METHOD - 2014 - Exercices

Sébastien Tixeuil

1 Writing Proofs

1.1 Divisions

Suppose we want to prove the following theorem:
Theorem 1 Let a, b, be integers. If $a \mid b$ and $2 \mid a$, then $2 \mid b$.
A student wrote the following "proof":
Proof: Let a, b be integers.

$$
\left.\begin{array}{l}
a \mid b \Rightarrow b=a k \\
2 \mid a \Rightarrow a=2 j
\end{array}\right\} \Rightarrow b=2 j k
$$

So $2 \mid b$.
Question 1 What is wrong with the tentative proof?
Question 2 Rewrite the proof correctly.

1.2 Tiles

Consider the following three regions A, B, and C depicted in Figure 1.
We conjecture the following theorem is true:
Theorem 2 Of the three regions show in Figure 1, region A can be tiled with 1×2 tiles, but regions B and C cannot.

Question 1 Proove or disprove the conjecture.

Figure 1: Regions to be tiled

2 Data Analysis

2.1 Dataset

In this exercice, we consider a dataset of intercontacts in a conference. People have an (anonymized) identifier (from 1 to 41) and the time is discretized. One line of the dataset is for example:

1872073321697

This means that the person with identifier 18 has met the person with identifier 7 starting with time 20733 and ending with time 21697. The dataset can be fetched at URL:
http://www-npa.lip6.fr/~tixeuil/m2r/uploads/Main/dataset.txt

2.2 Analysis

We want to answer a few basic questions about the dataset. In each case, describe the methodology used to obtain the result.

Question 1 How are intercontacts durations arranged along time?
Question 2 What is the average intercontact duration, what about the variance?
Question 3 What is the intercontact duration distribution?
Question 4 Does the global intercontact duration distribution differ from the individual distribution?
Question 5 Is there a time dependency for intercontact durations?
Question 6 What else can you deduce from the dataset?

