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How to Write a Proof

How to write proofs: a quick guide. Eugenia Cheng. 
http://www.math.uchcago.edu/~eugenia

Proof

• Begining: things we assume to be true, 
including the definitions of the things we 
talk about

• Middle: statements, each following 
logically from the things before it

• End: the thing we’re trying to prove
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Kinds of things to  
try and prove

x = y

x) y

x () y

x is purple
8x, p(x) is true
9x such that p(x) is true

How to write proofs: a quick guide. Eugenia Cheng. 
http://www.math.uchcago.edu/~eugenia



3 What sort of things do we try and prove?

Here is a classification of the sorts of things we prove (this list is not exhaustive, and
it’s also not clear cut – there is some overlap, depending on how you look at it):

1. x = y i.e. “something equals something else”

2. x =⇒ y

3. x ⇐⇒ y

4. x is purple (or has some other interesting and relevant property)

5. ∀x p(x) is true i.e. “all animals of a certain kind x behave in a certain way p(x)”

6. ∃x s.t. p(x) is true i.e. “there is an animal that behaves in a certain way p(x)”

7. Suppose that a, b, c and d are true. Then e is true. [Note that this is just a version
of 2 in disguise.]

4 The general shape of a proof

Let’s now have a look at the general shape of a proof, before taking a closer look at
what it might look like for each of the cases above. We must always remember that
there is a beginning, a middle and an end.

Example 1. Using the field axioms, prove that a(b− c) = ab−ac for any real
numbers a, b, c. You may use the fact that x.0 = 0 for any real number x.

beginning field axioms
definition x − y = x + (−y)
given x.0 = 0

middle a(b − c) = a(b + (−c)) definition
= ab + a(−c) distributive law

ac + a(−c) = a(c + (−c)) distributive law
= a.0 additive inverse
= 0 given

∴ a(−c) = −(ac) definition of additive inverse

∴ ab + a(−c) = ab − ac

end ∴ by line 2, a(b − c) = ab − ac as required "
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Example 2. Let f and g be functions A
f−→ B

g−→ C.
Show that if f and g are injective then g ◦ f is injective

beginning definition of injective
definition (g ◦ f)(a) = g(f(a))
assumption that f and g are injective i.e.

∀a, a′ ∈ A f(a) = f(a′) =⇒ a = a′

∀b, b′ ∈ B g(b) = g(b′) =⇒ b = b′

middle (g ◦ f)(a) = (g ◦ f)(a′) =⇒ g(f(a)) = g(f(a′)) by definition
=⇒ f(a) = f(a′) since g is injective
=⇒ a = a′ since f is injective

∴ (g ◦ f)(a) = (g ◦ f)(a′) =⇒ a = a′

end i.e. g ◦ f is injective, as required "

Example 3. Prove by induction that ∀n ∈ N, 1 + · · · + n =
n(n + 1)

2

beginning Principle of Induction

middle for n = 1, LHS = 1

RHS =
1(1 + 1)

2
= 1

∴ result is true for n = 1

If result is true for n = k then

1 + · · · + k + (k + 1) =
k(k + 1)

2
+ (k + 1)

=
k(k + 1) + 2(k + 1)

2

=
(k + 1)(k + 2)

2
i.e. result true for n = k + 1

∴ result true for k =⇒ result true for k + 1

end ∴ by the Principle of Induction, the result is true for all n ∈ N "
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Traps and Pitfalls



What is Wrong ?

Of course, when we write a good story, we don’t actually label the beginning, the
middle and the end with BEGINNING, MIDDLE, and END – it’s supposed to be sort
of obvious where they are. The same is true of a proof. So here’s the thing I keep going
on about but which is apparently not as obvious as it might sound:

The end of a proof should come at the end, not at the beginning.

Of course, I’ve deliberately made it sound really obvious there. But here’s a more
illuminating way of putting it:

The proof should end with the thing you’re trying to prove. The
proof should not begin with the thing you’re trying to prove.

This is not to be confused with the fact that we often begin by announcing what the
end is going to be. This is a bit like a story that starts at the end and then the entire
story is a flashback. Like The Go-Between or Brideshead Revisited or Rebecca. Or, it’s
like taking someone on a journey – you might well tell them where you’re going right at
the start. But once you’ve told them what the destination is you still start the journey
from the beginning. The same is true of proofs. Even if we begin by announcing what
the end is going to be, we then have to start at the beginning and work our way to the
pre-announced end.

