
Investigating
Relationships

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Scatter plots

• Assumes Bivariate data, i.e. lists of 2-tuples
of responses

• The point is to check the nature of the
relationship between the two responses

• Take care of outliers

Example 1:
Weight vs. Cost 247Relationships

determined by the cost of materials, so that a car that’s twice as big (as measured by its
overall mass) is also twice as expensive, whereas the price of luxury cars is determined
by higher quality (fancier materials such as leather seats, and additional options such
as more electronics), rather than by sheer bulk.

 It’s tempting to try to find a mathematical model to describe this behavior, but the
truth of the matter is that there’s not enough data here to come to an unambiguous
conclusion. Various functions of the form a (x-b)1/n + c or even a log(x-b) + c fit the data
about equally well, but the data alone doesn’t allow us to determine which one would
be the “correct” model.
USING SCATTER PLOTS

This example demonstrates what to look for when examining a scatter plot. The first
question usually concerns the nature of the relationship between x and y. Does y fall
as x grows or vice versa? Do the points fall approximately onto a straight line or not? Is
there an oscillatory component? Whatever it is, take note of it.

 The second question concerns the strength of the relationship, or, put another
way, the amount of noise in the data. Do the data points jump around unpredictably
as you go from one x value to the next? Are there outliers that seem to behave differ-
ently than the majority of the points? Detecting outliers is important: gone unnoticed,
they’ll mess up most statistical quantities (such as the mean) you may want to calculate
later. And sometimes outliers indicate an interesting effect—maybe some subgroup of
points follows different rules than the majority. Outliers in scatter plots should never
go uninvestigated.

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

C
ur

b
W

ei
gh

t (
in

 p
ou

nd
s)

Cost (in 1985 dollars)

Figure 13.1 Curb weight versus price for 205 different cars. See listing 13.1.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Example 2:
The 1970 Draft Lotery

248 CHAPTER 13 Fundamental graphical methods

 A third aspect to look out for in a scatter plot is the distribution of points in either
dimension. Are points distributed rather uniformly, or do they cluster in a few loca-
tions? If so, do we understand the reason for the clustering, or is this something we
need to investigate further? There may be a lot of information even in a humble scat-
ter plot!
A MORE COMPLICATED EXAMPLE: THE 1970 DRAFT LOTTERY

Be warned that correlations aren’t always trivial to detect. Figure 13.2 shows a famous
data set, which I’ll explain in a minute. But first, what do you think: is there a correla-
tion between x and y?

Here’s the story behind the data: during the Vietnam war, men in the US were drafted
into the armed forces based on their birth dates. Each possible birth date was assigned
a draft number from 1 to 366, and men were drafted in order of their draft numbers. To
ensure fairness, draft numbers were assigned to birth dates using a lottery process. Yet,
allegations quickly arose that the lottery was biased, such that men born later in the
year had a higher chance of being drafted early.

 Figure 13.2 shows the draft numbers (as they’d been assigned by the lottery pro-
cess) as a function of the birth dates. If the lottery had been fair, there should be no
detectable pattern in the data.

 Figure 13.3 shows the same data, but this time together with two interpolation
curves, drawn using plot ... smooth. The curves clearly slope downward, indicat-
ing that there’s a trend in the data: the later in the year the birth date falls, the
lower (on average) the draft number. It was later found that the procedure used in
the lottery process to mix entries was insufficient to achieve true randomness. In

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350
Figure 13.2 Is there any correlation
between x and y in this data?

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Example 2:
The 1970 Draft Lotery 249Relationships

later draft lotteries, this process was improved and the lottery produced truly ran-
dom results.2

 Using an interpolating line as in figure 13.3 can be a useful tool to discover other-
wise invisible behavior when the input data is very noisy. It’s often useful when the
“stiffness” of the interpolating line can be varied continuously: If the line is very soft,
it’ll follow all the bumps in the data; if it’s too stiff, if may flatten out relevant features
in the data set. Iteration, visual inspection, and judgment are critical. In the figure,
I’ve used gnuplot’s smooth acsplines weighted spline feature, with two different
weights: 10-4 for the wobbly line and 10-15 for the straight line (plot "data" using
1:2:(1e-4) smooth acsplines). The smaller the weight, the less each individual data
point influences the local shape of the curve. Therefore, as the weight goes to zero,
the approximation becomes increasingly global, just showing the overall trend. For
more information on using locally smooth approximations to detect features and
trends in data, you might want to check out the Lowess (or Loess) family of algorithms.
Cleveland’s books mentioned in appendix C are a good starting point.
A NOTE ON SPLINES

Splines are a way to provide a smooth approximation to a set of points. The points are
called knots.3

2 The 1970 draft lottery is a famous example in statistical analysis and has been analyzed in many places, for
example in the introductory textbook Introduction to the Practice of Statistics by D. S. Moore and G. P. McCabe.
The description of the lottery process can be found in The Statistical Exorcist by M. Hollander and F. Proschan
and is well worth reading. The raw data can be found in StatLib’s Data and Story Library at http://
lib.stat.cmu.edu/DASL/Stories/DraftLottery.html.

3 I’d like to thank Lucas Hart for helpful correspondence regarding this topic.

 50

 100

 150

 200

 250

 300

 350

 50 100 150 200 250 300 350

Figure 13.3 The 1970 draft lottery.
Birth date (as day after Jan 01st) on
the horizontal axis, draft number on
the vertical axis. The lines are
weighted spline approximations, with
different weights. The data is the
same as in figure 13.2.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Logarithmic Scale

•Serve three main purposes:

• Rein in large variation of the data

• Turn multiplicative deviations into additive
ones

• Reveal exponential and power law behavior

Example 1: Traffic
Pattern at Website

252 CHAPTER 13 Fundamental graphical methods

The stringcolumn(4) function returns the value of column 4 as a string, which is then
compared to the standard fuel (namely “gas”). Only if the fuel isn’t regular gasoline, a
text label ("D" for diesel) is placed onto the graph in addition to the usual plot symbol.

 And, yes, overall diesel-powered vehicles seem to be slightly on the heavy side. We
should also take note that diesel is most prevalent in the mid-price sector: there are a
few cheap diesels, but none of the true luxury cars use it.

13.1.2 Logarithmic scales

Logarithmic scales are one of the most versatile tools in the graphical analyst’s tool-
box. I introduced them already in section 3.6.1 and discussed how they work. Now
let’s put them into action.

 Logarithmic scales serve three purposes when plotting:

■ They rein in large variations in the data.
■ They turn multiplicative deviations into additive ones.
■ They reveal exponential and power-law behavior.

To understand the meaning of the first two items, let’s study the daily traffic pattern at
a web site. Figure 13.5 shows the number of hits per day over approximately three
months. There’s tremendous variation in the data, with alternating periods of high
and low traffic. During periods of high traffic, daily hit counts may reach close to half
a million hits, but then fall to very little traffic shortly thereafter. On the scale of the
graph, the periods of low traffic seem barely different from zero, with little fluctuation.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 0 10 20 30 40 50 60 70 80 90

Figure 13.5 Traffic patterns at some web site. Daily hit count versus day of the year.
Note the extreme variation in traffic over time.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Example 1: Traffic
Pattern at Website

253Relationships

In figure 13.6 we see the same data, but now on a semi-logarithmic scale. The logarith-
mic scale helps to dampen the extreme variation of the original data set (two orders of
magnitude), so that we can now see the structure both during the high- and the low-
traffic season. That’s the first effect of logarithmic plots: they help to make data span-
ning extreme ranges visible, by suppressing high-value outliers and enhancing low-
value background.

 Furthermore, we can see that the relative size of the day-to-day fluctuations is about
equal during both phases. The absolute size of the fluctuations is quite different, but
their size as a percentage of the average value is roughly the same (very approxi-
mately, during low season, traffic varies between 2,000 and 20,000 hits a day, a factor
of 10; whereas during high season it varies between 30,000 and 300,000 hits a day,
again a factor of 10). That’s the second effect of logarithmic plots: they turn multipli-
cative variations into additive ones.

 Figure 13.7 tries to demonstrate the last point in a different way. The bottom panel
shows the web traffic on consecutive days (like figure 13.5), displaying great seasonal
variance, but the top panel shows the ratio of the difference in traffic on consecutive
days divided by the actual value—(current day - previous day)/current day—which does
not exhibit a seasonal pattern: further proof that the daily fluctuation, viewed as a per-
centage of the overall traffic, is constant throughout.

 Finally, let’s look at a curious example that brings together two benefits of logarith-
mic plots: the ability to display and compare data of very different magnitude, and the
ability to turn power-law behavior into straight lines.

