exists \delta>0$ s.t. $|x|<\delta \Longrightarrow\left|x^{2}\right|<\frac{1}{100}$

Put $\delta=\frac{1}{10}$. Now $\left|\mathrm{x}^{2}\right|=|\mathrm{x}|^{2}$ so we have

$$
|x|<\frac{1}{10} \Longrightarrow\left|x^{2}\right|<\frac{1}{100}
$$

$\forall x, p(x)$ is true

Prove that any rational number can be expressed as $\frac{m}{n}$ where m and n are integers that are not both even.

Let x be a rational number. So x can be expressed as $\frac{p}{q}$ where p and q are integers and $\mathrm{q} \neq 0$.

If a, b, c, d are true then e is true

Exploratory Data Analysis

Proof by Contradiction

- We are trying to prove that some statement P is true
- We say «suppose P were not true» and find a contradiction
- Since P being false gives a contradiction, we deduce that P must be true

Approach

- Exploratory Data Analysis employs a variety of (mostly graphical) techniques to:
- maximize insight into a data set
- uncover underlying structure
- extract important variables
- detect outliers and anomalies
- test underlying assumptions
- develop parsimonious models
- determine optimal factor settings

Graphical techniques

- Plotting the raw data (data traces, histograms, bihistograms, probability plots, lag plots, block plots, and Youden plots)
- Plotting simple statistics such as mean plots, standard deviation plots, box plots, and main effect plots of the raw data
- Positioning such plots so as to maximize

Classical vs. Exploratory

Classical Data Analysis

I.Problem
2.Data
3.Model
4.Analysis
5.Conclusion

Exploratory Data Analysis

I.Problem
2.Data
3.Analysis
4. Model
5.Conclusion

Classical vs.

Exploratory

- Models
- Focus
- Techniques
- Rigor
- Data Treatment
- Assumptions

Model

- Exploratory

- does not impose deterministic or probabilistic models on the data. In fact, EDA allows the data to suggest admissible models that best fit the data.

Model

- Classical
- imposes models (both deterministic and probabilistic). e.g. regression models, analysis of variance. The most common probabilistic model assumes that the errors are normally distributed.

Focus

- Classical
- On the Model. Estimate model parameters, generate predicted values from the model.
- Exploratory
- On the Data. Structure, outliers, and models suggested by the data.

Techniques

- Classical
- Quantitative. Mean, Variance, ANOVA,Ttest, chi^ ${ }^{2}$ tests, F -Test.
- Exploratory
- Graphical. Scatter plots, Character plots, box plots, histograms, bihistograms, probability plots, residual plots, mean plots.

Data Treatment

- Classical
- Maps all data into few numbers. Loss of information.
- Exploratory
- Shows all data. No loss of information.

Rigor

- Classical
- Probabilistic foundation of Science. Rigorous, formal, objective.
- Exploratory
- Suggestive, indicative, insightful.

Subjective, depend on interpretation.

Assumptions

- Classical
- Tests based on classical techniques are very sensitive. Yet they depend on underlying assumptions. that could be unkown or untested.
- Exploratory
- Makes no assumptions.

Quantitative Techniques

- Hypothesis testing
- Analysis of variance
- Point estimate and confidence intervals
- Least squares regression

Graphical Techniques

- Testing assumptions
- Model Validation
- Estimator Selection
- Relationship identification
- Factor Effect determination
- Outlier Detection

EDA Example	
x	Ex
10.00	8.04
8.00	6.95
13.00	7.58
9.00	8.81
11.00	8.33
14.00	9.96
6.00	7.24
4.00	4.26
12.00	10.84
7.00	4.82
5.00	5.68

EDA Example (DSI)

- $\mathrm{N}=1 \mathrm{I}$
- Mean of $X=9.0$
- Mean of $Y=7.5$
- Intercept $=3$
- Slope $=0.5$
- Residual Standard Deviation $=1.237$
- Correlation $=0.816$