5 What doesn’t a proof look like?

There are more plastic flamingoes in America than real ones.

There are more bad novels in the world than good ones, and there are more bad proofs
in the world than good ones. Here are some of the most popular ways to write a bad
proof.

1. Begin at the end and end at the beginning

This is a really, really terrible thing to do. This might be even worse than leaving out
gaps in the middle. Because if you begin at the end and end at the beginning you
monumentally haven’t got where you’re trying to go. Here’s an example of this for
Example 1 from Section 4:

a(b − c) = ab − ac
ab + a(−c) = ab − ac

a(−c) = −ac
ac + a(−c) = 0
a(c + (−c)) = 0

a.0 = 0
0 = 0 !

Try comparing this with the good proof given in Section 4 – you’ll see that all the correct
steps are there, but they’re all in the wrong order.

6
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What is Wrong ?

Sense any make doesn’t it backwards but things right the write you if.

This is a terrible thing to do but not a terminal catastrophe – if you have all the right
ideas but in the wrong order, all you need to do is work out how to put them in the
right order. . .

2. Take flying leaps instead of earthbound steps.

This category includes leaping from one statement to another

• without justifying the leap

• leaving out too many steps in between

• using a profound theorem without proving it

• (worse) using a profound theorem without even mentioning it

For example, spot the flying leap in the following “proof”:

a(b − c) = ab + a(−c)
= ab− ac !

3. Take flying leaps and land flat on your face in the mud

By which I mean making steps that are actually wrong. The end may well justify the
means in some worlds, but in mathematics if you use the wrong means to get to the
right end, you haven’t actually got to the end at all. You just think you have. But it’s
a figment of your imagination. Here’s an example of a very imaginitive “proof” that is
definitely flat on its face in the mud:

a(b − c) = ab + a(−c)
= ab + a(−c) + a.1
= ab + a(1 − c)
= ab − ac !

Of course, it’s even worse if you do something illegal and thereby reach a conclusion
that isn’t even true. Like

x2 = y2 =⇒ x = y

or
x2 < y2 =⇒ x < y.

What is wrong with these two “deductions”?
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What is Wrong ?

4. Handwaving

Handwaving is when you arrive at a statement by some not-very-mathematical means.
The step isn’t necessarily wrong, but you haven’t arrived at it in a good logical manner.
Perhaps you had to resort to writing a few sentences of prose in English rather than
Mathematics-speak. This is often a sign that you’ve got the right idea but you haven’t
worked out how to express it. Spot the handwaving here – you can see it from a mile
off:

a(b − c) = ab + a(−c)
a(−c) = −ac because if you add ac to

both sides then both sides vanish
which means they′re inverse

∴ ab + a(−c) = ab − ac "
Handwaving is bad but is not ultimately catastrophic – you just need to learn how

to translate from English into Mathematics. This is probably easier to learn than the
problem of coming up with the right idea in the first place.

5. Incorrect logic

This includes the two great classics

• negating a statement incorrectly

• proving the converse of something instead of the thing itself

What is the negation of the following statement:

∀ε > 0 ∃δ > 0 s.t. ∀x satisfying 0 < |x − a| < δ, |f(x) − l| < ε

The correct answer is at the bottom of the page1. If you get it wrong, you go directly
to Jail. Do not pass Go. Do not collect $200.

6. Incorrect assumption

You could have all your logic right, you could make a series of perfectly good and sensible
steps, but if you start in the wrong place then you’re not going to have a good proof.
Or, if you use any assumption along the way that simply isn’t true, then it’s all going
to go horribly pear-shaped. . .

7. Incorrect use of definitions – or use of incorrect definitions

This is a very, very avoidable error. Especially if it’s not a test and so you have all your
notes and all the books in the world to consult: getting the definitions wrong is a really

1∃ε > 0 s.t. ∀δ > 0 ∃x satisfying 0 < |x − a| < δ s.t. |f(x) − l| ≥ ε
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Additional Pitfalls

• Incorrect assumptions

• Incorrect use of definitions, or use of 
incorrect definitions

pointless way of going wrong. What’s wrong with the following “proof” for the second
example from Section 4?

f(a) = f(a′) =⇒ a = a′

g(a) = g(a′) =⇒ a = a′

(g ◦ f)(a) = (g ◦ f)(a′) =⇒ g(a) ◦ f(a) = g(a′) ◦ f(a′)
=⇒ a = a′

∴ g ◦ f is injective. "

8. Assuming too much

This is a tricky one, especially when you’re a student at the beginning of a course. What
are you allowed to assume? How much do you have to justify each step? A good rule
of thumb is:

You need to justify everything enough for your peers to understand it.

