

Real Systems

Real Applications

"In-lab" Platforms

Synthetic conditions

Real Systems

Real Applications Real Platforms

Real Conditions

Emulation Live System

Realism

Agenda

- Writing Proofs
- Managing Experimental Data
 - Classical vs. Exploratory
 - Practicalities

How to Write a Proof

How to write proofs: a quick guide. Eugenia Cheng. http://www.math.uchcago.edu/~eugenia

Proof

- **Begining**: things we assume to be true, including the definitions of the things we talk about
- Middle: statements, each following logically from the things before it
- End: the thing we're trying to prove

to write proofs: a quick guide. Eugeni

Kinds of things to try and prove x = y $x \Rightarrow y$ $x \Rightarrow y$ $x \iff y$ $x \iff y$ x is purple $\forall x, p(x)$ is true $\exists x$ such that p(x) is true

Example numbers a	1. Using the field axiom <i>a</i> , <i>b</i> , <i>c</i> . You may use the feature of the feature	act t	rove that $a(b - hat x.0 = 0 fc$	(-c) = ab - ac for or any real numb	r any real per x.
BEGINNING	field axioms definition $x - y = x + (-y)$ given $x \cdot 0 = 0$	-у)			
MIDDLE	a(b-c)	=	$\begin{array}{l} a(b+(-c))\\ ab+a(-c) \end{array}$	definition distributive law	
	ac + a(-c)	=	a(c + (-c)) a.0	distributive law additive inverse	
	\therefore a(-c)	=	-(ac)	definition of add	ditive inverse
	$\therefore ab + a(-c)$	=	ab-ac		
END	\therefore by line 2, $a(b-c)$	=	ab – ac as r	equired	
				How to write prop http://www.mai	f: o quick guide. Eugenia Cheng. th.uchcago.edu/~eugenia

What is Wrong ?
$$a(b-c) = ab + a(-c)$$
 $= ab - ac$

What is Wrong?

$$a(b-c) = ab + a(-c)$$

$$= ab + a(-c) + a.1$$

$$= ab + a(1-c)$$

$$= ab - ac$$

What is Wrong ?a(b-c) = ab+a(-c)a(-c) = -ac $because if you add ac to
both sides then both sides vanish
which means they're inverse<math>\therefore ab+a(-c) = ab-ac$

Additional Pitfalls

- Incorrect assumptions
- Incorrect use of definitions, or use of incorrect definitions

Assumptions You need to *justify* everything *enough* for your *peers* to understand it If in doubt, *justify* things *more* rather than less

ow to write proofs: a quick guide. Eugenia Che p://www.math.uchcago.edu/~eug

x = y or "something equals something else"

$$\exists x \text{ s.t. } p(x) \text{ is true}$$

$$\exists \delta > 0 \text{ s.t. } |x| < \delta \implies |x^2| < \frac{1}{100}$$

$$\mathsf{Put} \ \delta = \frac{1}{10}. \ \mathsf{Now} \ |\mathsf{x}^2| = |\mathsf{x}|^2 \text{ so we have}$$

$$|\mathsf{x}| < \frac{1}{10} \implies |\mathsf{x}^2| < \frac{1}{100}$$

If a, b, c, d are true then e is true $a \implies z$ $b \text{ and } z \implies y$ $c \implies x$ $x \text{ and } d \implies w$ $y \text{ and } w \implies e$

<section-header><list-item><list-item><list-item><list-item><list-item>

Exploratory Data Analysis

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/

Approach

- Exploratory Data Analysis employs a variety of (mostly graphical) techniques to:
 - maximize insight into a data set
 - uncover underlying structure
 - extract important variables
 - detect outliers and anomalies
 - test underlying assumptions
 - develop parsimonious models
 - determine optimal factor settings

IST/SEMATECH e-Handbook of Statistical Methods, ttp://www.itl.nist.qov/div898/handboo

Graphical techniques

- Plotting the raw data (data traces, histograms, bihistograms, probability plots, lag plots, block plots, and Youden plots)
- *Plotting simple statistics* such as mean plots, standard deviation plots, box plots, and main effect plots of the raw data
- Positioning such plots so as to maximize

NIST/SEMATECH e-Handbook of Statistical Methods http://www.itl.nist.gov/div898/handb

ST/SEMATECH e-Handbook of Sh

Classical Data Analysis

I.Problem 2.Data

3.Model

4.Analysis

5.Conclusion

Exploratory Data Analysis

Problem

2.Data

3.Analysis

4.Model

5.Conclusion

VIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handboo

Classical vs. Exploratory

- Models
- Focus
- Techniques
- Rigor
- Data Treatment
- Assumptions

NISTISEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook

ST/SEMATECH e-Handbook of Statis

Model Classical *imposes models* (both deterministic and probabilistic). e.g. regression models, analysis of variance. The most common probabilistic model assumes that the errors are normally distributed.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handboo

Focus

- Classical
 - On the Model. Estimate model parameters, generate predicted values from the model.
- Exploratory
 - On the Data. Structure, outliers, and models suggested by the data.

