Self-Stabilizing Minimum Degree Spanning Tree within one from the optimal

L. Blin, M. Potop-Butucaru, S. Rovedakis

Motivations

- High degree nodes yield undesirable effects
 - In general networks
 - High congestion
 - High attack probability
 - In Ad-hoc networks
 - More collisions => low bandwidth
- Theoretical insterst

State of the arts

Self-stabilizing tree constructions

- Breadth First Search trees (BFS):
 - [Y. Afek, S. Kutten and M. Yung, WDAG, 1991]
 - [S. Dolev, A. Israeli and S. Moran, PODC, 1990]
- Depth First Search trees (DFS):
 - **[Z. Collin** and **S. Dolev**, IPL, 1994]
 - [T. Herman, PhD thesis, 1991]
- Minimum Diameter Spanning trees:
 - [J. Burman and S. Kutten, DISC, 2007]
 - [F. Butelle, C. Lavault and M. Bui, WDAG, 1995]
- Minimum weight Spanning Trees (MST):
 - [L. Higham and Z. Liang, DISC, 2001]
 - [G. Antonoiu and P.K. Srimani, Euro-par, 1997]
- Shortest Paths trees:
 - [S. Delaët, B. Ducourthial and S. Tixeuil, SSS, 2005]

MDST problem

- Minimum Degree Spanning Tree (MDST):
 - G=(V,E) is a unweighted undirected graph
 - Δ (T) is the maximum degree of subgraph T
- The goal is
 - 1. to construct a tree T spanning V,
 - 2. minimizing $\Delta(T)$.

NP-Hard problem

Hamiltonian path (NP-Hard)

Outline

- Sequential algorithm for MDST problem
 [M. Fürer and B. Raghavachari, SODA, 1992]
- Introduction to Self-Stabilization paradigm
- Our Self-Stabilizing algorithm for MDST problem

Sequential Algorithm for the MDST problem

Problem approximation

- NP-hard problem (Hamiltonian path)
- We seek an approximation
 - Δ^* : maximum degree of an optimal solution
 - Best approximation: Δ(T) ≤ Δ*+1
 [M. Fürer and B. Raghavachari, SODA, 1992]
- Algorithm [FR92]:
 - Initial state: an arbitrary spanning tree,
 - Perform every possible improvement (edge swap).

Definitions: Fundamental cycle

• **Fundamental cycle:** cycle in T created by the add of the non tree edge (u,v) to T, noted C(u,v).

Definitions: Improving edge

• **Improving edge:** edge (u,v) not in T, such that $\max\{\deg(u),\deg(v)\} < \Delta(T)$ -1 and node w in C(u,v) with $\deg(w)=\Delta(T)$.

Definitions: Improvement

• Improvement: swap between an improving edge and an edge adjacent to a maximum degree node (i.e. a node with a degree equal to $\Delta(T)$).

• Decrease by 1 the degree of a maximum degree node.

Sequential algorithm

- Initially, we start with an arbitrary spanning tree
- Until there is no improvement, run a new phase
- A phase of algorithm:
 - Compute the maximum degree of the current tree T (i.e. computation of $\Delta(T)$)
 - Perform an improvement

Example

Example

Example

Distributed algorithm: [L. Blin and F. Butelle, IPDPS, 2003]

Self-Stabilization paradigm

Self-Stabilizing Systems

- Fault: event which corrupts
 - memory (variables),
 - program counter,
 - Communication channels of nodes in the network.
- Goal: A self-stabilizing system handle transient faults (Dijkstra, 74)
- Legitimate configuration: system configuration (composition of local states) in which each node state satisifies P (a desired property).

a Self-Stabilizing Algorithm for the MDST problem

Model

- Distinct identifiers
- Asynchronous protocol (fine grained atomicity)
 - Message passing
- Distributed system
 - Network = set of interconnected computers (nodes)
 - FIFO and bidirectional channels
 - State of a node = its variables
 - System configuration = Local states of all nodes
 - Local vision of the system (no global information)

Self-Stabilizing algorithm

- Composition of 3 self-stabilizing layers:
 - 1. Construction of a spanning tree
 - 2. Maximum degree computation of the current tree
 - 3. Reduction of the maximum degree

Construction and maintaining of a spanning tree

- Root of the tree = node of minimum id
- Variables for node u: root_u, parent_u
- Rules: [Afek, Kutten and Yung, WDAG, 1991]
 - Coherent(u): $parent_u \in N(u) \cup \{u\}$ and $root_u = root_{parentu}$
 - BetterRoot(u) : $v \in N(u)$, $root_v < root_u$
 - Update:
 - If Coherent(u) and BetterRoot(u) => u changes root
 - Init. State: If \neg Coherent(u) => u becomes a new root

Construction and maintaining of a spanning tree

(Update) If Coherent(u) and BetterRoot(u) => u changes root (Init. State) If ¬Coherent(u) => u becomes a new root

Construction and maintaining of a spanning tree

- Need of cycle deletion:
 - each node maintains its distance to the root (root: dist=o, others: parent dist+1)

Computation of max degree

- max_degree_u: maximum degree of the current tree
- If ¬Coherent(u)
 - max_degree_u = degree of u in the tree
- Otherwise
 - Use of PIF protocol (Propagation of Information with Feedback)

[Blin, Cournier, Villain, SSS, 2003],[Cournier, Datta, Petit, Villain, J. High Speed Networks, 2005]

Herofbægdt johnphase:
Diskentiinatifom oximumimum
nodødledegeee

Reduction of max degree

- Works like [FR92], but for all fundamental cycles
- Let a tree T, for each edge (u,v)∉T:
 - Find its fundamental cycle (DFS search),
 - Check if (u,v) is an improving edge,
 - Perform an improvement (if improving edge).
- Each edge is managed by the node with minimum id

Reduction of max degree

>: Search

>: Remove

>: Back

Module Composition

- An upper layer must not destabilize a lower one
- Max. degree layer:
 - does not change parent_u and dist_u
- Degree reduction layer:
 - reduces the degree (higher degree => no improvement)
 - changes parent_u (update distance to maintain tree coherency)

Conclusion and perspectives

- We propose a self-stabilizing algorithm resolving the MDST problem
 - Best approximation (unless P=NP): $\Delta(T) \leq \Delta^* + 1$
- Extension:
 - Steiner tree [FR92]
 - Oriented Graphs
 - Approximation: Δ(T) ≤ Δ*+log n
 [R. Krishnan and B. Raghavachari, FST TCS, 2001]

Thank you

Approximation proof (1/2)

Theorem [FR92]: If G contains no edge between trees in F, then $\Delta(T) \leq \Delta^* + 1$.

Approximation proof (2/2)

- Lemma [FR92]:
 When algorithm completes, Δ(T) ≤ Δ*+1.
- Proof:
 - The algorithm stops only if there is no edge between trees in F.
 - T satisfies the conditions of the previous theorem and thus we have $\Delta(T) \leq \Delta^* + 1$.
- Remark: The set $S \cup B$ is a witness set which allows to check that $\Delta(T) \leq \Delta^* + 1$.

Sequential algorithm

• **Blocking node:** node u with degree $deg(u)=\Delta(T)-1$, such that edge (u,v) not in T and node w in C(u,v) with $degree deg(w)=\Delta(T)$.

Reduction of max degree

→: Search

→: Remove

→: Back

→: Deblock

(c,v) is not an improving edge because (c is a blocking node)