This is not a hard and fast rule, but it’s a guideline that will always remain true however
far you progress in mathematics, even if you become an internationally acclaimed Fields-
medal-winning mathematician. The point is that as you become more advanced your
peers do too, so you are eventually going to be taking bigger steps in your proofs than
you do now. i.e. don’t worry, you won’t be required to write down every use of the
distributive law forever!

If in doubt, justify things more rather than less.

Very few people give too much explanation of things. In fact, I have only ever encoun-
tered one student who consistently explained things too much.

6 Practicalities: how to think up a proof

The harsh reality is that when you sit down to prove something you usually have to start
by just staring at it really hard and hoping for some inspiration to hit you. However,
you can put yourself in the best possible place to find that inspiration by doing some of
the following things, probably on a piece of rough paper.

• Write out the beginning very carefully. Write down the definitions very explicitly,
write down the things you are allowed to assume, and write it all down in careful
mathematical language.

• Write out the end very carefully. That is, write down the thing you’re trying to
prove, in careful mathematical language.
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Assumptions

• You need to justify everything enough for 
your peers to understand it

• If in doubt, justify things more rather than 
less
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Practicalities



Practicalities

• Write the begining very carefully

• Write the end very carefully

• Try and manipulate both ends to meet in 
the middle, from big leaps to smaller ones

• Pretend to be more stupid (or sceptical, 
or untrusting) that you are

How to write proofs: a quick guide. Eugenia Cheng. 
http://www.math.uchcago.edu/~eugenia

• Try and manipulate both the beginning and the end to try and make them look
like one another. This is like building from both ends of the bridge until they
meet in the middle, and it’s okay as long as you write the whole thing out properly
in the right order afterwards.

• Take big leaps to see what happens, and then make the big leaps into smaller
leaps afterwards.

• See if the situation reminds you of any situations you’ve ever seen before. If so,
perhaps you can copy the method.

You should always read over your proof after you’ve written it to make sure every
single step makes sense. When you’re writing a proof the first time through, you might
get carried away in a frenzy of inspiration and become blind to the world around you –
by which I mean that you might do something wrong without noticing it. It’s important
to go back in a calm state and pretend to be more stupid than you are. Or more sceptical.
Or untrusting. When you finish a proof you should feel like you understand what’s going
on, but you should go back over it pretending that you don’t understand, and see if your
proof explains it to you.

7 Some more specific shapes of proofs

Now let’s look at the various types of things that we try to prove (as listed in Section 3),
and think about how we can prove them.

1. x = y or “something equals something else”

The proof might take the following general shape:

x = a
= b
= c
= d
= y !

Or:

x = a
= b
= c

y = e
= d
= c

∴ x = y !
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single step makes sense. When you’re writing a proof the first time through, you might
get carried away in a frenzy of inspiration and become blind to the world around you –
by which I mean that you might do something wrong without noticing it. It’s important
to go back in a calm state and pretend to be more stupid than you are. Or more sceptical.
Or untrusting. When you finish a proof you should feel like you understand what’s going
on, but you should go back over it pretending that you don’t understand, and see if your
proof explains it to you.

7 Some more specific shapes of proofs

Now let’s look at the various types of things that we try to prove (as listed in Section 3),
and think about how we can prove them.

1. x = y or “something equals something else”

The proof might take the following general shape:

x = a
= b
= c
= d
= y !

Or:

x = a
= b
= c

y = e
= d
= c

∴ x = y !
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Note that this is very different from:

x = y
a = e
b = d
c = c !

2. x =⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y !

Or:

We know that a =⇒ b

Also a ⇐⇒ x
and b ⇐⇒ y

∴ x =⇒ y !

3. x ⇐⇒ y

Now the proof might look like this:

x =⇒ a
=⇒ b
=⇒ c
=⇒ d
=⇒ y

Conversely y =⇒ p
=⇒ q
=⇒ r
=⇒ x

Hence x ⇐⇒ y !
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Or

x ⇐⇒ a
⇐⇒ b
⇐⇒ c
⇐⇒ d
⇐⇒ y !

However, beware that this can be a dangerous way of taking a short cut – you might
find that you’re going the wrong way up a one way street. Do those implications really
work backwards? It’s always safer to do the forwards and the backwards separately, and
write “conversely” at the point where you’re about to start doing the converse direction.

