. 7

SIM =[]

The SimGrid Project

Simulation and Deployment of Distributed Applications

SIM =[]

Arnaud Legrand Martin Quinson Henri Casanova Kayo Fujiwara
CNRS, MESCAL INRIA project Université Henri Poincare, Nancy 1 Dept. of Information and Computer Sciences
Laboratoire Informatique et Distribution LORIA University of Hawaii at Manoa
Developing efficient large-scale concurrent applications poses many challenges: Examples of target applications:
e A parallel linear system solver on a commodity cluster

e Understanding the performance behavior of the code is non-trivial e A parallel rendering application running on a network of workstations
e Conducting experiments in real-world large-scale platforms is non-trivial e A scientific simulation running on a multi-site high-end grid platform

® Requires a fully functional implementation e A network monitoring application running on a wide-area network

e Limited to a few particular platform configurations e A peer-to-peer file-sharing application running on volatile Internet hosts

e In many cases, non-repeatable

e Accurate and validated simulations results are elusive Features _ _ o
e Potentially more accurate emulation is extremely time consuming e Fast and accurate simulation capabilities (SURF)
® Simulation code is often “throw-away” and may differ from the real code ® Ablllty to run the same code in full or partial simulation mode or in real-world mode (GRAS, SMPI)
e An API for rapid application prototyping to test and evaluate distributed algorithms (MSG)
The SimGrid project addresses all the above challenges via a multi-component e Only in simulation mode

software infrastructure for application prototyping, development, and deployment.

Available at http://simgrid.gforge.inria.fr/

Application and algorithm prototyping

e Enables the the easy prototyping of distributed algorithms
e No need to realize a complete implementation
e Just focus on the fundamentals of distributed computing
e Uses a convenient and standard abstraction of a distributed applications
e Applications consist of processes
® Processes can be created, suspended, resumed and
terminated dynamically
® Processes can synchronize by exchanging tasks
e Tasks have a communication payload and an execution payload
e All processes are in the same address space
e Enables convenient communication via global data structure

client #Zgu
\
=

client #1

7N
U nterne \
j’> router /
server #1 /

b

g \ switch
T Lo P
‘Z\\ﬂ //E %-‘_H\;f;f
= = P L el = =
= client #3

I

e Either in simulation or in real-world mode

e In partial simulation mode

Application development
int client(int argc, char * *argv) {

m_task_t local, remote, ack; e (Convenience
m_host_t destination; e API for rapid development of real-world distributed applications

e Simple and cross-architecture communication of complex

destination = MISG_get_host_by_name(server_host_name); data structures

/* simulated data transfer * / e Portability (Linux, Mac OSX, Solaris, AIX, IRIX; 12 CPU architectures)
remote = MSG_task_create("Remote”, 30.0, 3.2); e Performance via efficient communication (computation unchanged)
/* 30.0 MFlop, 3.2 MB */ e Resulting application is production, not prototype

MSG_task_put(remote, destination, PORT_22]);

Y T T et Application testing and evaluation

local = MSG;tj'gkgg":nalfle("'-gcg'kn'l'aof'0’ 3.2}; e Unmodified code run in simulation mode or in real-world mode
/~10. e / e Automatic benchmarking of application code for simulation (CPU)
MSG_task_execute(local); . . . . . -
e Automatic computation of communication volume for simulation (network)

/ * simulate data reception */
MSG_task_get(&ack, PORT_23);

To PowerPC Sparc x86
return O; From : : 40.0ms :

} : 22.7ms
: 8.2ms

17.9ms

-
On

2
10 H 5.4ms
- 3.1ms

1073
n/a n/a
1 0-4 1 1

GRAS MPICH OmniORB PBIO XML GRAS MPICH OmniORB PBIO XML GRAS MPICH OmniORB PBIO XML

2
= 4.3ms

int server(int argc, char * *argv) {
m_task_t task;
m_host_t source;

107

PowerPC

1074

while(1) {
/ * simulated data reception */
MSG_task_get(&task, PORT_22]J;

42.6ms - S55.7ms c 38.0ms

/ * simulated task execution */
MSG_task_execute(task]);