 1000

 10000

 100000

 1e+06

 0 10 20 30 40 50 60 70 80 90

Figure 13.6 The same data as in figure 13.5, but on a semi-logarithmic scale. Note
how the high-traffic outliers have been suppressed and the low-traffic background has
been enhanced. In this presentation, data spanning two orders of magnitude can be
compared easily.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Example 1: Traffic
Pattern at Website 254 CHAPTER 13 Fundamental graphical methods

Mammals come in all shapes and sizes, from tiny rodents (the smallest known land
mammal is the Pygmy Shrew, which weighs only a few grams, but some bats found in
Thailand are apparently smaller still) to the largest of whales (weighing several hun-
dreds of tons). It’s a curious empirical fact that there seem to be fixed relationships
between different metabolic quantities—basically, the larger an animal is, the slower
its bodily functions progress. Figure 13.8 shows an example: the duration (in seconds)
of a single resting heartbeat, as a function of the typical body mass. The regularity of
the data is remarkable—spanning eight orders of magnitude for the mass of the animal.
What’s even more amazing is how well the data is represented by the simple function
T ~ m1/4. This law isn’t limited to the examples shown in the graph: if you added fur-
ther animals to the list, they’d also fall close to the straight line (I didn’t just pick the
best ones).

 The existence of such scaling relations in biological systems has been known for a
long time and seems to hold generally. For example, it turns out that the typical life-
time of a mammal also obeys a quarter-power scaling law relation against the body
mass, leading to the surprising conclusion that the total number of heartbeats in the
life of a single organism is fixed—no matter what the typical resting heart rate is. (In
case you care, the number comes out to about 1.5 billion heartbeats during a typical
lifetime.)

 Recently these observations have been explained in terms of the geometrical con-
straints that must exist in the vascular networks (the veins and arteries), which supply

-1

-0.5

 0

 0.5

 1

 0 10 20 30 40 50 60 70 80 90

0k
50k

100k
150k
200k
250k
300k
350k
400k
450k

 0 10 20 30 40 50 60 70 80 90

Figure 13.7 Bottom panel: hits per day over time (as in figure 13.5); top panel:
change in traffic between consecutive days, divided by the total traffic. Note how the
relative change (top panel) doesn’t exhibit any seasonal pattern, indicating that the
relative size of the variation is constant.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Example 2: Mammals

255Relationships

nutrients to all parts of the organism.5 As it turns out, you can derive the quarter-
power scaling laws starting from only three simple assumptions, namely that the sup-
port network must be a space-filling fractal, reaching all parts of the organism; that
the terminal capillaries where nutrients are actually exchanged are the same size in all
animals; and finally that organisms have evolved in such a way that the energy
required for the transport of nutrients through their bodies is minimized. I think it’s
amazing how such a powerful result can be derived from such simple assumptions,
but on the other hand, we shouldn’t be surprised: generally applicable laws (such as
the quarter-power scaling in this example) must stem from very fundamental assump-
tions disregarding any specifics.

 Let’s come back to figure 13.8. The double-logarithmic scales make it possible to
follow the data over eight orders of magnitude. (Had we used linear scales, all animals
except for the whale would be squished against the left side of the graph—literally
crushed by the whale.) So again, logarithmic scales can help to deal with data span-
ning a wide range of values. In addition, the double-logarithmic plot turns the power
law relationship T ~ m1/4 into a straight line and makes it possible to read off the expo-
nent from the slope of the line. I explained how this works in detail in section 3.6.1
and won’t repeat it here.

5 The original reference is the paper “A General Model for the Origin of Allometric Scaling Laws in Biology”
by G. B. West, J. H. Brown, B. J. Enquist in the journal Science (Volume 276, page 122 (1997)). Additional ref-
erences can be found on the web.

 0.1

 1

 0.01 0.1 1 10 100 1000 10000 100000 1e+06

P
ul

se
 D

ur
at

io
n

[s
ec

]

Weight [kg]

Human

Cat

Dog

Hamster

Chicken

Monkey

Horse

CowPig

Rabbit

Elephant

LargeWhale

Figure 13.8 Allometric scaling: the duration of a average resting heartbeat as a
function of the typical body mass for several mammals. Note how the data points seem
to fall on a straight line with slope 1/4.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

The Core Principle

• Plot exactly what you want to see

Iterate & Transform276 CHAPTER 14 Techniques of graphical analysis

This graph is quite interesting by itself. It tells us that the highway mileage grows in
step with the mileage for city use. The only difference is that we seem to get a few
more miles per gallon on the highway than in the city. (It’s not entirely clear yet how
many more miles.) I find this mildly surprising: I would’ve expected cars with overall
high consumption to turn into disproportional guzzlers on the highway. But they
don’t appear to.

 The functional form suggested by figure 14.2 is

 highway-mpg = city -mpg + const

To verify this, I looked at the residual between the data and the functional form; in
other words, I plotted the difference between the highway mileage and the city mile-
age as a function of the city mileage. If the preceding equation holds, I’d expect the
residuals to be scattered about the value of the (as yet unknown) constant, without a
significant trend. The result is shown in figure 14.3, where I’ve also added a weighted
spline to indicate the trend (if any), similar to the process we used in section 13.1.1.
Because in this plot many points coincide, I’ve added a small random component to
both x and y values, and chosen open circles (again), which remain most clearly visi-
ble even when partially overlapping. There’s no discernible overall trend, and we can
read off the difference in mileage between city and highway use: we get about 5.5
miles more to the gallon on the highway.

 This is admittedly not the most fascinating result in the world, but it’s interesting
how we arrived at it by purely graphical means. Also, observe how each step in this
(mini) analysis was based directly on the results of the preceding one.

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

M
ile

ag
e

[m
pg

]

Price [1985 Dollars]

City
HighWay

Figure 14.1 Mileage (in miles per gallon) for city and highway use of 205 cars versus
their price (1985 data)

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Iterate & Transform 277Iteration and transformation

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 15 20 25 30 35 40 45 50

M
ile

ag
e,

 H
ig

hW
ay

 [m
pg

]

Mileage, City [mpg]

Figure 14.2 Highway mileage versus city mileage. Also shown is the function f(x) = x for
comparison. (See figure 14.1.)

-2

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

R
es

id
ua

l [
m

pg
]

Mileage, City [mpg]

Figure 14.3 The residual after subtracting the postulated functional form from the data
in figure 14.2. Note how there doesn’t seem to be a significant trend in the residuals,
suggesting that the functional form represents the data well.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Iterate & Transform

277Iteration and transformation

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 10 15 20 25 30 35 40 45 50

M
ile

ag
e,

 H
ig

hW
ay

 [m
pg

]

Mileage, City [mpg]

Figure 14.2 Highway mileage versus city mileage. Also shown is the function f(x) = x for
comparison. (See figure 14.1.)

-2

 0

 2

 4

 6

 8

 10

 12

 10 15 20 25 30 35 40 45 50

R
es

id
ua

l [
m

pg
]

Mileage, City [mpg]

Figure 14.3 The residual after subtracting the postulated functional form from the data
in figure 14.2. Note how there doesn’t seem to be a significant trend in the residuals,
suggesting that the functional form represents the data well.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

What’s Wrong ?

278 CHAPTER 14 Techniques of graphical analysis

 There’s one additional interesting tidbit in this example. If you fit a straight line
through the points in figure 14.3, you’ll find that it displays a weak upward slope, sug-
gesting that high consumption vehicles do in fact need disproportionately more fuel
in the city. But if you compare it with the smooth trend line in the graph, it becomes
apparent that the upward slope is due mostly to the existence of a few outliers on the
very left of the graph. Excluding them, no overall trend can be detected.

14.2.2 Making data comparable: monitoring quantities
in a control chart

Imagine you’re in charge of a factory or some production plant. You’re responsible
for the smooth running of the operation, so you want to monitor the most relevant
metrics constantly.

 To keep things simple, let’s say there are just three parameters that really matter:
the overall productivity (units per hour), the completion time for each unit (in min-
utes), and the defect rate (the ratio of defective units to the total number of units pro-
duced). You might want to plot them together on a control chart, so that you can
immediately see if one of them starts running out of the allowed zone. But most of all,
you want to be able to compare them against each other: is one parameter consistently
performing better than the other ones? Is one of the parameters on a slippery slope,
getting worse and worse, relative to the other ones? And so forth.

 A naive way to achieve this effect is to just plot the three parameters in a single
chart. The result is shown in figure 14.4 and is probably not what you wanted!

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 20 40 60 80 100 120 140 160

Productivity (Units per Hour)
Completion Time (Minutes)

Defect Rate (Defects per Thousand)

Figure 14.4 A control chart, showing three very different quantities simultaneously.
What’s wrong with this picture?

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Normalized Metrics

279Iteration and transformation

The problem is that the three parameters assume very different values: productivity is
typically around 10,000 units per hour, assembly time is on the order of an hour, and
the defect rate should be very, very small.

 So, what to do? One possible solution might be to use a logarithmic scale for the y
axis (see section13.1.2) and this is indeed a valid approach. But in our example, we
run into trouble with it, because the defect rate is in fact often zero (no defects
found), and logarithms are undefined at zero.

 What other ways do we have to make the three data streams comparable? We can
subtract an offset (for example, the value that they have first thing in the morning).
But that won’t do the trick, because it’s not just the overall magnitude that matters,
but also the range of values over which each parameter fluctuates. The productivity
ranges from as low as 7,000 units per hour to almost 10,000 units per hour. The assem-
bly time hovers around one hour, plus or minus thirty minutes, while the defect rate is
always smaller than 0.001 (one defect per thousand items).