4. x is purple

A good way to start is to write down the definition. What does it mean for x to be
purple?

“x is purple” means y

We know a and

a =⇒ b
=⇒ c
=⇒ d
=⇒ y

∴ x is purple as required !

5. ∀x, p(x) is true

In practice this will usually be “∀x of a certain kind”, like “for any rational number
x” or “for any continuous function f” or “for any braided monoidal category C”. Then
the point is probably to use the assumed properties of x to prove p(x). So a good
way to start is to write down the definition of those assumed properties, carefully, in
mathematical language. e.g.

Prove that any rational number can be expressed as m
n where m and n are

integers that are not both even.

So we start by saying:

Let x be a rational number. So x can be expressed as
p

q
where p and q are

integers and q ̸= 0.

12
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Note that we have picked an arbitrary x, and then we just can just prove that this x
has the desired property, and we’re done. You might say, “But we’ve only proved it
for this x, and not every x”. But the point is that this is a random x not one specific
one, it’s a sort of generic x that shows the proof will work for any specific one that we
substituted in. It’s not like proving the result for one particular number, say, 23.

6. ∃x s.t. p(x) is true

Here, all we have to do is find one x for which p(x) is true. So we can just say “let
x = 23” and then show that 23 has the desired property p. For example, prove that:

∃ δ > 0 s.t. |x| < δ =⇒ |x2| <
1

100
Put δ = 1

10 . Now |x2| = |x|2 so we have

|x| <
1

10
=⇒ |x2| <

1

100
!

This is fine; of course we could also have picked

δ =
1

1000

or
δ =

1

476002

The latter especially would be a little eccentric but would still be a perfectly valid (if
violent) choice of δ to finish the problem off.

Of course, sometimes it’s a bit hard to just pluck a valid x out of thin air. It’s a bit
like pulling a rabbit out of a hat – it looks like magic, but of course you are the one
who put the rabbit there in the first place. So if it’s a complicated example we probably
work out (on a rough piece of paper) which x is going to do the trick, and once we have
it all worked out we can pull it out of the hat.

7. If a, b, c, d are true then e is true

When you have a whole lot of things (a, b, c, d, . . .) you’re allowed to assume, it gets
more complicated. You might have to develop several parts of it sort of at the same
time before proceeding to the end, like a novel where there are several strands of plot
happening at the same time before they all come together at the end for the final
dénouement. The proof might look like this:

a =⇒ z
b and z =⇒ y

c =⇒ x
x and d =⇒ w
y and w =⇒ e !
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In fact if we draw a little picture of what happened, it’s much easier to see what’s going
on (and see where the beginning, the middle and the end have got to):

a b c d

z x

y w

e

❄

❄

❄

❄

❄

Here’s an example of this phenomenon at work:

Prove that if a > 0 ∈ R then a2 > 0. You may assume that
for all x, y ∈ R, (−x)(y) = −(xy) and −(−x) = x.

Now a < 0 means
0 − a ∈ P

i.e.
−a ∈ P.

Therefore
(−a)(−a) ∈ P

by closure of P under multiplication. Now

(−a)(−a) = −a(−a) by the first given assumption
= −((−a)(a)) commutativity of multiplication
= −(−(a2)) first given
= a2 second given

∴ (−a)(−a) > 0 =⇒ a2 > 0 as required "

14

How to write proofs: a quick guide. Eugenia Cheng. 
http://www.math.uchcago.edu/~eugenia

Proof by Contradiction

• We are trying to prove that some 
statement P is true

• We say «suppose P were not true» and 
find a contradiction

• Since P being false gives a contradiction, 
we deduce that P must be true

How to write proofs: a quick guide. Eugenia Cheng. 
http://www.math.uchcago.edu/~eugenia

Exploratory Data 
Analysis

NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

Approach
• Exploratory Data Analysis employs a 

variety of (mostly graphical) techniques to:

• maximize insight into a data set

• uncover underlying structure

• extract important variables

• detect outliers and anomalies

• test underlying assumptions

• develop parsimonious models

• determine optimal factor settings
NIST/SEMATECH e-Handbook of Statistical Methods, 
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Graphical techniques

• Plotting the raw data (data traces, 
histograms, bihistograms, probability 
plots, lag plots, block plots, and Youden 
plots)

• Plotting simple statistics such as mean plots, 
standard deviation plots, box plots, and 
main effect plots of the raw data

• Positioning such plots so as to maximize 
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Classical vs. Exploratory

Classical Data Analysis

1.Problem

2.Data

3.Model

4.Analysis

5.Conclusion
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Exploratory Data 
Analysis

1.Problem

2.Data

3.Analysis 

4.Model 

5.Conclusion
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Classical vs. 
Exploratory

• Models 

• Focus 

• Techniques 

• Rigor 

• Data Treatment 

• Assumptions
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Model

• Classical 

• imposes models (both deterministic and 
probabilistic). e.g. regression models, 
analysis of variance. The most common 
probabilistic model assumes that the 
errors are normally distributed.

NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

Model

• Exploratory 

• does not impose deterministic or 
probabilistic models on the data. In fact, 
EDA allows the data to suggest 
admissible models that best fit the data.
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Focus

• Classical 

• On the Model. Estimate model 
parameters, generate predicted values 
from the model.

• Exploratory 

• On the Data. Structure, outliers, and 
models suggested by the data.
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Techniques

• Classical 

• Quantitative. Mean, Variance, ANOVA, T-
test, chi^2 tests, F-Test.

• Exploratory 

• Graphical. Scatter plots, Character plots, 
box plots, histograms, bihistograms, 
probability plots, residual plots, mean 
plots.
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Rigor

• Classical 

• Probabilistic foundation of Science. 
Rigorous, formal, objective.

• Exploratory 

• Suggestive, indicative, insightful. 
Subjective, depend on interpretation.
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Data Treatment

• Classical 

• Maps all data into few numbers. Loss of 
information.

• Exploratory 

• Shows all data. No loss of information.
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Assumptions

• Classical 

• Tests based on classical techniques are 
very sensitive. Yet they depend on 
underlying assumptions. that could be 
unkown or untested.

• Exploratory 

• Makes no assumptions.

NIST/SEMATECH e-Handbook of Statistical Methods, 
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Quantitative Techniques

• Hypothesis testing

• Analysis of variance

• Point estimate and confidence intervals

• Least squares regression
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Graphical Techniques

• Testing assumptions

• Model Validation

• Estimator Selection

• Relationship identification

• Factor Effect determination

• Outlier Detection

NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

EDA Example

EDA Example

1. Exploratory Data Analysis
1.1. EDA Introduction

1.1.6. An EDA/Graphics Example

Anscombe
Example

A simple, classic (Anscombe) example of the central role
that graphics play in terms of providing insight into a data
set starts with the following data set:

Data   X              Y
10.00           8.04
 8.00           6.95
13.00           7.58
 9.00           8.81
11.00           8.33
14.00           9.96
 6.00           7.24
 4.00           4.26
12.00          10.84
 7.00           4.82
 5.00           5.68

Summary
Statistics

If the goal of the analysis is to compute summary statistics
plus determine the best linear fit for Y as a function of X, the
results might be given as:

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

The above quantitative analysis, although valuable, gives us
only limited insight into the data.

Scatter Plot In contrast, the following simple scatter plot of the data

1.1.6. An EDA/Graphics Example http://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm
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EDA Example (DS1)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.237

• Correlation = 0.816
NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

EDA Example
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EDA Example

suggests the following:

The data set "behaves like" a linear curve with some
scatter;

1.

there is no justification for a more complicated model
(e.g., quadratic);

2.

there are no outliers;3.
the vertical spread of the data appears to be of equal
height irrespective of the X-value; this indicates that
the data are equally-precise throughout and so a
"regular" (that is, equi-weighted) fit is appropriate.

4.

Three
Additional
Data Sets

This kind of characterization for the data serves as the core
for getting insight/feel for the data. Such insight/feel does
not come from the quantitative statistics; on the contrary,
calculations of quantitative statistics such as intercept and
slope should be subsequent to the characterization and will
make sense only if the characterization is true. To illustrate
the loss of information that results when the graphics insight
step is skipped, consider the following three data sets
[Anscombe data sets 2, 3, and 4]:

 X2     Y2       X3     Y3       X4     Y4
10.00   9.14    10.00   7.46     8.00   6.58
 8.00   8.14     8.00   6.77     8.00   5.76
13.00   8.74    13.00  12.74     8.00   7.71
 9.00   8.77     9.00   7.11     8.00   8.84
11.00   9.26    11.00   7.81     8.00   8.47
14.00   8.10    14.00   8.84     8.00   7.04
 6.00   6.13     6.00   6.08     8.00   5.25
 4.00   3.10     4.00   5.39    19.00  12.50
12.00   9.13    12.00   8.15     8.00   5.56
 7.00   7.26     7.00   6.42     8.00   7.91
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 5.00   4.74     5.00   5.73     8.00   6.89

Quantitative
Statistics for
Data Set 2

A quantitative analysis on data set 2 yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.237
Correlation = 0.816

which is identical to the analysis for data set 1. One might
naively assume that the two data sets are "equivalent" since
that is what the statistics tell us; but what do the statistics not
tell us?