Sparc

source = MISG_get_host_by_name(client_host_name]; : i i
GRAS MPICH OmniORB PBIO XML GRAS MPICH OmniORB PBIO XML GRAS MPICH OmniORB PBIO XML

/ * simulated data transfer */ :
ack = MSG_task_create(”Ack”, 0, 0.01); 18.0ms
/* 0 MFlop, 10KB */ 102 -
MSG_task_put(ack, source, PORT_23); Sl

} - i
return O;
} n/a n/a
1 0-4 1 1

34.3ms

12.8ms

5.2ms

x86

Research

e An API for application development to obtain fast, robust and portable application code (GRAS)

e An API for MPI application simulation to study the effect of platform heterogenity (SMPI)

Development Research & Development

Rewrite

Code ———— > Code Code

l

Simulation

l /\

Program Simulation Program

Without GRAS With GRAS

int client(int argc, char * *argv]) {
gras_socket_t peer, from;
int ping=1234, pong;

gras_init(&argc, argv);
gras_os_sleep(1); /* Wait for the server startup */

gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int”]);

/ * name, payload */

gras_msgtype_declare(”’pong”, gras_datadesc_by_name(”int”});

peer = gras_socket_client("127.0.0.1”, 4000);
gras_msg_send(peer, gras_msgtype_by_name(”ping”), &ping);

/ * dest, msgtype, payload */

gras_msg_wait(6000, gras_msgtype_by_name(’pong”), &from, &pong);

/ * timeout, wanted msgtype, &source, &payload * /

gras_exit();

return O;

int server(int argc, char * *argv) {

gras_init(&argc, argv);

gras_msgtype_declare(”ping”, gras_datadesc_by_name(”int"));
gras_msgtype_declare(’pong”, gras_datadesc_by_name(”int”));
gras_ch_register(gras_msg_type_by_name(”ping”), ping_callback);
gras_socket_server{(4000j;

/ * wait for next message (up to 600s) and handle it */

server #2 gras_msg_handle(600.0);
GRAS MPICHOmniORB PBIO XML 0 GRAS MPICHOmniORB PBIO XML o GRAS MPICH OmniORB PBIO XML gr‘as_e)éit[];
A Gantt chart fo an execution of Average time to exchange one Pastry message ona LAN (nseconds) ™
cerver #2 T 2“,% aBbzfiee .iige 107 22 BRI SRR PewerP e, Spare, cnd 06 ere dieares i ing callacaras._sokst_ expordtor vid *payoed o)
v | . ] ) . o / * Some computation whose duration should be simulated * /
Cllent #3 E IDLE : thI’lS, I|ght pOI‘tlonS denote . 1.05 1.75s L ol 1.49s8 \{ip2s 1l 100.0,983 138s 1005 6% GRAS_BENCHp_AtL\t;VAYS_END[]; ‘ ‘
' | communications o\g : / * Send data back as payload of pong message to the ping’s source */
) E X 10 10” 10 gras_msg_send(source, gras_msgtype_by_name(”’pong”), &msg);
S izl &2 R ﬂ Concurrent communications 02 02 02 )
: ' interfere with each other as the . .
client #1 m TCP flows share network links G l N e ; ; Mo NEReoess
@ time i GRAS MPICHOMNIORB PBIO XML i GRAS MPICH OmniORB PBIO XML o) GRAS MPICH OmniORB PBIO XML ® Parallel simulation for better scalabi"ty
Average time to exchange one Pastry message on a WAN (in seconds) e Port to Windows e Native multi-threading support
for MPICH, OmniORB, PBIO, and XML-based communication, Grid Application Toolbox
between PowerPC,Sparc,.and x86 architectures e Platform monitoring (CPU and network)
(WAN: California - France) .
S e Network topology discovery
Software Architecture
Why three interfaces?
SMPI MSG GRAS e MSG: Rapid prototyping of distributed applications / algorithms
MPI Application Generic Application Distributed Application e GRAS: Development of production distributed applications
Simulation Simulation Simulation and Deployment e SMPI: Study how an existing MPI application reacts to platform heterogenity
Simulation and Concurrency
SURF e MSG: All simulated application processes run within a single process
Virtual Platform Simulation e GRAS: Subsets of simulated application processes run within multiple
processes on multiple hosts, for increased scalability
e SMPI: Each application process runs as a separate process
Work in Progress
Simulation of an existing MPI application Virtual Plat_form simulation Simulation of resource sharing
e Automatic (but directed) benchmarking of communication and computation costs during an application e Computation

