
Geometrical interpretation for data partitioning and sorting on a grid architecture

Dominique Bernardi(1), Christophe Cérin (2), Hazem Fkaier (3), Mohamed Jemni (3) and Michel Koskas (4)
(1) Université Pierre et Marie Curie-Paris6

Théorie des nombres - Institut de Mathématiques de Jussieu, Paris, F-75005 France
(2) Université de Paris Nord - LIPN

UMR CNRS 7030, 99 avenue Jean-Batiste Clément, 93430 Villetaneuse - France
 (3) Ecole Supérieure des Sciences et Techniques de Tunis, Unité de recherche UTIC

5, avenue Taha Hussein, B.P. 56, Bab Menara, Tunis – Tunisie
(4) Université de Picardie Jules Verne,

LAMFA, UMR CNRS 6140, 5 rue du moulin neuf, Amiens, F-80000, France
bernardi@math.jussieu.fr, christophe.cerin@lipn.univ-paris13.fr, hazem.fkaier@esstt.rnu.tn,

mohamed.jemni@fst.rnu.tn., michel.koskas@laria.u-picardie.fr

I-Introduction

Does a grid architecture can achieve performance
similar to the 2005 Minute Sort1 record: 116GB
(100 bytes records with 10 bytes for the key) in one
minute on 80 Itanium2, 2,520 SAN disks? To
answer, we have to consider first the type of grid
and second the type of algorithm that we have to
deploy. In our work we develop new methods in
order to control the execution time and the load
balancing of each cluster node participating in a
parallel sorting application. We deal with
heterogeneity of CPU and network speeds [1,2]. In
fact, partitioning is the key and sorting is just one
application for the concept. In the paper, the
partitioning step is based on geometrical
interpretations to find a data partition schema
offering good times both for computation and
communication in an heterogeneous context.

II- Our motivating example

Consider first a single cluster and a homogeneous
one. Initially, n data are distributed across the p
processors proportionally to their speeds. In this
case, each processor receives n/p data. This
assumption describes the initial condition of the
problem. An efficient parallel sorting schema on
clusters (and even with heterogeneous processors)
can be implemented in the following way:
• Each processor picks up representative values in

the unsorted list. It sends the representative
values to node 0;

• Node 0 sorts what it receives from the processors
and it keeps p-1 pivots; it distributes the pivots to
all the processors

• Each processor partitions its input according to
the pivots and it sends p-1 portions to the others

• Each processor sorts the data it has.
One important problem in all environments
(heterogeneous or homogeneous) is to select the
“good number” and the “right values” of pivots,
such that, the amount of data that processors
receive are almost similar to the amount of initial
data they have.

1 See http://research.microsoft.com/barc/SortBenchmark/

Initially data are distributed according to processors
performances. If one processor is very fast among a
two processors cluster, then the fastest processor
has more data than the slow one. After
redistribution, we assume that we will be also very
close to this situation. Then the amount of data
exchanged between the two processors will be very
low. Otherwise, if the two processors have close
speeds or let’s say equal speeds, then initially they
detain almost the same amount of data. In the
communication phase each processor will send to
other almost the half of what it has initially. Then
during this phase, almost the half of the whole data
will cross the link between the two processors.

We have developed a family of algorithms and MPI
codes able to control the execution in the case of
heterogeneity of the CPUs. After configuring for an
homogeneous cluster (in our code, homogeneity is
obtained by setting a vector with the same value
representing the processor speeds), tuning and
running on one cluster of the Grid’50002 project
and on 200 processors, we obtained a performance
of 150s to sort 116GB. More than half of this time
is devoted to communication, about 20% to write
on disks (Minute Sort requires that the final result is
stored on disks), about 20% to do the in-core sorts
and the remainder for selecting pivots.

The main tuning steps concern (a) the possibility to
sort on keys only and to avoid the moves of whole
the record; then to write on disks one record after
one record and after retrieving the records (b) the
possibility to multithread communication (thread
safe MPI implementation is required). All these
techniques do not improve the execution time in a
significant way.

The reason is that the communication step involves
near 1Tb of data and we have a 1GBb/s Ethernet,
Opteron processors at 2Ghz and IDE disks. We are
guessing that in order to achieve the record, we
need 200 Opteron processors, a 10Gb/s low latency
network and ultra wide SCSI disks. We note also

2 See http://www.grid5000.org

mailto:mohamed.jemni@fst.rnu.tn

that the interconnection of another long distance
cluster with the same configuration will not
improve the result since the network speed between
the cities is still a bottleneck.

Waiting for a new infrastructure, we are currently
working at the algorithmic level. Let us introduce a
heuristic to show how to split data in the case of a
grid with two clusters and heterogeneous links.