Quantitative
Statistics for
Data Sets 3
and 4

Remarkably, a quantitative analysis on data sets 3 and 4 also
yields

N = 11
Mean of X = 9.0
Mean of Y = 7.5
Intercept = 3
Slope = 0.5
Residual standard deviation = 1.236
Correlation = 0.816 (0.817 for data set 4)

which implies that in some quantitative sense, all four of the
data sets are "equivalent". In fact, the four data sets are far
from "equivalent" and a scatter plot of each data set, which
would be step 1 of any EDA approach, would tell us that
immediately.

1.1.6. An EDA/Graphics Example http://www.itl.nist.gov/div898/handbook/eda/section1/eda16.htm
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EDA Example (DS2)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.237

• Correlation = 0.816
NIST/SEMATECH e-Handbook of Statistical Methods, 
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EDA Example (DS3)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.236

• Correlation = 0.816
NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

EDA Example (DS4)

• N = 11

• Mean of X = 9.0

• Mean of Y = 7.5

• Intercept = 3

• Slope = 0.5

• Residual Standard Deviation = 1.236

• Correlation = 0.817
NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

EDA Example (DS2)
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EDA Example (DS3)
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EDA Example (DS4)
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Four Basic Tools

Univariate Data

• Most basic tools operate on univariate 
data, i.e. a list of single responses



Data Sets

• Flow DS:  This data set was collected by 
Bob Zarr of NIST in January 1990 from a 
heat flow meter calibration and stability 
analysis. The response variable is a 
calibration factor.
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Data Sets

• Walk DS: A random walk can be 
generated from a set of uniform random 
numbers by the formula :

• where U is a set of uniform random 
numbers

Ri =
iX

j=1

(Uj � 0.5)

NIST/SEMATECH e-Handbook of Statistical Methods, 
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Data Sets

• Beam DS: This data set was collected by 
H.S. Lew of NIST in 1969 to measure 
steel-concrete deflections. The response 
variable is the deflection of a beam from 
center point. 

NIST/SEMATECH e-Handbook of Statistical Methods, 
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Run-sequence Plot

• Considers Univariate Data

• Vertical axis: response variable Y(i)

• Horizontal Axis: Index i (i=1,2,3,...)

NIST/SEMATECH e-Handbook of Statistical Methods, 
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Run-sequence Plot

• Used to answer the questions

• Are there any shifts in location ?

• Are there any shifts in variation ?

• Are there any outliers ?

NIST/SEMATECH e-Handbook of Statistical Methods, 
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Run-sequence Flow DS
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Lag Plot

• Considers univariate data

• Vertical Axis: Y(i) for all i

• Horizontal Axis: Y(i-1) for all i

NIST/SEMATECH e-Handbook of Statistical Methods, 
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Lag Plot

• Are the data random ?

• Is there serial correlation in the data ?

• What is a suitable model for the data ?

• Are there outliers in the data ?

NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/

Lag Plot Flow DS
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Lag plot Beam DS
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Histogram

• Considers univariate data

• Split the range of the data into equal-
sized bins, then for each bin the number 
of points from the data for each bin are 
counted

• Vertical axis: Frequency

• Horizontal axis: Response variable
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Histogram

• Used to answer the following questions

• What kind of population do the data 
come from ?

• Where are the data located ?

• How spread out are the data ?

• Are the data symmetric or skewed ?

• Are there outliers in the data ?
NIST/SEMATECH e-Handbook of Statistical Methods, 
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Histogram Flow DS
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Histogram Walk DS
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Histogram Beam DS
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Beyond Histograms : 
Jitter Plots
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(Normal) Cumulative
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(Normal) Probability 
Plot

• Considers univariate data

• Vertical axis: Ordered Response values

• Horizontal axis: Normal order statistics 
median
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(Normal) Probability 
Plot

• Used to answer the following questions:

• Are the data normally distributed ?

• What is the nature of the departure 
from normality (data skewed, shorted 
than expected tail, longer than 
expected tails, etc.) ?
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(Normal) Probability 
Plot Flow DS
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(Normal) Probability 
Plot Beam DS
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