EDA Example

EDA Example

EDA Example

X 2	Y 2	X 3	Y 3	X 4	Y 4
10.00	9.14	10.00	7.46	8.00	6.58
8.00	8.14	8.00	6.77	8.00	5.76
13.00	8.74	13.00	12.74	8.00	7.71
9.00	8.77	9.00	7.11	8.00	8.84
11.00	9.26	11.00	7.81	8.00	8.47
14.00	8.10	14.00	8.84	8.00	7.04
6.00	6.13	6.00	6.08	8.00	5.25
4.00	3.10	4.00	5.39	19.00	12.50
12.00	9.13	12.00	8.15	8.00	5.56
7.00	7.26	7.00	6.42	8.00	7.91
5.00	4.74	5.00	5.73	8.00	6.89

EDA Example (DS2)

- $\mathrm{N}=11$
- Mean of $X=9.0$
- Mean of $Y=7.5$
- Intercept $=3$
- Slope $=0.5$
- Residual Standard Deviation $=1.237$
- Correlation $=0.816$

EDA Example (DS4)

- $\mathrm{N}=1 \mathrm{I}$
- Mean of $X=9.0$
- Mean of $Y=7.5$
- Intercept = 3
- Slope $=0.5$
- Residual Standard Deviation $=1.236$
- Correlation $=0.817$

EDA Example (DS3)

- $\mathrm{N}=1 \mathrm{I}$
- Mean of $X=9.0$
- Mean of $Y=7.5$
- Intercept $=3$
- Slope $=0.5$
- Residual Standard Deviation $=1.236$
- Correlation $=0.816$

EDA Example (DS3)

Four Basic Tools

EDA Example (DS4)

Univariate Data

- Most basic tools operate on univariate data, i.e. a list of single responses

Data Sets

- Flow DS: This data set was collected by Bob Zarr of NIST in January 1990 from a heat flow meter calibration and stability analysis. The response variable is a calibration factor.

Data Sets

- Beam DS:This data set was collected by H.S. Lew of NIST in 1969 to measure steel-concrete deflections. The response variable is the deflection of a beam from center point.

Data Sets

- Walk DS: A random walk can be generated from a set of uniform random numbers by the formula :

$$
R_{i}=\sum_{j=1}^{i}\left(U_{j}-0.5\right)
$$

- where U is a set of uniform random numbers

Run-sequence Plot

- Considers Univariate Data
- Vertical axis: response variable $\mathrm{Y}(\mathrm{i})$
- Horizontal Axis: Index $i(i=1,2,3, \ldots)$

Run-sequence Plot

- Used to answer the questions
- Are there any shifts in location ?
- Are there any shifts in variation ?
- Are there any outliers ?

Run-sequence Walk DS

Run-sequence Flow DS

Run-sequence Beam DS

Lag Plot

- Considers univariate data
- Vertical Axis: $Y(i)$ for all i
- Horizontal Axis: $Y(i-I)$ for all i

Lag Plot

- Are the data random ?
- Is there serial correlation in the data ?
- What is a suitable model for the data ?
- Are there outliers in the data ?

Lag Plot Walk DS

Histogram

- Considers univariate data
- Split the range of the data into equalsized bins, then for each bin the number of points from the data for each bin are counted
- Vertical axis: Frequency
- Horizontal axis: Response variable

Beyond Histograms : Jitter Plots

Beyond Histograms : (Normal) Cumulative

(Normal) Probability Plot

- Considers univariate data
- Vertical axis: Ordered Response values
- Horizontal axis: Normal order statistics median

(Normal) Probability Plot

- Used to answer the following questions:
- Are the data normally distributed ?
- What is the nature of the departure from normality (data skewed, shorted than expected tail, longer than expected tails, etc.) ?
(Normal) Probability Plot Flow DS

(Normal) Probability Plot Walk DS

$$
\begin{gathered}
\text { (Normal) Probability } \\
\text { Plot Beam DS } \\
\end{gathered}
$$