III. The case of a 2 clusters system

We consider the case of a grid of two
heterogeneous clusters, P1 and P2 having different
speeds, respectively k1 and k2, linked by a network
link allowing a full duplex transfer mode. Note that
we consider that the “power” of a site is represented
by, say the sum of the speeds of the processors.

In the first phase, we shall select among data a
global pivot to partition data on the two sites. Then
we assume that this pivot will partition the two sets
of data with the same proportionality since data are
supposed homogeneous and randomly distributed
between the two sites. The situation is depicted on
Figure 1.

Fig1. Partitioning representation

It is obvious that m11, m12, m21 and m22 have
correlated sizes. We consider the following matrix
M that specifies what a site has at the beginning and
what it sends to the other one:

M = [m11 m12
m21 m22

] =[m11 m12
a.m11 a.m12

]

where a =N2/N1. We can also obtain the following
relation: m22 = N2- a.m11. m11 varies between 0 and
N1, while m22 varies between 0 and N2. Figure 2
shows this relation. Then our estimated solution is a
point of the segment of Figure 2.

Fig 2. Distributions space

After communication, P1 will have m11+m21=N’1 to
sort while P2 will have m12+m22=N’2 to sort. Our
purpose is to find the values of N’1 and N’2 to
minimize both processing and communications.
We consider, first, processing time. It is obvious
that the parallel processing time is the maximum of
the sequential processing time of all processors.
Hence the optimal case is obtained when no
processor is over-loaded, which is to say the two
sites end processing at the same time.

Fig 3. Processing time

Let’s find now the distribution that minimizes
communication time. We can model the
communication time Tc between a processor pi and
a processor pj with the equation Tc = lij + dij.m.
As we explained before, the more the two
processors are balanced, the bigger the amount of
exchanged data is. Subsequently, if the processors
are “very” heterogeneous, the exchanged data will
be very small. Then the communication graph will
be a parabola-like (see Figure 4).

Fig 4. Communication time
If we suppose that the link is symmetric, then the
communication time parabola will be symmetric
too. We shall, now, merge the two solutions to find
optimal distribution to have the best execution time.
We shall consider in the same graph the sum of
processing time and communication time (see
Figure 5).

Fig 5. Execution time.

We do believe that the knowledge of the different
cost functions makes the prediction of the optimal
distribution easier.

IV. Master slaves approaches

The previous example suggests that we could have
an organisation with two masters (one per site) in
charge of distributing work to processors inside a
site. The master slave paradigm has been
extensively studied in the past for scheduling jobs
and more recently for heterogeneous platforms
[3,4].

The more relevant reference in our context is [5]
because for the sorting application we deal with non
linear cost function after the partitioning step.
However, it appears that a polynomial needs to be
solved to derive the solution and the order may be
high. Deep investigation is still necessary to explain
that running the construction of [5], locally on each
master is benefit for the execution time and may
approach the optimal solution, if it is known.

Conclusion

In this work, we investigated load balancing
induced by data partitioning in a grid environment.
The problem is to find the best partitioning making
a compromise between processing time and
communication time. Our approach is promising

and we intend to run practical tests very soon to
validate the heuristic depicted in section III.

Bibliography

[1] C. Cérin, M. Koskas, M. Jemni & H. Fkaier,
Improving Parallel Execution Time of Sorting on
Heterogeneous Clusters, 16th Symposium on
Computer Architecture and High Performance
Computing, Brazil, October 27-29, 2004.
[2] C. Cérin, H. Fkaier & M. Jemni, A Synthesis of
Parallel Out-of-Core Sorting Programs on
Heterogeneous Clusters, Third IEEE/ACM
International Symposium on Cluster Computing
and the Grid, Tokyo, 12-15 may 2003.
[3] Olivier Beaumont, Loris Marchal and Yves
Robert, "Scheduling divisible loads with return
messages on heterogeneous master-worker
platforms", Report LIP RR-2005-21, May 2005.
http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/
RR2005-21.pdf
[4] Drozdowski, M. and Wolniewicz, P., "Out of
Core Divisible Load Processing," IEEE
Transactions on Parallel and Distributed Systems,
vol.14, no. 10, Oct. 2003, pp. 1048-xx
[5] Jui-Tsun Hung and Thomas Robertazzi,
“Distributed Scheduling of Nonlinear
Computational Loads”, Conference on Information
Sciences and Systems, The Johns Hopkins
University, March 12–14, 2003

http://www.ens-lyon.fr/LIP/Pub/Rapports/RR/RR2005/

	I-Introduction
	Does a grid architecture can achieve performance similar to the 2005 Minute Sort� record: 116GB (100 bytes records with 10 bytes for the key) in one minute on 80 Itanium2, 2,520 SAN disks? To answer, we have to consider first the type of grid and second