 So after we’ve shifted the values to have a common starting point, we need to
divide by the range of possible values to make the three quantities really comparable.
The resulting graph is shown in figure 14.5.

 This example serves to make a more general point: before you can compare differ-
ent quantities, you have to make sure to make them comparable. A strong hint that
something is missing can come from a consideration of the units of the quantities
involved. Look at figure 14.4, for example. What units are plotted along the y axis?
The three quantities that are so innocuously graphed together are measured in three

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 0 20 40 60 80 100 120 140 160

Productivity (normalized)
Completion Time (normalized)

Defect Rate (normalized)

Figure 14.5 A control chart showing normalized metrics. The data is the same as
in figure 14.4.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Truncation &
Responsiveness 281Iteration and transformation

You need to remember that by fitting a straight line, you’ve chosen one specific model
to represent the data. At this point, you’re no longer analyzing the data with the inten-
tion of revealing the information contained in it, but are making a very specific state-
ment about its surmised behavior. Before making such a strong statement, you should
have sufficient evidence for the applicability of the particular model selected. And
coming back to the current example, there certainly doesn’t seem to be any strong
theoretical reason why athletic performance should follow a straight line as a function
of time.

 To understand the structure of the data, we might instead attempt to represent the
data by some “soft” local approximations, such as weighted splines. Some experimen-
tation with the weights will tell us much about the structure of the data: does the over-
all shape of the approximation curve change drastically as we vary the weighting?
Which features are the most robust, and which disappear most quickly? Typically, sig-
nificant features tend to be rather robust under transformations, while less relevant
features are more transient.

 Figure 14.7 shows the same data as figure 14.6, but instead of a straight line, a soft
spline has been used to represent the data. This approximation suggests that women’s
performance starts to level off in the late ’80s, and the results from years after 1990
corroborate this observation. Note that the spline approximation is based only on
years up to and including 1990, but not on later data points.

 The second point I want to make is this: be very careful when truncating or reject-
ing data points—for whatever reason. But we didn’t actually reject any data points, you

 120

 140

 160

 180

 200

 1900 1920 1940 1960 1980 2000

Men

Women

Men
Women

Figure 14.6 Finishing times (in minutes) for the winner of a marathon competition
(up to the year 1990), together with the best straight-line fit. Will women overtake
men in the coming years?

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Truncation &
Responsiveness

• Outlier removal

• Sampling bias

• Edge effects

Truncating &
Responsiveness 283Iteration and transformation

and you’d be forgiven for guessing that performance had reached a stable plateau—
only to see a dramatic improvement within the next few years! (Similar observations
can be made for the records in other sports as well.4)

 What causes the apparently steady improvement in athletic performances in a vari-
ety of sports? One surprising answer might be simply that an increased number of
people are trying! The number of humans on Earth continues to grow, and therefore
the likelihood that one of them is a tremendous athlete also increases—even if the
overall performance of all of humanity doesn’t change. A study5 showed that a large
part of the year-over-year improvement in athletic performance can be attributed to
this effect alone.

 One last mystery, before leaving this example behind: what happened in the years
1910–1930? Why did the winning time suddenly drop significantly (to levels that
wouldn’t be attained for another 40 years), and then abruptly increase again after a few
years? We can’t tell, but it makes you wonder whether the length of the course wasn’t
too well established in those early years. Another indicator is the strong fluctuation of
data points from one year to the next for all years prior to 1930: maybe time wasn’t
taken very carefully then. But that’s speculation—we can’t tell from the data available.

4 See for example the delightful Teaching Statistics—A Bag of Tricks by Andrew Gelman and Deborah Nolan,
Oxford University Press (2002).

5 “A Statistician Reads the Sports Pages: One Modern Man or 15 Tarzans?” by S. M. Berry in Chance, Vol 15/2,
p. 49 (2002).

 120

 140

 160

 180

 200

 1900 1920 1940 1960 1980 2000

1990

Men
Women

Figure 14.7 The same data as in figure 14.6, together with a weighted-splines fit. The
fit is based only on points prior to 1990, but the actual finishing times for the following
years are also shown. The softer spline clearly reveals the leveling off of the women’s
results well before 1990.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception 285Changing the appearance to improve perception

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

-10 -5 0 5 10

-6

-4

-2

 0

 2

 4

 6

-10 -5 0 5 10

Figure 14.8 Banking: two plots of the function 1/x. In the bottom panel, the vertical plot range
has been constrained so that the average angle of line segments is approximately 45 degrees.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception:
Banking

285Changing the appearance to improve perception

-1000

-800

-600

-400

-200

 0

 200

 400

 600

 800

 1000

-10 -5 0 5 10

-6

-4

-2

 0

 2

 4

 6

-10 -5 0 5 10

Figure 14.8 Banking: two plots of the function 1/x. In the bottom panel, the vertical plot range
has been constrained so that the average angle of line segments is approximately 45 degrees.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception:
Banking286 CHAPTER 14 Techniques of graphical analysis

(There’s the visual comparison, referred to earlier!) We wouldn’t have been able to
spot this from the representation of the data in figure 14.9.

 In figure 14.10, I adjusted the aspect ratio of the entire plot (using set size ratio
0.075), not just the plot range. Just extending the y range by the required amount to
compress the data in the vertical direction sufficiently would’ve led to a graph with an
inappropriate amount of unused, wasted space.

 Personally, I’m unhappy with the graph in figure 14.10. Through the banking pro-
cess, we’ve made some important structure in the data visible, yet we’ve lost a lot of
detail by shrinking the y axis down to almost nothing. In figure 14.11 I show a third
way to render the data: the continuous time series has been broken up, and subse-
quent centuries have been shifted horizontally and vertically to make it possible to
look at all of them at the same time. (Note that all the shifting can be done as part of
the plot command, without the need to chop up the data file: plot [1700:1800]
"data" u 1:2 w l, "" u ($1-100):($2+200) w l 1, "" u ($1-200):($2+400) w l 1, 200
w l 0, 400 w l 0.) I think this graph (a cut-and-stack plot) strikes a good balance

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 1700 1750 1800 1850 1900 1950 2000

A
nn

ua
l S

un
sp

ot
 N

um
be

r

Figure 14.9 Annual sunspot numbers for the years 1700 through 2000. What can
you say about the shape of the curve in this representation?

 0
 100
 200

 1700 1750 1800 1850 1900 1950 2000

Figure 14.10 The same data as in figure 14.9, plotted at an aspect ratio which
banks lines to 45 degrees

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Improving Perception:
Banking 287Changing the appearance to improve perception

between the desire to find the optimal aspect ratio for the plot and the desire to
choose the optimal plot range for the data.

 Banking is a valuable tool. In particular, I find it helpful because it draws our atten-
tion to the importance of the apparent slopes of lines on a graph. Nevertheless, it
must be used with judgment and discretion. Taken by itself, it can lead to graphs with
strongly skewed aspect ratios (such as figure 14.10), which can be inconvenient to
handle and which make comparisons between different parts of the graph (such as
the left and the right sides in figure 14.10) difficult.

14.3.2 Judging lengths and distances

Look at figure 14.12. It shows the inflows and outflows to and from a storage tank over
time. For the interval considered here, the inflows are always greater than the out-
flows, so that the tank tends to fill up over time, but that’s not our concern right now.
(Let’s say the tank is large enough.)

 Instead, let’s ask for the net inflow as a function of time—the inflow less the outflow
at each moment. Could you draw it? Does it look at all like the graph in figure 14.13?
In particular, did your graph contain the peak between 6 and 7 on the horizontal axis?
How about the relative height of the peak?

 This example shows how hard it is to estimate accurately the vertical distance
between two curves with large slopes. The eye has a tendency to concentrate on the
shortest distance between two curves, not on the vertical distance between them. The
shortest distance is measured along a straight line perpendicular to the curves. For

0

100

0

100

0

100

0 20 40 60 80 100

A
nn

ua
l S

un
sp

ot
 N

um
be

r

Year in Century

1700

1800

1900

Figure 14.11 A third representation of the sunspot data from figure 14.9: a cut-and-
stack plot

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Judging Lengths and
Distances288 CHAPTER 14 Techniques of graphical analysis

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

F
lo

w
 R

at
e

Time

Outflow
Inflow

Figure 14.12 Inflow and outflow to and from a storage tank. What’s the net flow to the tank?

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

N
et

 F
lo

w
 R

at
e

Time

Figure 14.13 Net flow to the storage tank. This is the difference between the inflow and
the outflow (see figure 14.12).

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Judging Lengths and
Distances

288 CHAPTER 14 Techniques of graphical analysis

 0

 10

 20

 30

 40

 50

 60

 0 2 4 6 8 10 12

F
lo

w
 R

at
e

Time

Outflow
Inflow

Figure 14.12 Inflow and outflow to and from a storage tank. What’s the net flow to the tank?

 0

 5

 10

 15

 20

 25

 0 2 4 6 8 10 12

N
et

 F
lo

w
 R

at
e

Time

Figure 14.13 Net flow to the storage tank. This is the difference between the inflow and
the outflow (see figure 14.12).