Techniques

- Classical
 - *Quantitative*. Mean, Variance, ANOVA, T-test, chi² tests, F-Test.
- Exploratory
 - *Graphical*. Scatter plots, Character plots, box plots, histograms, bihistograms, probability plots, residual plots, mean plots.

Rigor

- Classical
 - Probabilistic *foundation* of Science. Rigorous, formal, objective.
- Exploratory
 - Suggestive, indicative, insightful. Subjective, depend on interpretation.

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handboo

Data Treatment

- Classical
 - Maps all data into *few* numbers. Loss of information.
- Exploratory
 - Shows all data. No loss of information.

Assumptions

- Classical
 - Tests based on classical techniques are very sensitive. Yet they depend on underlying assumptions. that could be *unkown* or *untested*.
- Exploratory
 - Makes no assumptions.

- Analysis of variance
- Point estimate and confidence intervals
- Least squares regression

Graphical Techniques

ENGINEERING STATISTICS HAN

SEARCH

BA

- HOME Model Validation & AIDS
 - Estimator Selection
 - Relationship identification
 - Factor Effect determination
 - Outlier Detection

EDA Example

EDA Example							
Х	Y						
10.00	8.04						
8.00	6.95						
13.00	7.58						
9.00	8.81						
11.00	8.33						
14.00	9.96						
6.00	7.24						
4.00	4.26						
12.00	10.84						
7.00	4.82						
5.00	5.68 NIXTSEMATECH + Hendbook of Satisfied Methode. http://www.iti.nist.gov/div899/handbook/						

EDA Example (DSI)

- N = I I
- Mean of X = 9.0
- Mean of Y = 7.5
- Intercept = 3
- Slope = 0.5
- Residual Standard Deviation = 1.237

IST/SEMATECH e-Handbook of Stat

• Correlation = 0.816

EDA Example									
X2	¥2	Х3	¥3	X4	¥4				
10.00	9.14	10.00	7.46	8.00	6.58				
8.00	8.14	8.00	6.77	8.00	5.76				
13.00	8.74	13.00	12.74	8.00	7.71				
9.00	8.77	9.00	7.11	8.00	8.84				
11.00	9.26	11.00	7.81	8.00	8.47				
14.00	8.10	14.00	8.84	8.00	7.04				
6.00	6.13	6.00	6.08	8.00	5.25				
4.00	3.10	4.00	5.39	19.00	12.50				
12.00	9.13	12.00	8.15	8.00	5.56				
7.00	7.26	7.00	6.42	8.00	7.91				
5.00	4.74	5.00	5.73	8.00	6.89				
NISTSEMATECH e Manihook of Statistical Methods, http://www.itt.nia.org/of/de/995/handhook/									

EDA Example (DS2)

- N = I I
- Mean of X = 9.0
- Mean of Y = 7.5
- Intercept = 3
- Slope = 0.5
- Residual Standard Deviation = 1.237
- Correlation = 0.816

EDA Example (DS3)

- N = I I
- Mean of X = 9.0
- Mean of Y = 7.5
- Intercept = 3
- Slope = 0.5
- Residual Standard Deviation = 1.236
- Correlation = 0.816

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbo

EDA Example (DS4)

- N = I I
- Mean of X = 9.0
- Mean of Y = 7.5
- Intercept = 3
- Slope = 0.5
- Residual Standard Deviation = 1.236
- Correlation = 0.817

NIST/SEMATECH e-Handbook of Statistical Method http://www.itl.nist.gov/div898/handb

Four Basic Tools

Univariate Data

• Most basic tools operate on *univariate* data, *i.e.* a list of *single* responses

Data Sets

• Walk DS: A random walk can be generated from a set of uniform random numbers by the formula :

$$R_i = \sum_{j=1}^{i} (U_j - 0.5)$$

• where U is a set of uniform random numbers

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handboo

Run-sequence Plot

- Considers Univariate Data
- Vertical axis: response variable Y(i)
- Horizontal Axis: Index i (i=1,2,3,...)

- Considers univariate data
- Vertical Axis: Y(i) for all i
- Horizontal Axis: Y(i-1) for all i

Lag Plot

- Are the data random ?
- Is there serial correlation in the data ?
- What is a suitable model for the data ?
- Are there *outliers* in the data ?

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handboo

Histogram

- Used to answer the following questions
 - What kind of population do the data come from ?
 - Where are the data located ?
 - How spread out are the data ?
 - Are the data symmetric or skewed ?
 - Are there outliers in the data ?

ST/SEMATECH e-Handbook of Statistical Methods, tp://www.itl.nist.gov/div898/handbook

(Normal) Probability Plot

- Considers univariate data
- Vertical axis: Ordered Response values
- Horizontal axis: Normal order statistics median

(Normal) Probability Plot

- Used to answer the following questions:
 - Are the data normally distributed ?
 - What is the nature of the departure from normality (data skewed, shorted than expected tail, longer than expected tails, etc.) ?

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handboo

