Self-Stabilizing Minimum
Degree Spanning Tree
within one from the
optimal

L. Blin, M. Potop-Butucaru,
S. Rovedakis

WD %inrin

Motivations

High degree nodes yield undesirable effects

e In general networks
- High congestion
- High attack probability

e In Ad-hoc networks

» More collisions => low bandwidth

Theoretical insterst

“State of the arts

Self-stabilizing tree constructions

Breadth First Search trees (BFS):

* |Y. Afek, S. Kutten and M. Yung, WDAG, 1991]

e [S. Dolev, A. Israeli and S. Moran, PODC, 1990]
Depth First Search trees (DFS):

e [Z. Collin and S. Dolev, IPL, 1994]

e [T. Herman, PhD thesis, 1991]
Minimum Diameter Spanning trees:

e [J. Burman and S. Kutten, DISC, 2007]

 [F. Butelle, C. Lavault and M. Bui, WDAG, 1995]
Minimum weight Spanning Trees (MST):

e [L. Higham and Z. Liang, DISC, 2001]

e [G. Antonoiu and P.K. Srimani, Euro-par, 1997]
Shortest Paths trees:

e [S. Delaét, B. Ducourthial and S. Tixeuil, SSS, 2005]

MDST problem

Minimum Degree Spanning Tree (MDST):
* G=(V,E) is a unweighted undirected graph
e A(T) is the maximum degree of subgraph T

The goal is
1. to construct a tree T spanning V,

>. minimizing A(T).

A R :ﬁt_‘ o o
_;;;‘—;’;:"— ATy ————— — ak L ——

" NP-Hard problem

=

Hamiltonian path (NP-Hard)

Outline

Sequential algorithm for MDST problem

[M. Fiirer and B. Raghavachari, SODA, 1992]
Introduction to Self-Stabilization paradigm
Our Self-Stabilizing algorithm for MDST problem

N

Sequential Algorithm for the MDST
problem

Problem approximation

NP-hard problem (Hamiltonian path)
We seek an approximation
e A*: maximum degree of an optimal solution

 Best approximation: A(T) < A*+1
M. Fiirer and B. Raghavachari, SODA, 1992]

Algorithm [FRog2] :
e Initial state: an arbitrary spanning tree,
e Perform every possible improvement (edge swap).

—

_,/; o

Definitions: Fundamental cycle

Fundamental cycle: cycle in T created by the add of
the non tree edge (u,v) to T, noted C(u,v).

Definitions: Improving edge

Improving edge: edge (u,v) not in T, such that
max{deg(u),deg(v)} < A(T)-1 and node w in C(u,v)
with deg(w)=A(T).

+7 = Improving edge

Definitions: Improvement

Improvement: swap between an improving edge and
an edge adjacent to a maximum degree node
(i.e. anode with a degree equal to A(T)).

e Decrease by 1 the degree of a maximum degree node.

Sequential algorithm

Initially, we start with an arbitrary spanning tree
Until there is no improvement, run a new phase

A phase of algorithm:

e Compute the maximum degree of the current tree T (i.e.
computation of A(T))

e Perform an improvement

12

Example

A(T)=4

__;;;;;_’;;;;; e
‘-:—":/;;'

Example

AT)=4 A(T)=4 A(T)a=3

Ay

Example

Ay ez e,

Distributed algorithm: [L. Blin and F. Butelle, IPDPS, 2003 |

15

N

Self-Stabilization paradigm

e L o -"/’

' Self-Stabilizing Systems

Fault: event which corrupts
e memory (variables),
® program counter,
» Communication channels of nodes in the network.

Goal: A self-stabilizing system handle transient faults
(Dijkstra, 74)

Legitimate configuration: system configuration
(composition of local states) in which each node state
satisifies P (a desired property).