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Enhancing Quantitative
Perception

290 CHAPTER 14 Techniques of graphical analysis

points on the graph and nearby grid lines. As long as the grid is sufficiently fine, those
differences will be smaller than the features themselves and their relative sizes there-
fore easier to estimate accurately.

 An example will clarify. In figure 14.15, we see two curves, one above the other.
Both seem to be similar to each other, exhibiting two local maxima (indicated by
arrows) for example, but shifted horizontally and vertically relative to each other. But
just by looking at this figure, though, it’s hard to decide just how similar the two
curves are.

 Figure 14.16 shows exactly the same data, but now a reference grid has been
added. We can use this grid to help us compare specific features of both curves. For
example, we can now easily see that the vertical distance between the two maxima is
approximately the same for both curves (about 2.5 vertical units), but that the inter-
mediate minimum is shallower for the bottom curve. The horizontal distance between
the maxima, on the other hand, is nearly equal between the top and bottom curves.
And so on.

 This is a somewhat different use for grid lines than the usual one, which is to make
it easier to read off specific numeric values from the plot of a curve. Here, we’re not
interested in actual numbers (which is why I quite intentionally left the tic labels off),
but only in the relative distances between points on the curve.

 There’s of course nothing special about grid lines here; they’re merely the most
convenient way to achieve our purpose. Alternatively, we could’ve placed some arrows
of equal length next to the maxima of both curves and used them as yardsticks for
comparisons.

Figure 14.15 How similar are the two curves to each other?

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Enhancing Quantitative
Perception 291Changing the appearance to improve perception

14.3.4 Plot ranges and the matter of zero

Plots should have meaningful plot ranges, showing those parts of the data that the
viewer is most likely going to be interested in at a reasonable resolution. It may not be
possible to convey all the meaning appropriately with a single choice of plot ranges, so
don’t be shy about showing two or more views of the same data set, for instance an
overview plot and a detailed close-up of only a small section of the entire data set.

 A long-standing, and largely unfruitful discussion concerns the question of
whether zero should be included in the range of a graph. The answer is simple: it all
depends.

 If you’re interested in the total value of a quantity, you probably want to include
zero in your range. If you care only about the variation relative to some baseline other
than zero, then don’t include zero.

 Figure 14.17 demonstrates what I mean. Both panels of the graph show the same
data. One tells us that the total variation is small, compared to the overall value. The
other panel tells us that there has been a steady increase from left to right. Both views
are valid, and each gives an answer to a different question.

 Plot ranges are a bit more of a concern when several graphs need to be compared
against each other. In such a situation, all graphs should have the same scale to facili-
tate comparison; in fact, using different scales for different graphs is a guaranteed
path to confusion (because the difference in scales will go unnoticed or be conve-
niently forgotten). And if one of the graphs legitimately includes zero, then all of
them will have to do the same.

Figure 14.16 The same curves as in figure 14.15. The reference grid helps to make
detailed comparisons between curves.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Plot Ranges ?
292 CHAPTER 14 Techniques of graphical analysis

14.3.5 A tough problem: the display of changing compositions

A hard problem without a single, good solution concerns the graphical representation
of how the breakdown of some aggregate number into its constituent parts changes
over time (or with some other control variable). Examples of this type are often found

 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 0 2 4 6 8 10

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

Figure 14.17 The effect of plot ranges. The data in both panels is the same, but the vertical plot range
is different. The top panel shows only the variation above a baseline; the bottom panel shows the global
structure of the data. Either plot is good, depending on what you want to see.

292 CHAPTER 14 Techniques of graphical analysis

14.3.5 A tough problem: the display of changing compositions

A hard problem without a single, good solution concerns the graphical representation
of how the breakdown of some aggregate number into its constituent parts changes
over time (or with some other control variable). Examples of this type are often found

 20

 20.2

 20.4

 20.6

 20.8

 21

 21.2

 21.4

 0 2 4 6 8 10

 0

 5

 10

 15

 20

 25

 30

 0 2 4 6 8 10

Figure 14.17 The effect of plot ranges. The data in both panels is the same, but the vertical plot range
is different. The top panel shows only the variation above a baseline; the bottom panel shows the global
structure of the data. Either plot is good, depending on what you want to see.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

The Core Principle

• Plot exactly what you want to see
GNUPLOT 101

http://www.gnuplot.info

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

GNUPLOT

• Free software for plotting data

• NOT «push-button-limited-capacities»
type of software

•Multiplatform

• Integrates well with LaTeX

GNUPLOT Invocation
Mac-Pro:metho tixeuil$ gnuplot

 G N U P L O T
 Version 4.3 patchlevel 0
 last modified March 2009
 System: Darwin 9.8.0

 Copyright (C) 1986-1993, 1998, 2004, 2007-2009
 Thomas Williams, Colin Kelley and many others

 Type `help` to access the on-line reference manual.
 The gnuplot FAQ is available from
 http://www.gnuplot.info/faq/

 Send comments and help requests to <gnuplot-beta@lists.sourceforge.net>
 Send bug reports and suggestions to <gnuplot-beta@lists.sourceforge.net>

Terminal type set to 'x11'
gnuplot>

First plots18 CHAPTER 2 Essential gnuplot

This will plot the sine together with the linear function x and the third-order polyno-
mial x - 1/6 x3, which are the first few terms in the Taylor expansion of the sine.1 (Gnu-
plot’s syntax for mathematical expressions is straightforward and similar to the one
found in almost any other programming language. Note the ** exponentiation opera-
tor, familiar from Fortran or Perl. Appendix B has a table of all available operators
and their precedences.) The resulting plot (see figure 2.2) is probably not what we
expected.

 The range of y values is far too large, compared to the previous graph. We can’t
even see the wiggles of the original function (the sine wave) at all anymore. Gnuplot
adjusts the y range to fit in all function values, but for our plot, we’re only interested
in points with small y values. So, we recall the last command again (using the up-arrow
key) and define the plot range that we are interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

The range is given in square brackets immediately after the plot command. The first
pair of brackets defines the range of x values (we leave it empty, since we’re happy
with the defaults in this case); the second restricts the range of y values shown. This
results in the graph shown in figure 2.3.

1 A Taylor expansion is a local approximation of an arbitrary, possibly quite complicated, function in terms of
powers of x. We won’t need this concept in the rest of this book. Check your favorite calculus book if you want
to know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure 2.1 Our first plot: plot sin(x)

gnuplot>
plot sin(x)

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

17Simple plots

sin(x)) and data (typically from a file). The plot command has a variety of options
and subcommands, through which we can control the appearance of the graph as well
as the interpretation of the data in the file. The plot command can even perform
arbitrary transformations on the data as we plot it.

2.1.1 Invoking gnuplot and first plots

Gnuplot is a text-based plotting program: we interact with it through command-line-like
syntax, as opposed to manipulating graphs using the mouse in a WYSIWYG fashion.
Gnuplot is also interactive: it provides a prompt at which we type our commands. When
we enter a complete command, the resulting graph immediately pops up in a separate
window. This is in contrast to a graphics programming language (such as PIC), where
writing the command, generating the graph, and viewing the result are separate activ-
ities, requiring separate tools. Gnuplot has a history feature, making it easy to recall,
modify, and reissue previous commands. The entire setup encourages you to play with
the data: making a simple plot, changing some parameters to hone in on the interest-
ing sections, eventually adding decorations and labels for final presentation, and in
the end exporting the finished graph in a standard graphics format.

 If gnuplot is installed on your system, it can usually be invoked by issuing the
command:

gnuplot

at the shell prompt. (Check appendix A for instructions on obtaining and installing
gnuplot, if your system doesn’t have it already.) Once launched, gnuplot displays a
welcome message and then replaces the shell prompt with a gnuplot> prompt. Any-
thing entered at this prompt will be interpreted as gnuplot commands until you issue
an exit or quit command, or type an end-of-file (EOF) character, usually by hitting
Control-D.

 Probably the simplest plotting command we can issue is

plot sin(x)

(Here and in the following, the gnuplot> prompt is suppressed to save space. Any
code shown should be understood as having been entered at the gnuplot prompt,
unless otherwise stated.)

 On Unix running a graphical user interface (X11), this command opens a new
window with the resulting graph, looking something like figure 2.1.

 Please note how gnuplot has selected a “reasonable” range for the x values auto-
matically (by default from -10 to +10) and adjusted the y range according to the values
of the function.

 Let’s say we want to add some more functions to plot together with the sine. We
recall the last command (using the up-arrow key or Control-P for “previous”) and edit
it to give

plot sin(x), x, x-(x**3)/6

19Simple plots

We can play much longer with function plots, zoning in on different regions of inter-
est and trying out different functions (check the reference section in appendix B for a
full list of available functions and operators), but instead let’s move on and discuss
what gnuplot is most useful for: plotting data from a file.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

18 CHAPTER 2 Essential gnuplot

This will plot the sine together with the linear function x and the third-order polyno-
mial x - 1/6 x3, which are the first few terms in the Taylor expansion of the sine.1 (Gnu-
plot’s syntax for mathematical expressions is straightforward and similar to the one
found in almost any other programming language. Note the ** exponentiation opera-
tor, familiar from Fortran or Perl. Appendix B has a table of all available operators
and their precedences.) The resulting plot (see figure 2.2) is probably not what we
expected.