execution on an homogeneous platform
e Easy simulation of the application on a heterogeneous platform

e No code modification required beyond inserting benchmarking commands so that the simulation Features and Capabilities

can be instanciated

Example: 1-D Matrix Multiplication in MPI

e Matrices are distributed among processors using a vertical strip decomposition
e Column blocs are broadcasted at every step

e Point-to-point Communication

Simulation of complex communications (multi-hop routing)

Consider a set of resources, R.

Consider a set of “tasks”, T

Each task is defined as the subset of R it uses
SURF uses the unifying MaxMin Fairness model

Matrix A . . .
W bkl Simulation of resource sharing p

Simulation LAN and WAN links
Topology can be imported from topology generators (such as BRITE)
Trace-based simulation of performance variations due to external load

|

void parallel_mat_mult(int M, int N, int K, double alpha,

double *buf_col = calloc[M, sizeof{double]));

K
double *A, double *B, double beta, double *C])
{

int KK = K/num_proc; M

int NN = N/num_proc;

int i,k;
-
KK

Matrix C

for(k=0; k< K; k++]) {
if (k/KK == my_id)
for(i=0; i<M; i++)
buf_col[i]=A[i * KK+(k % KK]];
MPI_Bcast(buf_col, M, MPI_DOUBLE, k / KK, MPI_COMM_WORLD);
/ * Start benchmarking */
SMPI_BENCH_ONCE_RUN_ONCE_BEGIN();
/ * Call he CBLAS dgem() routine */
cblas_dgemm(CblasRowMajor,CblasNoTrans,CblasNoTrans,
M, NN, 1, alpha, buf_col, 1, &B[k*NN], NN,
k?1.0:beta, C, NN);
/ * Stop benchmarking */
SMPI_BENCH_ONCE_RUN_ONCE_END();

(S

proc #4

proc #3

proc #2

proc #1 |

HTUOW

Trace-based simulation of dynamic resource failures

.

VreR: Y p <G,
tor

VieT :ps >0

v

Matrix C

|

L)

L)
\¢
{

\MaxMin Fairness: maximize MiNieT Pt )
Network bandwidth
- .
NN

H!
2,
e
F3
8
o
(=)

B INRIA L/ S

.

s
D 08
& @ GTNetS
E e NS
§ SSFNet
g 04 = SURF
Q
<
Oﬂl(B 1dKB 100KB 1MB 10MB 100MB 1GB
Data Size (bytes)
- 1.2
Work in Progress g;
[0
©
Interfacing to packet-level network simulators S 08
e MaxMin fairness less accurate for short-lived TCP flows 2 e
S e For short-lived flows, one can use more accurate, . NS
but more expensive, packet-level simulation S SSFNet
U e SURF will provide a seamless interface to packet- $ o4 = SURF
level simulators such as NS, GTNets, or SSFNet S
CENTRE NATIONAL R e Users can choose between MaxMin and
DE LA RECHERCHE packet- level simulation 0
SCIENTIFIQUE F 0.8 8 80 800 8000

Physical Bandwidth (Mbps)

e Used for computation and communication resources
e Multiple TCP flows sharing links
e Multiple CPU-bound processes sharing a CPU
e Interference of communication and computation
e Parallel tasks

e Can be implemented efficiently

e [s very accurate in many scenarios

Experiment comparing SURF, GTNetS,

SSFNet, and NS-2 for a range of message sizes
e 10 Mbs link, 10ms latency
® Message size: 1KB to 1GB
e Effective data transfer rate is measured

SURF is very accurate for data> 1MB
But it is less accurate for <1MB because
of transient TCP behavior (e.g., slow start)

Experiment comparing SURF, GTNetS,

SSFNet, and NS-2 for a range of bandwidths
e 10ms latency, 10MB message size
e Physical bandwidth: 100KBps to 1GBps
e Effective data transfer rate is measured

SUREF is very accurate for the whole range
of physical bandwidths