17

N

a Self-Stabilizing Algorithm for the
MDST problem

Model

Distinct identifiers
Asynchronous protocol (fine grained atomicity)
* Message passing
Distributed system
» Network = set of interconnected computers (nodes)
e FIFO and bidirectional channels
e State of a node = its variables
e System configuration = Local states of all nodes
e Local vision of the system (no global information)

19

e Gy '——'_/

' Self-Stabilizing algorithm

Composition of 3 self-stabilizing layers:
1. Construction of a spanning tree
>. Maximum degree computation of the current tree

3. Reduction of the maximum degree

20

> —.'-/'—
s
T

“Construction and rﬁaintaining of a
spanning tree

Root of the tree = node of minimum id
Variables for node u: root , parent,

Rules: [Afek, Kutten and Yung, WDAG, 1991]
* Coherent(u) : parent, € N(u)u{u} and root, = root

parentu

 BetterRoot(u) : v € N(u), root, < root,

e Update:
If Coherent(u) and BetterRoot(u) => uchanges root

e Init. State: If -Coherent(u) => u becomes a new root

21

—\._

“Construction and maintaining of a
spanning tree

Root=9 Root=6 Root=3

No rule can be executed

Update Rule

9 6 Init. State Rule
Root=9g Root=¢

(Update) If Coherent(u) and BetterRoot(u) => u changes root
(Init. State) If —Coherent(u) => u becomes a new root

22

“Construction and maintaining of a
spanning tree

R T e

* Need of cycle deletion:

e each node maintains its distance to the root

(root: dist=0, others: parent dist+1)

Root=3

Root=3

Root=3

Root=3 Root=3 Root=3
Dist=5 Dist=4 Dist=3

©, 5 O

) (6)
of=3 Root=3
DjSt=1 Dist=2

Computation of max degree

max_degree, : maximum degree of the current tree
If ~Coherent(u)

 max_degree, = degree of u in the tree

Otherwise

e Use of PIF protocol (Propagation of Information with
Feedback)

[Blin, Cournier, Villain, SSS, 2003],

[Cournier, Datta, Petit, Villain,]J. High Speed Networks, 2005]

Hexalbmgdt plmphase :
Diskeatinratib mafimammum

nadedtegegeee

24

Reduction of max degree

Works like [FR92], but for all fundamental cycles

Let a tree T, for each edge (u,v)¢T :
e Find its fundamental cycle (DFS search),
e Check if (u,v) isan improving edge,
e Perform an improvement (if improving edge).

Each edge is managed by the node with minimum id

— i ﬁ\ whiy —
,;;;;;"— PR AT — — e ——

o ».:'/ e

Reduction of max degree

T A(T)=3

la,4],[b3] Vv le,2],[d,2],[c;3]

(x,y) is not an improving edge
—>: Search

: Remove

—>: Back

Module Composition

An upper layer must not destabilize a lower one

Max. degree layer:

e does not change parent, and dist,,

Degree reduction layer:
 reduces the degree (higher degree => no improvement)

» changes parent, (update distance to maintain tree
coherency)

27

Conclusion and perspectives

We propose a self-stabilizing algorithm resolving the
MDST problem

 Best approximation (unless P=NP): A(T) < A*+1

Extension:
e Steiner tree [FR92]

e Oriented Graphs
» Approximation: A(T) < A*+logn
[R. Krishnan and B. Raghavachari, FST TCS, 2001]

28

N

Thank you

-—/— :

.—/L-

— i ___/

Approximation proof (1/2)

Theorem [FRo2|: If G contains no edge between trees in
F, then A(T) < A*+1.

S B
T

»/—

,—/>‘

— ; B—

Approximation proof (2/2)

Lemma [FRo2]:
When algorithm completes, A(T) < A*+1.
Proof:

e The algorithm stops only if there is no edge between
trees in F.

o T satisfies the conditions of the previous theorem and
thus we have A(T) < A*+1.

Remark: The set SUB is a witness set which allows to
check that A(T) < A*+1.

31

Sequential algorithm

Blocking node: node u with degree deg(u)=A(T)-1,
such that edge (u,v) not in T and node w in C(u,v) with
degree deg(w)=A(T).

A(T)=4 A(T)=3

— -"/ =

Reduction of max degree

T A(T)=3

le,2],[d)2],[c,3]
[a,4],[b,3] (x,y) is not an improving edge

A (¢,v) is not an improving edge

S because (c is a blocking node)

—>: Back
—>: Deblock