 The range of y values is far too large, compared to the previous graph. We can’t
even see the wiggles of the original function (the sine wave) at all anymore. Gnuplot
adjusts the y range to fit in all function values, but for our plot, we’re only interested
in points with small y values. So, we recall the last command again (using the up-arrow
key) and define the plot range that we are interested in:

plot [][-2:2] sin(x), x, x-(x**3)/6

The range is given in square brackets immediately after the plot command. The first
pair of brackets defines the range of x values (we leave it empty, since we’re happy
with the defaults in this case); the second restricts the range of y values shown. This
results in the graph shown in figure 2.3.

1 A Taylor expansion is a local approximation of an arbitrary, possibly quite complicated, function in terms of
powers of x. We won’t need this concept in the rest of this book. Check your favorite calculus book if you want
to know more.

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-10 -5 0 5 10

sin(x)

Figure 2.1 Our first plot: plot sin(x)

19Simple plots

We can play much longer with function plots, zoning in on different regions of inter-
est and trying out different functions (check the reference section in appendix B for a
full list of available functions and operators), but instead let’s move on and discuss
what gnuplot is most useful for: plotting data from a file.

-200

-150

-100

-50

 0

 50

 100

 150

 200

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.2 An unsuitable default plot range: plot sin(x), x, x-(x**3)/6

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

-10 -5 0 5 10

sin(x)
x

x-(x**3)/6

Figure 2.3 Using explicit plot ranges: plot [][-2:2] sin(x), x, x-(x**3)/6

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Plotting From Data

20 CHAPTER 2 Essential gnuplot

2.1.2 Plotting data from a file

Gnuplot reads data from text files. The data is expected to be numerical and to be
stored in the file in whitespace-separated columns. Lines beginning with a hashmark (#)
are considered to be comment lines and are ignored. Listing 2.1 shows a typical data
file containing the share prices of two fictitious companies, with the equally fictitious
ticker symbols PQR and XYZ, over a number of years.

Average PQR and XYZ stock price (in dollars per share) per calendar year
1975 49 162
1976 52 144
1977 67 140
1978 53 122
1979 67 125
1980 46 117
1981 60 116
1982 50 113
1983 66 96
1984 70 101
1985 91 93
1986 133 92
1987 127 95
1988 136 79
1989 154 78
1990 127 85
1991 147 71
1992 146 54
1993 133 51
1994 144 49
1995 158 43

The canonical way to think about this is that the x value is in column 1 and the y value
is in column 2. If there are additional y values corresponding to each x value, they are
listed in subsequent columns. (We’ll see later that there’s nothing special about the
first column. In fact, any column can be plotted along either the x or the y axis.)

 This format, simple as it is, has proven to be extremely useful—so much so that
long-time gnuplot users usually generate data in this way to begin with. In particular,
the ability to keep related data sets in the same file is a big help (so that we don’t
need to keep PQR’s stock price in a separate file from XYZ’s, although we could if we
wanted to).

 While whitespace-separated numerical data is what gnuplot expects natively,
recent versions of gnuplot can parse and interpret significant deviations from this
norm, including text columns (with embedded whitespace if enclosed in double
quotes), missing data, and a variety of textual representations for calendar dates, as
well as binary data (see chapter 4 for a more detailed discussion of input file formats,
and chapter 7 for the special case when one of the columns represents date/time
information).

Listing 2.1 A typical data file: stock prices over time

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

21Simple plots

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is
called prices, we can simply type

plot "prices"

Since data files typically contain many different data sets, we’ll usually want to select
the columns to be used as x and y values. This is done through the using directive to
the plot command:

plot "prices" using 1:2

This will plot the price of PQR shares as a function of time: the first argument to the
using directive specifies the column in the input file to be plotted along the horizon-
tal (x) axis, while the second argument specifies the column for the vertical (y) axis. If
we want to plot the price of XYZ shares in the same plot, we can do so easily (as in fig-
ure 2.4):

plot "prices" using 1:2, "prices" using 1:3

By default, data points from a file are plotted using unconnected symbols. Often this
isn’t what we want, so we need to tell gnuplot what style to use for the data. This is
done using the with directive. Many different styles are available. Among the most
useful ones are with linespoints, which plots each data point as a symbol and also
connects subsequent points, and with lines, which just plots the connecting lines,
omitting the individual symbols.

plot "prices" using 1:2 with lines,
➥ "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

"prices" u 1:2
"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

21Simple plots

 Plotting data from a file is simple. Assuming that the file shown in listing 2.1 is
called prices, we can simply type

plot "prices"

Since data files typically contain many different data sets, we’ll usually want to select
the columns to be used as x and y values. This is done through the using directive to
the plot command:

plot "prices" using 1:2

This will plot the price of PQR shares as a function of time: the first argument to the
using directive specifies the column in the input file to be plotted along the horizon-
tal (x) axis, while the second argument specifies the column for the vertical (y) axis. If
we want to plot the price of XYZ shares in the same plot, we can do so easily (as in fig-
ure 2.4):

plot "prices" using 1:2, "prices" using 1:3

By default, data points from a file are plotted using unconnected symbols. Often this
isn’t what we want, so we need to tell gnuplot what style to use for the data. This is
done using the with directive. Many different styles are available. Among the most
useful ones are with linespoints, which plots each data point as a symbol and also
connects subsequent points, and with lines, which just plots the connecting lines,
omitting the individual symbols.

plot "prices" using 1:2 with lines,
➥ "prices" using 1:3 with linespoints

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

"prices" u 1:2
"prices" u 1:3

Figure 2.4 Plotting from a file: plot "prices" using 1:2, "prices" using 1:3

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

22 CHAPTER 2 Essential gnuplot

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-
matically provides a key, which shows a sample of the line or symbol type used for each
data set together with a text description, but the default description isn’t very mean-
ingful in our case. We can do much better by including a title for each data set as
part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,
➥ "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (figure 2.5). The title
has to come after the using directive in the plot command. A good way to memorize
this order is to remember that we must specify the data set to plot first and provide the
description second: define it first, then describe what you defined.

 Want to see how PQR’s price correlates with XYZ’s? No problem; just plot one
against the other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

We see here that there’s nothing special about the first column. Any column can be
plotted against either the x or the y axis; we just pick whichever combination we need
through the using directive. Since it makes no sense to connect the data points in the
last plot, we’ve chosen the style with points, which just plots a symbol for each data
point, but no connecting lines (figure 2.6).

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

PQR
XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using
1:2 title "PQR" with lines, "prices" using 1:3 title "XYZ" with
linespoints

22 CHAPTER 2 Essential gnuplot

This looks good, but it’s not clear from the graph which line is which. Gnuplot auto-
matically provides a key, which shows a sample of the line or symbol type used for each
data set together with a text description, but the default description isn’t very mean-
ingful in our case. We can do much better by including a title for each data set as
part of the plot command:

plot "prices" using 1:2 title "PQR" with lines,
➥ "prices" using 1:3 title "XYZ" with linespoints

This changes the text in the key to the string given as the title (figure 2.5). The title
has to come after the using directive in the plot command. A good way to memorize
this order is to remember that we must specify the data set to plot first and provide the
description second: define it first, then describe what you defined.

 Want to see how PQR’s price correlates with XYZ’s? No problem; just plot one
against the other, using PQR’s share price for x values and XYZ’s for y values, like so:

plot "prices" using 2:3 with points

We see here that there’s nothing special about the first column. Any column can be
plotted against either the x or the y axis; we just pick whichever combination we need
through the using directive. Since it makes no sense to connect the data points in the
last plot, we’ve chosen the style with points, which just plots a symbol for each data
point, but no connecting lines (figure 2.6).

 40

 60

 80

 100

 120

 140

 160

 180

 1975 1980 1985 1990 1995

PQR
XYZ

Figure 2.5 Introducing styles and the title keyword: plot "prices" using
1:2 title "PQR" with lines, "prices" using 1:3 title "XYZ" with
linespoints

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Data Transformation

41Data transformations

Gnuplot can perform simple arithmetic on complex numbers, such as { 1, 1 } + { -1, 0 }.
Furthermore, many of the built-in mathematical functions (such as sin(x), exp(x), and
so forth) can accept complex arguments and return complex numbers as results. We
can use the special functions real(x) and imag(x) to pick out the real and imaginary
parts, respectively.

 One important limitation of gnuplot’s complex numbers is that both parts must be
numeric constants—not variables, not expressions! We can always work around this
limitation, though, by using a complex constant as part of a more general expression.
For example, the following command will plot real and imaginary parts of the expo-
nential function, evaluated for imaginary argument:

plot real(exp(x*{0,1})), imag(exp(x*{0,1}))

Complex numbers are of fundamental importance in mathematics and theoretical
physics, and have important applications in signal processing and control theory.
Gnuplot’s ability to handle them makes it particularly suitable for such applications.

 Now that we’ve seen what mathematical operations we can perform, let’s see how
we can apply them to data.

3.4 Data transformations
As stated before, gnuplot is first and foremost a plotting tool: a program that allows us
to generate straightforward plots of raw data in a simple and efficient manner. Specif-
ically, it’s not a statistics package or a workbench for numerical analysis. Large-scale
data transformations are not what gnuplot is designed for. Properly understood, this is
one of gnuplot’s main strengths: it does a simple task and does it well, and does not
require learning an entire toolset or programming language to use.

 Nevertheless, gnuplot has the ability to perform arbitrary transformations on the
data as part of the plot command. This allows us to apply filters to the data from within
gnuplot, without having to take recourse to external tools or programming languages.

3.4.1 Simple data transformations

An arbitrary function can be applied to each data point as part of the using directive
in the plot command. If an argument to using is enclosed in parentheses, it’s not
treated as a column number, but as an expression to be evaluated. Inside the paren-
theses, you can access the values of the column values for the current record by pre-
ceding the column number with a dollar sign ($) (as in shell or awk programming).
Some examples will help to clarify.

 To plot the square root of the values found in the second column versus the values
in the first column, use

plot "data" using 1:(sqrt($2)) with lines

To plot the average of the second and third columns, use

plot "data" using 1:(($2+$3)/2) with lines

41Data transformations

Gnuplot can perform simple arithmetic on complex numbers, such as { 1, 1 } + { -1, 0 }.
Furthermore, many of the built-in mathematical functions (such as sin(x), exp(x), and
so forth) can accept complex arguments and return complex numbers as results. We
can use the special functions real(x) and imag(x) to pick out the real and imaginary
parts, respectively.

 One important limitation of gnuplot’s complex numbers is that both parts must be
numeric constants—not variables, not expressions! We can always work around this
limitation, though, by using a complex constant as part of a more general expression.
For example, the following command will plot real and imaginary parts of the expo-
nential function, evaluated for imaginary argument:

plot real(exp(x*{0,1})), imag(exp(x*{0,1}))

Complex numbers are of fundamental importance in mathematics and theoretical
physics, and have important applications in signal processing and control theory.
Gnuplot’s ability to handle them makes it particularly suitable for such applications.

 Now that we’ve seen what mathematical operations we can perform, let’s see how
we can apply them to data.

3.4 Data transformations
As stated before, gnuplot is first and foremost a plotting tool: a program that allows us
to generate straightforward plots of raw data in a simple and efficient manner. Specif-
ically, it’s not a statistics package or a workbench for numerical analysis. Large-scale
data transformations are not what gnuplot is designed for. Properly understood, this is
one of gnuplot’s main strengths: it does a simple task and does it well, and does not
require learning an entire toolset or programming language to use.

 Nevertheless, gnuplot has the ability to perform arbitrary transformations on the
data as part of the plot command. This allows us to apply filters to the data from within
gnuplot, without having to take recourse to external tools or programming languages.

3.4.1 Simple data transformations

An arbitrary function can be applied to each data point as part of the using directive
in the plot command. If an argument to using is enclosed in parentheses, it’s not
treated as a column number, but as an expression to be evaluated. Inside the paren-
theses, you can access the values of the column values for the current record by pre-
ceding the column number with a dollar sign ($) (as in shell or awk programming).
Some examples will help to clarify.

 To plot the square root of the values found in the second column versus the values
in the first column, use

plot "data" using 1:(sqrt($2)) with lines

To plot the average of the second and third columns, use

plot "data" using 1:(($2+$3)/2) with lines

42 CHAPTER 3 Working with data

To generate a log/log plot, we can use the following command (although the logscale
option, discussed in section 3.6, is the preferred way to achieve the same effect):

plot "data" using (log($1)):(log($2)) with lines

Here are some more creative uses. To plot two data sets of different magnitude on a
similar scale, use this (assuming that the data in column three is typically greater by a
factor of 100 than the data in column two):

plot "data" using 1:2 with lines, "" using 1:($3/100) with lines

If the data file contains the x value in the first column, the mean in the second, and
the variance in the third, we can plot the band in which we expect 68 percent of all
data to fall as

plot "data" using 1:($2+sqrt($3)) with lines,
➥ "" using 1:($2-sqrt($3)) with lines

All expressions involving operators or functions can be part of using expressions,
including the conditional operator:

plot "data" using 1:($2 > 0 ? log($2) : 0) with lines

Finally, it should be kept in mind that the expression supplied in parentheses can be a
constant. The following command uses the frequency directive to count the number
of times each of the values in the first column (assumed to be integers) has occurred.
The resulting plot is a histogram of the values in the first column (remember that
smooth frequency sums up the values supplied as y values and plots the sum):

plot "data" using 1:(1) smooth frequency with lines

A fundamental limitation to all these transforms is that they can only be applied to a
single record at a time. If you need aggregate functions over several records (sums or
averages, for example), or across different data sets, you’ll have to perform them
externally to gnuplot. Nevertheless, the ability to apply an arbitrary filter to each data
point, and to combine different data points for the same x value, is often tremen-
dously useful.

3.4.2 Pseudocolumns and the column function

Gnuplot defines two pseudocolumns that can be used together with data transforma-
tions. The column 0 contains the line number in the current data set; the column -2
contains the index of the current data set within the data file. When a double blank
line is encountered in the file, the line number resets to zero and the index is incre-
mented. We could use these pseudocolumns, for instance, like this:

plot "data" using 0:1 # Plot first column against line number
plot "data" using 1:-2 # Plot data set index against first column

Another way to pick out a column is to use the column(x) function. This function eval-
uates its argument and uses the value (which should be an integer) to select a column.
For instance, we may have a variable x (possibly obtained through some complicated

42 CHAPTER 3 Working with data

To generate a log/log plot, we can use the following command (although the logscale
option, discussed in section 3.6, is the preferred way to achieve the same effect):

plot "data" using (log($1)):(log($2)) with lines

Here are some more creative uses. To plot two data sets of different magnitude on a
similar scale, use this (assuming that the data in column three is typically greater by a
factor of 100 than the data in column two):

plot "data" using 1:2 with lines, "" using 1:($3/100) with lines

If the data file contains the x value in the first column, the mean in the second, and
the variance in the third, we can plot the band in which we expect 68 percent of all
data to fall as

plot "data" using 1:($2+sqrt($3)) with lines,
➥ "" using 1:($2-sqrt($3)) with lines

All expressions involving operators or functions can be part of using expressions,
including the conditional operator:

plot "data" using 1:($2 > 0 ? log($2) : 0) with lines

Finally, it should be kept in mind that the expression supplied in parentheses can be a
constant. The following command uses the frequency directive to count the number
of times each of the values in the first column (assumed to be integers) has occurred.
The resulting plot is a histogram of the values in the first column (remember that
smooth frequency sums up the values supplied as y values and plots the sum):

plot "data" using 1:(1) smooth frequency with lines

A fundamental limitation to all these transforms is that they can only be applied to a
single record at a time. If you need aggregate functions over several records (sums or
averages, for example), or across different data sets, you’ll have to perform them
externally to gnuplot. Nevertheless, the ability to apply an arbitrary filter to each data
point, and to combine different data points for the same x value, is often tremen-
dously useful.

3.4.2 Pseudocolumns and the column function

Gnuplot defines two pseudocolumns that can be used together with data transforma-
tions. The column 0 contains the line number in the current data set; the column -2
contains the index of the current data set within the data file. When a double blank
line is encountered in the file, the line number resets to zero and the index is incre-
mented. We could use these pseudocolumns, for instance, like this:

plot "data" using 0:1 # Plot first column against line number
plot "data" using 1:-2 # Plot data set index against first column

Another way to pick out a column is to use the column(x) function. This function eval-
uates its argument and uses the value (which should be an integer) to select a column.
For instance, we may have a variable x (possibly obtained through some complicated

44 CHAPTER 3 Working with data

3.5.1 Tricks and warnings

Gnuplot math allows for a few tricks, which can be used to good effect in some
situations—or which may trip up the unwary.

■ First, remember that integer division truncates! This means that 1/4 evaluates to 0
(zero). If you want floating-point division, you must promote at least one of the
numbers to floating point: 1/4.0 or 1.0/4 will evaluate to 0.25, as expected.

■ Gnuplot tends to be pretty tolerant when encountering undefined values:
rather than failing, it just doesn’t produce any graphical output for data points
with undefined values. This can be used to suppress data points or generate
piecewise functions. For example, consider the following function:

f(x) = abs(x) < 1 ? 1 : 1/0

It’s only defined on the interval [-1:1], and a plot of it will only show data
points for this interval.

■ A similar method can be used to exclude certain data points when plotting data
from a file. For example, the following command will only plot data points for
which the y value is less than 10:

plot "data" using 1:($2 < 10 ? $2 : 1/0) with linespoints

This 1/0 technique is a good trick that’s frequently useful, in particular in conjunction
with the ternary operator, as in these examples.

3.6 Logarithmic plots
Lastly, let’s see how we can generate logarithmic plots. Logarithmic plots are a cru-
cial technique in graphical analysis. In gnuplot, it’s easy to switch to and from loga-
rithmic plots:

set logscale # turn on double logarithmic plotting
set logscale x # turn on logarithmic plotting for x-axis only
set logscale y # for y-axis only

unset logscale # turn off logarithmic plotting for all axes
unset logscale x # for x-axis only
unset logscale y # for y-axis only

We can provide a base as a second argument: set logscale y 2 turns on binary loga-
rithms for the y axis. (The default is to use base 10.)

 We’ll talk some more about uses for set logscale in chapter 13.

3.6.1 How do logarithmic plots work?

Logarithmic plots are a truly indispensable tool in graphical analysis. Fortunately, it’s
possible to understand what they do even without detailed understanding of the
mathematics behind them. However, the math isn’t actually all that hard, so in this
section, I’ll try to explain how logarithmic plots work and how they’re used.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Plotting Unix
/etc/passwd

58 CHAPTER 4 Practical matters

plot "data" using 1:2:xticlabels(3) with lines

Finally, we can use the first noncomment entry in the data file as label for the data set
in the plot’s legend (the key), by giving the column number as argument to the title
option of the plot command (see listing 4.5—more details in section 6.4.4).

plot "data" using 1:2 title 2 with lines

4.3.4 Crazy example: plotting the Unix password file

As a crazy example of what is possible, let’s plot a typical Unix password file with
gnuplot!

 Here is the file (see listing 4.6). (For non-Unix users: each line in the file describes
a user. Each line consists of several fields, separated by colons. The first field is the
username, the third field is a numeric user ID, and the fifth field is a textual descrip-
tion of the user. The other fields are of no relevance to us here.)

at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
daemon:x:2:2:Daemon:/sbin:/bin/bash
ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
games:x:12:100:Games account:/var/games:/bin/bash
ldap:x:76:70:User for OpenLDAP:/var/lib/ldap:/bin/bash
lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
mysql:x:60:108:MySQL database admin:/var/lib/mysql:/bin/false
news:x:9:13:News system:/etc/news:/bin/bash
ntp:x:74:103:NTP daemon:/var/lib/ntp:/bin/false
postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false
sshd:x:71:65:SSH daemon:/var/lib/sshd:/bin/false
uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false

To plot this file, we need to set the field separator to be the colon (:) and are then
able to plot it using the with labels style (see section 5.2.5 in chapter 5).

 Just for fun, we also make the letter 'm' the comment character. Verify how the
records starting with an 'm' don’t show up in the graph!

 In the plot (see listing 4.7; the resulting graph is shown in figure 4.2), we use
the numeric user ID as the x coordinate and the line number in the file as the y
coordinate. The label, printed at the resulting position, consists of each user’s login
name, stacked (by virtue of a newline character) on top of the textual description
of the user.

Listing 4.4 Reading x axis tic labels from file using xticlabels()

Listing 4.5 Reading text for the graph’s key from the data file

Listing 4.6 A text file that can be plotted by gnuplot

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

59Generating textual output

set datafile separator ':'
set datafile commentschar "m"
plot [-20:150][:27] "/etc/passwd"
➥ u 3:($0+2):(stringcolumn(1) . "\n" . stringcolumn(5)) w labels

4.4 Generating textual output
Gnuplot creates graphs—after all, that’s the whole point! Nevertheless, sometimes it
can be useful to have gnuplot create textual output. For example, we may want to
export the results from gnuplot’s spline interpolation algorithm to a file, so that we
can use them in another application. Or we may have applied some inline data trans-
formation and want to get our hands on the resulting data for some reason.

 Gnuplot has two different facilities for generating text: the print command and
the set table option.

4.4.1 The print command

The print command evaluates one or more expressions (separated by commas) and
prints them to the currently active printing channel—usually the screen:

print sin(1.5*pi)
print "The value of pi is: ", pi

The device to which print will send its output can be changed through the set print
option:

Listing 4.7 Plotting a text file (the Unix password file) with gnuplot

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80

/etc/passwd

at
Batch jobs daemon

daemon
Daemon

ftp
FTP account

games
Games account

ldap
User for OpenLDAP

lp
Printing daemon

news
News system

ntp
NTP daemon

postfix
Postfix Daemon

sshd
SSH daemon

uucp
Unix-to-Unix CoPy system

wwwrun
WWW daemon apache

Figure 4.2 Demonstrating string functions and the with labels plot style

59Generating textual output

set datafile separator ':'
set datafile commentschar "m"
plot [-20:150][:27] "/etc/passwd"
➥ u 3:($0+2):(stringcolumn(1) . "\n" . stringcolumn(5)) w labels

4.4 Generating textual output
Gnuplot creates graphs—after all, that’s the whole point! Nevertheless, sometimes it
can be useful to have gnuplot create textual output. For example, we may want to
export the results from gnuplot’s spline interpolation algorithm to a file, so that we
can use them in another application. Or we may have applied some inline data trans-
formation and want to get our hands on the resulting data for some reason.

 Gnuplot has two different facilities for generating text: the print command and
the set table option.

4.4.1 The print command

The print command evaluates one or more expressions (separated by commas) and
prints them to the currently active printing channel—usually the screen:

print sin(1.5*pi)
print "The value of pi is: ", pi

The device to which print will send its output can be changed through the set print
option:

Listing 4.7 Plotting a text file (the Unix password file) with gnuplot

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80

/etc/passwd

at
Batch jobs daemon

daemon
Daemon

ftp
FTP account

games
Games account

ldap
User for OpenLDAP

lp
Printing daemon

news
News system

ntp
NTP daemon

postfix
Postfix Daemon

sshd
SSH daemon

uucp
Unix-to-Unix CoPy system

wwwrun
WWW daemon apache

Figure 4.2 Demonstrating string functions and the with labels plot style

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Exporting Graphics

•«Web» graphics

• JPG, SVG, PNG, GIF

•«Print» graphics

• EPS, EPSLaTeX, PDF

Exporting EPS

211Print-quality output

We can use either PostScript Type 1 fonts or TrueType fonts. Gnuplot can handle
ASCII-encoded Type 1 fonts (file extension .pfa) directly, but for binary-encoded
Type 1 fonts (.pfb) or TrueType fonts (.ttf), gnuplot requires external helper pro-
grams. Check the standard gnuplot reference documentation or the special docu-
mentation on PostScript that’s part of the standard gnuplot distribution if this is of
relevance to you.

 The PostScript terminal includes a PostScript prologue at the beginning of each
PostScript file it generates. It expects to find a file containing the prologue in a stan-
dard location, or alternatively, in the directories specified by the environment variable
GNUPLOT_PS_DIR. By pointing this variable to a directory containing your own version
of the prologue file, it’s possible to customize the resulting PostScript files. (The com-
mand show version long will display the current search path for prologue files.)

 There’s more information regarding gnuplot’s PostScript capabilities in the gnu-
plot standard reference documentation and the psdoc directory in the gnuplot docu-
mentation tree.

11.4.2 Using PostScript plots with LaTeX

One very common use of PostScript graphs is to include them as illustrations in a
LaTeX document. In this section, I give a couple of cookbook-style recipes. First, I
describe how to include a regular PostScript file as an image in a LaTeX document.
Then we discuss gnuplot’s special epslatex terminal, which allows us to combine
PostScript graphics with LaTeX text in the same illustration, so that we can use the full
power of LaTeX for mathematical typesetting in gnuplot graphs.
INCLUDING AN EPS FILE IN A LATEX DOCUMENT

If we want to include a PostScript file in another document, it’s usually best to use an
EPS (Encapsulated PostScript) file, rather than “raw” PostScript. Encapsulated Post-
Script contains some additional information regarding the size and location of the
graph, which can be used by the embedding document to position the image properly.

 As an example, let’s assume we want to include the graph from figure 11.1 in a LaTeX
document. We’d have to export the graph to EPS, using the following commands:

... # plot commands
set terminal postscript eps enhanced
set output 'enhanced.eps'
replot

There are different ways to import this PostScript file into a LaTeX document. Here,
we use the graphicx package for this purpose. The LaTeX document is shown in list-
ing 11.5.

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\section{The First Section}

Listing 11.5 A LaTeX document that imports enhanced.eps. See figure 11.2.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Including EPS in LaTeX

211Print-quality output

We can use either PostScript Type 1 fonts or TrueType fonts. Gnuplot can handle
ASCII-encoded Type 1 fonts (file extension .pfa) directly, but for binary-encoded
Type 1 fonts (.pfb) or TrueType fonts (.ttf), gnuplot requires external helper pro-
grams. Check the standard gnuplot reference documentation or the special docu-
mentation on PostScript that’s part of the standard gnuplot distribution if this is of
relevance to you.

 The PostScript terminal includes a PostScript prologue at the beginning of each
PostScript file it generates. It expects to find a file containing the prologue in a stan-
dard location, or alternatively, in the directories specified by the environment variable
GNUPLOT_PS_DIR. By pointing this variable to a directory containing your own version
of the prologue file, it’s possible to customize the resulting PostScript files. (The com-
mand show version long will display the current search path for prologue files.)

 There’s more information regarding gnuplot’s PostScript capabilities in the gnu-
plot standard reference documentation and the psdoc directory in the gnuplot docu-
mentation tree.

11.4.2 Using PostScript plots with LaTeX

One very common use of PostScript graphs is to include them as illustrations in a
LaTeX document. In this section, I give a couple of cookbook-style recipes. First, I
describe how to include a regular PostScript file as an image in a LaTeX document.
Then we discuss gnuplot’s special epslatex terminal, which allows us to combine
PostScript graphics with LaTeX text in the same illustration, so that we can use the full
power of LaTeX for mathematical typesetting in gnuplot graphs.
INCLUDING AN EPS FILE IN A LATEX DOCUMENT

If we want to include a PostScript file in another document, it’s usually best to use an
EPS (Encapsulated PostScript) file, rather than “raw” PostScript. Encapsulated Post-
Script contains some additional information regarding the size and location of the
graph, which can be used by the embedding document to position the image properly.

 As an example, let’s assume we want to include the graph from figure 11.1 in a LaTeX
document. We’d have to export the graph to EPS, using the following commands:

... # plot commands
set terminal postscript eps enhanced
set output 'enhanced.eps'
replot

There are different ways to import this PostScript file into a LaTeX document. Here,
we use the graphicx package for this purpose. The LaTeX document is shown in list-
ing 11.5.

\documentclass{article}
\usepackage{graphicx}

\begin{document}

\section{The First Section}

Listing 11.5 A LaTeX document that imports enhanced.eps. See figure 11.2.

212 CHAPTER 11 Terminals in depth

Here is a very short paragraph. The plot will be included
after this paragraph.

\begin{figure}[h]
\begin{center}

\includegraphics[width=10cm]{enhanced}
\end{center}
\caption{A Postscript file, included in \LaTeX}

\end{figure}

And here is a second paragraph. The graph should have
been included before.

\section{The Second Section}

The second section really contains only a very short
text.
\end{document}

The graphicx package provides the \includegraphics command, which takes the
name of the graphics file to include as mandatory parameter. (The filename exten-
sion isn’t required and it’s recommended that you omit it.) The \includegraphics
command takes a number of optional parameters as key/value pairs, which allow us to
perform some useful operations on the image as it’s included: we can trim, scale, and
rotate it. Here, we adjust its size ever so slightly (from 5 inches down to 10 cm).1 The
final appearance of the document after processing it with LaTeX is shown in
figure 11.2.
USING THE EPSLATEX TERMINAL

In the previous example, we included a PostScript file containing enhanced mode
text in a LaTeX document. This seems inconvenient, to say the least: since LaTeX has
such powerful capabilities to format text (and mathematical expressions specifically),
we should find ways to use them to lay out our text, rather than dealing with the much
more limited possibilities available through the enhanced text mode.

 The epslatex terminal does exactly that: it splits a gnuplot graph into its graphical
and its textual components. The graph is stored as EPS file, while the text is saved to a
LaTeX file. We then include this LaTeX document, which in turn imports the Post-
Script file, into our LaTeX master file.

 An example will make this more clear. Let’s re-create the graph from figure 11.1,
this time using LaTeX formatting commands instead of enhanced text mode (see list-
ing 11.6—see listing 11.2 for a version of this graph using enhanced text mode).

set label 1
➥ '$\phi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}$'
➥ at 1.2,0.25
set label 2 '$\Phi(x) = \int_{-\infty}^x \phi(t) dt$' at 1.2,0.8

set key top left Left # Interchange line sample and explanation

1 There are many more options—check your favorite LaTeX reference for details. A good place to start is Guide
To LaTeX (4th ed.) by H. Kopka and P. W. Daly, Addison-Wesley, 2004.

Listing 11.6 Combining gnuplot and LaTeX using the epslatex terminal

212 CHAPTER 11 Terminals in depth

Here is a very short paragraph. The plot will be included
after this paragraph.

\begin{figure}[h]
\begin{center}

\includegraphics[width=10cm]{enhanced}
\end{center}
\caption{A Postscript file, included in \LaTeX}

\end{figure}

And here is a second paragraph. The graph should have
been included before.

\section{The Second Section}

The second section really contains only a very short
text.
\end{document}

The graphicx package provides the \includegraphics command, which takes the
name of the graphics file to include as mandatory parameter. (The filename exten-
sion isn’t required and it’s recommended that you omit it.) The \includegraphics
command takes a number of optional parameters as key/value pairs, which allow us to
perform some useful operations on the image as it’s included: we can trim, scale, and
rotate it. Here, we adjust its size ever so slightly (from 5 inches down to 10 cm).1 The
final appearance of the document after processing it with LaTeX is shown in
figure 11.2.
USING THE EPSLATEX TERMINAL

In the previous example, we included a PostScript file containing enhanced mode
text in a LaTeX document. This seems inconvenient, to say the least: since LaTeX has
such powerful capabilities to format text (and mathematical expressions specifically),
we should find ways to use them to lay out our text, rather than dealing with the much
more limited possibilities available through the enhanced text mode.

 The epslatex terminal does exactly that: it splits a gnuplot graph into its graphical
and its textual components. The graph is stored as EPS file, while the text is saved to a
LaTeX file. We then include this LaTeX document, which in turn imports the Post-
Script file, into our LaTeX master file.

 An example will make this more clear. Let’s re-create the graph from figure 11.1,
this time using LaTeX formatting commands instead of enhanced text mode (see list-
ing 11.6—see listing 11.2 for a version of this graph using enhanced text mode).

set label 1
➥ '$\phi(x) = \frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2} x^2}$'
➥ at 1.2,0.25
set label 2 '$\Phi(x) = \int_{-\infty}^x \phi(t) dt$' at 1.2,0.8

set key top left Left # Interchange line sample and explanation

1 There are many more options—check your favorite LaTeX reference for details. A good place to start is Guide
To LaTeX (4th ed.) by H. Kopka and P. W. Daly, Addison-Wesley, 2004.

Listing 11.6 Combining gnuplot and LaTeX using the epslatex terminal

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Including EPS in LaTeX
213Print-quality output

Figure 11.2 The final appearance of the LaTeX document shown in listing 11.5. Note the labels using enhanced
text mode in the included gnuplot graph.

Gnuplot in action: Understanding data with graphs.
Philipp K. Janert. Manning.

http://www.manning.com/janert/

Implementing EDA 4BT

•Run-sequence Plot

•Lag Plot

•Histogram

• (Normal) Probability Plot

Run-sequence Plot
set terminal postscript eps color
"Times-Roman" 16

set output "flowmeter_runseq.eps"
plot "flowmeter1" with lines

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

Run-sequence Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

 0 20 40 60 80 100 120 140 160 180 200

"flowmeter1"

Lag Plot

#!/usr/bin/perl

$previous = <>;
chomp($previous);
while ($current = <>) {
 chomp($current);
 print $current . "\t" .
$previous . "\n";
 $previous = $current;
}

Lag Plot

$> perl lag.pl < flowmeter1 > flowmeter2

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

9.299992 9.206343
9.277895 9.299992
9.305795 9.277895
9.275351 9.305795
9.288729 9.275351
9.287239 9.288729
9.260973 9.287239

...

flowmeter2

Lag Plot

set output "flowmeter_lag.eps"
plot "flowmeter2"

9.299992 9.206343
9.277895 9.299992
9.305795 9.277895
9.275351 9.305795
9.288729 9.275351
9.287239 9.288729
9.260973 9.287239

...

flowmeter2

Lag Plot Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter2"

Histogram
set output
"flowmeter_histogram.eps"
bin(x,s) = s*int(x/s)
set boxwidth 0.01
plot "flowmeter1" using
(bin($1,0.01)):(1./(0.01*195))
smooth frequency with boxes 9.206343

9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

Histogram Flow DS

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 9.14 9.16 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter1" using (bin($1,0.01)):(1./(0.01*195))

(Normal) Probability
Plot

set output "flowmeter_cumulative.eps"
plot "flowmeter1" using 1:(1./195.)
smooth cumulative

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 9.18 9.2 9.22 9.24 9.26 9.28 9.3 9.32 9.34

"flowmeter1" using 1:(1./195.)

(Normal) Probability
Plot

set table "flowmeter_cdf"
replot
unset table

9.206343
9.299992
9.277895
9.305795
9.275351
9.288729
9.287239
9.260973

...

flowmeter1

 9.19685 0.00512821 i
 9.20634 0.0102564 i
 9.20733 0.0153846 i
 9.21527 0.0205128 i
 9.21675 0.025641 i
 9.21881 0.0307692 i

...

flowmeter_cdf

(Normal) Probability
Plot

Set output
"flowmeter_isnormal.eps"
plot "flowmeter_cdf" using
(invnorm($2)):1 with lines

 9.19685 0.00512821 i
 9.20634 0.0102564 i
 9.20733 0.0153846 i
 9.21527 0.0205128 i
 9.21675 0.025641 i
 9.21881 0.0307692 i

...

flowmeter_cdf

(Normal) Probability
Plot Flow DS

 9.18

 9.2

 9.22

 9.24

 9.26

 9.28

 9.3

 9.32

 9.34

-3 -2 -1 0 1 2 3

"flowmeter_cdf" using (invnorm($2)):1

